Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica

ilustraciones, diagramas, resultados de simulaciones

Autores:
Castrillón Franco, Maria Camila
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84740
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84740
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Energía eólica
Recursos energéticos
Recursos energéticos renovables
Renewable energy sources
Wind power
Power resources
Energías renovables
Energía eólica
Estabilidad de pequeña señal,
Modos oscilatorios
Control LQG
Identificación basada en medidas
Sistemas de energía eléctrica.
Renewable energy
Wind energy
Small signal stability
Oscillatory modes
LQG control
Measurement-based identification
Electric power systems.
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_f8daedb5a524e4a9e5b3ad80b26c5197
oai_identifier_str oai:repositorio.unal.edu.co:unal/84740
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
dc.title.translated.eng.fl_str_mv Control of electromechanical oscillations in electrical energy systems using wind turbine generation
title Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
spellingShingle Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Energía eólica
Recursos energéticos
Recursos energéticos renovables
Renewable energy sources
Wind power
Power resources
Energías renovables
Energía eólica
Estabilidad de pequeña señal,
Modos oscilatorios
Control LQG
Identificación basada en medidas
Sistemas de energía eléctrica.
Renewable energy
Wind energy
Small signal stability
Oscillatory modes
LQG control
Measurement-based identification
Electric power systems.
title_short Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
title_full Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
title_fullStr Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
title_full_unstemmed Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
title_sort Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
dc.creator.fl_str_mv Castrillón Franco, Maria Camila
dc.contributor.advisor.none.fl_str_mv Correa Gutiérrez, Rosa Elvira
Arrieta Paternina, Mario Roberto
dc.contributor.author.none.fl_str_mv Castrillón Franco, Maria Camila
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Tecnologías Aplicadas Gita
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Energía eólica
Recursos energéticos
Recursos energéticos renovables
Renewable energy sources
Wind power
Power resources
Energías renovables
Energía eólica
Estabilidad de pequeña señal,
Modos oscilatorios
Control LQG
Identificación basada en medidas
Sistemas de energía eléctrica.
Renewable energy
Wind energy
Small signal stability
Oscillatory modes
LQG control
Measurement-based identification
Electric power systems.
dc.subject.lemb.spa.fl_str_mv Energía eólica
Recursos energéticos
Recursos energéticos renovables
dc.subject.lemb.eng.fl_str_mv Renewable energy sources
Wind power
Power resources
dc.subject.proposal.spa.fl_str_mv Energías renovables
Energía eólica
Estabilidad de pequeña señal,
Modos oscilatorios
Control LQG
Identificación basada en medidas
Sistemas de energía eléctrica.
dc.subject.proposal.eng.fl_str_mv Renewable energy
Wind energy
Small signal stability
Oscillatory modes
LQG control
Measurement-based identification
Electric power systems.
description ilustraciones, diagramas, resultados de simulaciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-02T19:23:01Z
dc.date.available.none.fl_str_mv 2023-10-02T19:23:01Z
dc.date.issued.none.fl_str_mv 2023-09-22
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84740
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84740
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abdollahi, M., Candela, J. I., Rocabert, J., Elsaharty, M. A., & Rodriguez, P. (2020). Novel Analytical Method for Dynamic Design of Renewable SSG SPC Unit to Mitigate Low-Frequency Electromechanical Oscillations. IEEE Transactions on Power Electronics, 35(7), 7532–7544. https://doi.org/10.1109/TPEL.2019.2956397
Araújo, J. A. V., & Cabré, M. M. (2023). Energía solar y eólica en Colombia: panorama y resumen de políticas 2022. https://doi.org/10.51414/SEI2023.016
Bagchi, S., Goswami, S., Bhaduri, R., Ganguly, M., & Roy, A. (2017). Small signal stability analysis and comparison with DFIG incorporated system using FACTS devices. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. https://doi.org/10.1109/ICPEICES.2016.7853294
Basit, M. A., Dilshad, S., Badar, R., & Sami ur Rehman, S. M. (2020). Limitations, challenges, and solution approaches in grid-connected renewable energy systems. In International Journal of Energy Research (Vol. 44, Issue 6, pp. 4132–4162). John Wiley and Sons Ltd. https://doi.org/10.1002/er.5033
Bhukya, J., & Mahajan, V. (2019). Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm. International Journal of Electrical Power and Energy Systems, 108(January), 314–335. https://doi.org/10.1016/j.ijepes.2019.01.017
Boukarim, G. E., Wang, S., Chow, J. H., Taranto, G. N., & Martins, N. (2000). A Comparison of Classical, Robust, and Decentralized Control Designs for Multiple Power System Stabilizers. In IEEE TRANSACTIONS ON POWER SYSTEMS (Vol. 15, Issue 4).
Brunton, S. L., & Kutz, N. L. (2019). Data-Driven Science and Engineering. Cai, G., Chen, X., Sun, Z., Yang, D., Liu, C., & Li, H. (2019). A coordinated dual-channel wide area damping control strategy for a doubly-fed induction generator used for suppressing inter-area oscillation. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112353
Chow, J. H., Boukarim, G. E., & Murdoch, A. (2004). Power System Stabilizers as Undergraduate Control Design Projects. IEEE Transactions on Power Systems, 19(1), 144–151. https://doi.org/10.1109/TPWRS.2003.821003
Chow, J. H., & Cheung, K. W. (1992). A Toolbox for Power System Dynamics and Control Engineering Education and Research. In Transactions on Power Systems (Vol. 7, Issue 4).
Chow, J. H., & Larsen E. V. (1987). SVC Control Design Concepts for System Dynamics Performance. IEEE Publication .
Chow, J. H., & Sanchez‐Gasca, J. J. (2019). Power System Coherency and Model Reduction. In Power System Modeling, Computation, and Control. https://doi.org/10.1002/9781119546924.ch16
Chow, J. H., & Sanchez‐Gasca, J. J. (2020). Power system, modeling, computation and control (Wiley). John Wiley & Sons Ltd.
Colombia presenta plan de expansión energética a largo plazo - BNamericas. (n.d.). Retrieved September 10, 2022, from https://www.bnamericas.com/es/noticias/colombia-presenta-plan-de-expansion-energetica-a-largo-plazo
Darabian, M., Jabari, F., & Ahmad Khani, M. (2023). Optimal design and operation of damping controllers in PV–wind integrated sustainable energy grids considering system uncertainties. IET Renewable Power Generation. https://doi.org/10.1049/rpg2.12779
Elizondo, M. A., Fan, R., Kirkham, H., Ghosal, M., Wilches-Bernal, F., Schoenwald, D., & Lian, J. (2018). Interarea Oscillation Damping Control Using High-Voltage DC Transmission: A Survey. IEEE Transactions on Power Systems, 33(6), 6515–6923. https://doi.org/10.1109/TPWRS.2018.2832227
Ellis, A., Pourbeik, P., Sanchez-Gasca, J. J., Senthil, J., & Weber, J. (2015). Generic wind turbine generator models for WECC - A second status report. IEEE Power and Energy Society General Meeting, 2015-September. https://doi.org/10.1109/PESGM.2015.7285645
Fornasini, E., & Valcher, M. E. (2013). Observability, reconstructibility and state observers of Boolean control networks. IEEE Transactions on Automatic Control, 58(6), 1390–1401. https://doi.org/10.1109/TAC.2012.2231592
Gautam, D., & Vittal, V. (2009). Impact of DFIG based wind turbine generators on transient and small signal stability of power systems. 2009 IEEE Power and Energy Society General Meeting, PES ’09, 24(3), 1426–1434. https://doi.org/10.1109/PES.2009.5275847
Global Wind Report Council. (2023). Global wind report 2023.
Gomes, S., Guimarães, C. H. C., Martins, N., & Taranto, G. N. (2018). Damped Nyquist Plot for a pole placement design of power system stabilizers. Electric Power Systems Research, 158, 158–169. https://doi.org/10.1016/j.epsr.2018.01.012
Gupta, A. K., Verma, K., & Niazi, K. R. (2017). Dynamic impact analysis of DFIG-based wind turbine generators on low-frequency oscillations in power system. IET Generation, Transmission and Distribution, 11(18), 4500–4510. https://doi.org/10.1049/iet-gtd.2017.0308
Gupta, A. K., Verma, K., & Niazi, K. R. (2019). Robust coordinated control for damping low frequency oscillations in high wind penetration power system. International Transactions on Electrical Energy Systems, 29(5), 1–17. https://doi.org/10.1002/2050-7038.12006
Gurung, N., Bhattarai, R., & Kamalasadan, S. (2020). Optimal Oscillation Damping Controller Design for Large-Scale Wind Integrated Power Grid. IEEE Transactions on Industry Applications, 56(4), 4225–4235. https://doi.org/10.1109/TIA.2020.2988432
Gurung, N., & Kamalasadan, S. (2018). Linear-Quadratic Gaussian based Power Oscillation Damping Controller Design for Doubly Fed Induction Generator. IEEE Power and Energy Society General Meeting, 2018-August. https://doi.org/10.1109/PESGM.2018.8586108
He, P., Arefifar, S. A., Li, C., Wen, F., Ji, Y., & Tao, Y. (2019). Enhancing oscillation damping in an interconnected power system with integrated wind farms using unified power flow controller. Energies, 12(2). https://doi.org/10.3390/en12020322
IEEE Power Engineering Society. (2006). IEEE Recommended Practice for Excitation System Models for Power System Stability Studies.
IRENA. (2019). Future of Wind: Deployment, investment, technology, grid integration and socio-economic aspects. In International Renewable Energy Agency. www.irena.org/publications
Isbeih, Y., Ghosh, S., Elmoursi, M., & El-Saadany, E. (2021). Online DMDc based model identification approach for transient stability enhancement using wide area measurements. IEEE Transactions on Power Systems, 36(5), 4884–4887. https://doi.org/10.1109/TPWRS.2021.3094331
Castrillón-Franco, C., Paternina, M. R. A., Reyes, F. E. R., Zamora-Mendez, A., Correa, R. E., & Ortiz-Bejar, J. (2023). Damping Control of Inter-area Oscillations Using non-conventional equipment. 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2023).Accepted
Izdebski, M., Małkowski, R., & Miller, P. (2022). New Performance Indices for Power System Stabilizers. Energies, 15(24). https://doi.org/10.3390/en15249582
Klein, M., Rogers, G. J., Moorty, S., Kundur, P., Hydro, O., & Toronto, C. (1992). Analytical Investigation of Factors Influencing Power System Stabilizers Performance. In IEEE Transactions on Energy Conversion (Vol. 7, Issue 3).
Kundur, P. (1994). Power System Stability And Control. In McGraw-Hill, Inc (p. 1167).
Lewis, M. (2023). Global installed wind power capacity just reached 1 TW | Electrek. https://electrek.co/2023/06/16/global-installed-wind-power-capacity/
Li, H., Liu, S., Ji, H., Yang, D., Yang, C., Chen, H., Zhao, B., Hu, Y., & Chen, Z. (2014). Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system. International Journal of Electrical Power and Energy Systems, 61, 279–287. https://doi.org/10.1016/j.ijepes.2014.03.009
Liao, K., Xu, Y., & Zhou, H. (2019). A robust damping controller for DFIG based on variable-gain sliding mode and Kalman filter disturbance observer. International Journal of Electrical Power and Energy Systems, 107(December 2018), 569–576. https://doi.org/10.1016/j.ijepes.2018.12.018
Mehta, B., Bhatt, P., & Pandya, V. (2014). Small signal stability analysis of power systems with DFIG based wind power penetration. International Journal of Electrical Power and Energy Systems, 58, 64–74. https://doi.org/10.1016/j.ijepes.2014.01.005
Miller, N. W., & Sanchez-gasca, J. J. (2008). Modeling of GE Wind Turbine-Generators for Grid Studies Prepared by : May.
Mondal, D., Chakrabarti, A., & Sengupta, A. (2014). Optimal and Robust Control. In Power System Small Signal Stability Analysis and Control (pp. i–ii). Elsevier. https://doi.org/10.1016/b978-0-12-800572-9.09987-x
Mondal, D., Chakrabarti, A., & Sengupta, A. (2020). Power System Small Signal Stability Analysis and Control.
Nkosi, N. R., Bansal, R. C., Adefarati, T., Naidoo, R. M., & Bansal, S. K. (2023). A review of small-signal stability analysis of DFIG-based wind power system. International Journal of Modelling and Simulation, 43(3), 153–170. https://doi.org/10.1080/02286203.2022.2056951
Noori, A., Jafari Shahbazadeh, M., & Eslami, M. (2020). Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator. International Journal of Electrical Power and Energy Systems, 119. https://doi.org/10.1016/j.ijepes.2020.105936
Ogata, Katsuhiko. (2009). Ingeniería de Control Moderna. Pearson Educación.
Padiyar K. R. (2008). Power system dynamics. www.mhm20.blogfa.com
Paternina, M. R. A., Ramirez-Arredondo, J. M., Lara-Jimenez, J. D., & Zamora-Mendez, A. (2017). Dynamic Equivalents by Modal Decomposition of Tie-Line Active Power Flows. IEEE Transactions on Power Systems, 32(2), 1304–1314. https://doi.org/10.1109/TPWRS.2016.2572601
Power System Dynamic Performance Committee. (2020). Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies.
Prakash, A., Singh, P., Kumar, K., & Parida, S. K. (2022). Design of a Reduced-Order WADC for Wind Turbine System-Integrated Power System. IEEE Transactions on Industry Applications, 58(3), 3250–3260. https://doi.org/10.1109/TIA.2022.3159319
Prakash, A., Tiwari, R. K., Kumar, K., & Parida, S. K. (2022). Interacting Multiple Model Strategy Based Adaptive Wide-Area Damping Controller Design for Wind Farm Embedded Power System. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2022.3231647
Rawal, M., Nauityal, D. C., & Rawat, M. S. (2021). Analysis of small signal stability in DFIG integrated power system. Proceedings of the 2021 1st International Conference on Advances in Electrical, Computing, Communications and Sustainable Technologies, ICAECT 2021. https://doi.org/10.1109/ICAECT49130.2021.9392505
Rergis, C. M., Kamwa, I., Khazaka, R., & Messina, A. R. (2019). A Loewner Interpolation Method for Power System Identification and Order Reduction. IEEE Transactions on Power Systems, 34(3), 1834–1844. https://doi.org/10.1109/TPWRS.2018.2884655
Rokni Nakhi, P., & Ahmadi Kamarposhti, M. (2020). Multi objective design of type II fuzzy based power system stabilizer for power system with wind farm turbine considering uncertainty. International Transactions on Electrical Energy Systems, 30(4). https://doi.org/10.1002/2050-7038.12285
Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox. In Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e. https://doi.org/10.1002/9781119355755
Shahgholian, G. (2013). Review of Power System Stabilizer: Application, Modeling, Analysys and Control Strategy. International Journal on "Technical and Physical Problems of Engineering. www.iotpe.com
Sharma, A., Sahu, B., Triphathy, N. P., Nagar, L. K., & Patidar, N. P. (2014). Time latency compensation for wide area damping controller. Proceedings of 6th IEEE Power India International Conference, PIICON 2014, 2–7. https://doi.org/10.1109/34084POWERI.2014.7117609
Shen, Y., Liang, L., Zhang, B., Liao, K., Xu, Y., Yang, H., & Yu, Q. (2018). Power Modulation of DFIG-based Wind Turbines for System Oscillation Damping. International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 1124–1129. https://doi.org/10.1109/ISGT-Asia.2018.8467869
Simon, L., & Swarup, S. (2017). Wide Area Oscillation Damping Control with DFIG based Wind Turbines using WAMS.
Slootweg, J. G., & Kling, W. L. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9–20. https://doi.org/10.1016/S0378-7796(03)00089-0
Vittal, E., O’Malley, M., & Keane, A. (2012). Rotor angle stability with high penetrations of wind generation. IEEE Transactions on Power Systems, 27(1), 353–362. https://doi.org/10.1109/TPWRS.2011.2161097
Wilches-Bernal, F. (2015). Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification. PhD Thesis, 2015(August 2015).
Wilches-Bernal, F., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Impact of wind generation power electronic interface on power system inter-area oscillations. IEEE Power and Energy Society General Meeting, 2016-Novem(July), 1–5. https://doi.org/10.1109/PESGM.2016.7741212
Wilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Small-signal analysis of power system swing modes as affected by wind turbine-generators. 2016 IEEE Power and Energy Conference at Illinois, PECI 2016, February, 7–12. https://doi.org/10.1109/PECI.2016.7459228
Wilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2019). Effects of wind turbine generators on inter-area oscillations and damping control design. Proceedings of the Annual Hawaii International Conference on System Sciences, 2019-Janua(d), 3649–3658. https://doi.org/10.24251/hicss.2019.441
World Energy Trade. (2019). ¿Cómo funcionan los aerogeneradores? https://www.worldenergytrade.com/energias-alternativas/energia-eolica/como-funcionan-los-aerogeneradores
Yao, W., Jiang, L., Wen, J., Wu, Q., & Cheng, S. (2015). Wide-area damping controller for power system interarea oscillations: A networked predictive control approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. https://doi.org/10.1109/TCST.2014.2311852
Yousefian, R., Bhattarai, R., & Kamalasadan, S. (2017). Transient Stability Enhancement of Power Grid with Integrated Wide Area Control of Wind Farms and Synchronous Generators. IEEE Transactions on Power Systems, 32(6), 4818–4831. https://doi.org/10.1109/TPWRS.2017.2676138
Zelaya Arrazabal, F. A. (2019). Identificación de modelos de sistemas de potencia basado en datos. Universidad Nacional Autonoma de Mexico.
Zelaya, F. A., Chow, J. H., Paternina, M. R. A., & Zamora, A. (2020). Power system linear model selective identification by exploiting the Loewner interpolation method. IEEE Power and Energy Society General Meeting, 2020-August. https://doi.org/10.1109/PESGM41954.2020.9282088
Zhang, X., Lu, C., Liu, S., & Wang, X. (2016). A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation. Renewable and Sustainable Energy Reviews, 57, 45–58. https://doi.org/10.1016/j.rser.2015.12.167
Zhang, Z., & Zhao, X. (2022). Control of HVDC-Connected PMSG-Based Wind Turbines for Power System Oscillation Damping. 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2022. https://doi.org/10.1109/PEDG54999.2022.9923123
Zhao, Y., Zhu, L., Xiao, H., Liu, Y., Farantatos, E., Patel, M., Darvishi, A., & Fardanesh, B. (2019). An Adaptive Wide-Area Damping Controller via FACTS for the New York State Grid Using a Measurement-Driven Model.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 118 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84740/3/1047996682.2023.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84740/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84740/2/1047996682.2023.pdf
bitstream.checksum.fl_str_mv f47bb307901c38eced36802594ba7f28
eb34b1cf90b7e1103fc9dfd26be24b4a
37d6c286b48a3224ccbcb459ff68d01a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089332942700544
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Gutiérrez, Rosa Elvira702c169730eb8c58b935d1bbd3805d74Arrieta Paternina, Mario Robertob43af681c7cb13651c21c5222a98ad36Castrillón Franco, Maria Camila89cf0d9606eda471a777202a64fd9302Grupo de Investigación en Tecnologías Aplicadas Gita2023-10-02T19:23:01Z2023-10-02T19:23:01Z2023-09-22https://repositorio.unal.edu.co/handle/unal/84740Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, resultados de simulacionesCon la creciente incorporación de recursos renovables en la matriz energética, uno de los principales retos es determinar la afectación que tiene este tipo de generación, basados principalmente en conversores, en la estabilidad dinámica de los sistemas eléctricos de potencia, siendo necesario determinar los sistemas de control adicionales que se deben incorporar en esta tecnología para mantener las principales variables eléctricas dentro del rango de operación establecido. En esta investigación se presenta el diseño de un Control Linear Cuadrático Gaussiano, LQG, implementado en el lazo de control de potencia reactiva de los generadores eólicos, para amortiguar modos oscilatorios inter-área en sistemas eléctricos de potencia. Para ello, primero se obtiene el modelo lineal del sistema eléctrico de potencia, inicialmente a través de la linealización con análisis de pequeña señal y luego con el método de identificación Loewner basado en mediciones. Después de sintonizar el control, se incorpora y se analiza su comportamiento e influencia en el amortiguamiento de los modos oscilatorios, utilizando como herramienta la gráfica del lugar geométrico de las raíces. Por último, se prueba el desempeño del controlador a través de simulación transitoria sobre el modelo no lineal de dos sistemas de prueba, que presentan diferentes modos oscilatorios, donde se demuestra que el control a través de aerogeneradores permite amortiguar los modos inter-área del sistema. (Texto tomado de la fuente)With the increasing incorporation of renewable resources in the energy matrix, one of the main challenges is to determine the effect that this type of generation, mainly based on converters, has on the dynamic stability of the electrical power systems, being necessary to determine the additional control systems that must be incorporated in this technology to maintain the main electrical variables within the established operating range. This research presents the design of a Linear Quadratic Gaussian Control, LQG, implemented in the reactive power control loop of wind generators, to damp inter-area oscillatory modes in electric power systems. For this purpose, first the linear model of the electrical power system is obtained, initially through linearization with small-signal analysis and then with the measurement-based Loewner identification method. After tuning the control, its behavior and influence on the damping of the oscillatory modes is incorporated and analyzed, using the root locus plot as a tool. Finally, the performance of the controller is tested through transient simulation on the nonlinear model of two test systems, which present different oscillatory modes, where it is demonstrated that the control through wind turbines allows damping the inter-area modes of the system.Contiene resultados de simulacionesMaestríaMagíster en Ingeniería - Ingeniería EléctricaAnálisis, operación y control en sistemas de energía eléctricaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control118 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería530 - Física::537 - Electricidad y electrónicaEnergía eólicaRecursos energéticosRecursos energéticos renovablesRenewable energy sourcesWind powerPower resourcesEnergías renovablesEnergía eólicaEstabilidad de pequeña señal,Modos oscilatoriosControl LQGIdentificación basada en medidasSistemas de energía eléctrica.Renewable energyWind energySmall signal stabilityOscillatory modesLQG controlMeasurement-based identificationElectric power systems.Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólicaControl of electromechanical oscillations in electrical energy systems using wind turbine generationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeRedColLaReferenciaAbdollahi, M., Candela, J. I., Rocabert, J., Elsaharty, M. A., & Rodriguez, P. (2020). Novel Analytical Method for Dynamic Design of Renewable SSG SPC Unit to Mitigate Low-Frequency Electromechanical Oscillations. IEEE Transactions on Power Electronics, 35(7), 7532–7544. https://doi.org/10.1109/TPEL.2019.2956397Araújo, J. A. V., & Cabré, M. M. (2023). Energía solar y eólica en Colombia: panorama y resumen de políticas 2022. https://doi.org/10.51414/SEI2023.016Bagchi, S., Goswami, S., Bhaduri, R., Ganguly, M., & Roy, A. (2017). Small signal stability analysis and comparison with DFIG incorporated system using FACTS devices. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. https://doi.org/10.1109/ICPEICES.2016.7853294Basit, M. A., Dilshad, S., Badar, R., & Sami ur Rehman, S. M. (2020). Limitations, challenges, and solution approaches in grid-connected renewable energy systems. In International Journal of Energy Research (Vol. 44, Issue 6, pp. 4132–4162). John Wiley and Sons Ltd. https://doi.org/10.1002/er.5033Bhukya, J., & Mahajan, V. (2019). Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm. International Journal of Electrical Power and Energy Systems, 108(January), 314–335. https://doi.org/10.1016/j.ijepes.2019.01.017Boukarim, G. E., Wang, S., Chow, J. H., Taranto, G. N., & Martins, N. (2000). A Comparison of Classical, Robust, and Decentralized Control Designs for Multiple Power System Stabilizers. In IEEE TRANSACTIONS ON POWER SYSTEMS (Vol. 15, Issue 4).Brunton, S. L., & Kutz, N. L. (2019). Data-Driven Science and Engineering. Cai, G., Chen, X., Sun, Z., Yang, D., Liu, C., & Li, H. (2019). A coordinated dual-channel wide area damping control strategy for a doubly-fed induction generator used for suppressing inter-area oscillation. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112353Chow, J. H., Boukarim, G. E., & Murdoch, A. (2004). Power System Stabilizers as Undergraduate Control Design Projects. IEEE Transactions on Power Systems, 19(1), 144–151. https://doi.org/10.1109/TPWRS.2003.821003Chow, J. H., & Cheung, K. W. (1992). A Toolbox for Power System Dynamics and Control Engineering Education and Research. In Transactions on Power Systems (Vol. 7, Issue 4).Chow, J. H., & Larsen E. V. (1987). SVC Control Design Concepts for System Dynamics Performance. IEEE Publication .Chow, J. H., & Sanchez‐Gasca, J. J. (2019). Power System Coherency and Model Reduction. In Power System Modeling, Computation, and Control. https://doi.org/10.1002/9781119546924.ch16Chow, J. H., & Sanchez‐Gasca, J. J. (2020). Power system, modeling, computation and control (Wiley). John Wiley & Sons Ltd.Colombia presenta plan de expansión energética a largo plazo - BNamericas. (n.d.). Retrieved September 10, 2022, from https://www.bnamericas.com/es/noticias/colombia-presenta-plan-de-expansion-energetica-a-largo-plazoDarabian, M., Jabari, F., & Ahmad Khani, M. (2023). Optimal design and operation of damping controllers in PV–wind integrated sustainable energy grids considering system uncertainties. IET Renewable Power Generation. https://doi.org/10.1049/rpg2.12779Elizondo, M. A., Fan, R., Kirkham, H., Ghosal, M., Wilches-Bernal, F., Schoenwald, D., & Lian, J. (2018). Interarea Oscillation Damping Control Using High-Voltage DC Transmission: A Survey. IEEE Transactions on Power Systems, 33(6), 6515–6923. https://doi.org/10.1109/TPWRS.2018.2832227Ellis, A., Pourbeik, P., Sanchez-Gasca, J. J., Senthil, J., & Weber, J. (2015). Generic wind turbine generator models for WECC - A second status report. IEEE Power and Energy Society General Meeting, 2015-September. https://doi.org/10.1109/PESGM.2015.7285645Fornasini, E., & Valcher, M. E. (2013). Observability, reconstructibility and state observers of Boolean control networks. IEEE Transactions on Automatic Control, 58(6), 1390–1401. https://doi.org/10.1109/TAC.2012.2231592Gautam, D., & Vittal, V. (2009). Impact of DFIG based wind turbine generators on transient and small signal stability of power systems. 2009 IEEE Power and Energy Society General Meeting, PES ’09, 24(3), 1426–1434. https://doi.org/10.1109/PES.2009.5275847Global Wind Report Council. (2023). Global wind report 2023.Gomes, S., Guimarães, C. H. C., Martins, N., & Taranto, G. N. (2018). Damped Nyquist Plot for a pole placement design of power system stabilizers. Electric Power Systems Research, 158, 158–169. https://doi.org/10.1016/j.epsr.2018.01.012Gupta, A. K., Verma, K., & Niazi, K. R. (2017). Dynamic impact analysis of DFIG-based wind turbine generators on low-frequency oscillations in power system. IET Generation, Transmission and Distribution, 11(18), 4500–4510. https://doi.org/10.1049/iet-gtd.2017.0308Gupta, A. K., Verma, K., & Niazi, K. R. (2019). Robust coordinated control for damping low frequency oscillations in high wind penetration power system. International Transactions on Electrical Energy Systems, 29(5), 1–17. https://doi.org/10.1002/2050-7038.12006Gurung, N., Bhattarai, R., & Kamalasadan, S. (2020). Optimal Oscillation Damping Controller Design for Large-Scale Wind Integrated Power Grid. IEEE Transactions on Industry Applications, 56(4), 4225–4235. https://doi.org/10.1109/TIA.2020.2988432Gurung, N., & Kamalasadan, S. (2018). Linear-Quadratic Gaussian based Power Oscillation Damping Controller Design for Doubly Fed Induction Generator. IEEE Power and Energy Society General Meeting, 2018-August. https://doi.org/10.1109/PESGM.2018.8586108He, P., Arefifar, S. A., Li, C., Wen, F., Ji, Y., & Tao, Y. (2019). Enhancing oscillation damping in an interconnected power system with integrated wind farms using unified power flow controller. Energies, 12(2). https://doi.org/10.3390/en12020322IEEE Power Engineering Society. (2006). IEEE Recommended Practice for Excitation System Models for Power System Stability Studies.IRENA. (2019). Future of Wind: Deployment, investment, technology, grid integration and socio-economic aspects. In International Renewable Energy Agency. www.irena.org/publicationsIsbeih, Y., Ghosh, S., Elmoursi, M., & El-Saadany, E. (2021). Online DMDc based model identification approach for transient stability enhancement using wide area measurements. IEEE Transactions on Power Systems, 36(5), 4884–4887. https://doi.org/10.1109/TPWRS.2021.3094331Castrillón-Franco, C., Paternina, M. R. A., Reyes, F. E. R., Zamora-Mendez, A., Correa, R. E., & Ortiz-Bejar, J. (2023). Damping Control of Inter-area Oscillations Using non-conventional equipment. 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2023).AcceptedIzdebski, M., Małkowski, R., & Miller, P. (2022). New Performance Indices for Power System Stabilizers. Energies, 15(24). https://doi.org/10.3390/en15249582Klein, M., Rogers, G. J., Moorty, S., Kundur, P., Hydro, O., & Toronto, C. (1992). Analytical Investigation of Factors Influencing Power System Stabilizers Performance. In IEEE Transactions on Energy Conversion (Vol. 7, Issue 3).Kundur, P. (1994). Power System Stability And Control. In McGraw-Hill, Inc (p. 1167).Lewis, M. (2023). Global installed wind power capacity just reached 1 TW | Electrek. https://electrek.co/2023/06/16/global-installed-wind-power-capacity/Li, H., Liu, S., Ji, H., Yang, D., Yang, C., Chen, H., Zhao, B., Hu, Y., & Chen, Z. (2014). Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system. International Journal of Electrical Power and Energy Systems, 61, 279–287. https://doi.org/10.1016/j.ijepes.2014.03.009Liao, K., Xu, Y., & Zhou, H. (2019). A robust damping controller for DFIG based on variable-gain sliding mode and Kalman filter disturbance observer. International Journal of Electrical Power and Energy Systems, 107(December 2018), 569–576. https://doi.org/10.1016/j.ijepes.2018.12.018Mehta, B., Bhatt, P., & Pandya, V. (2014). Small signal stability analysis of power systems with DFIG based wind power penetration. International Journal of Electrical Power and Energy Systems, 58, 64–74. https://doi.org/10.1016/j.ijepes.2014.01.005Miller, N. W., & Sanchez-gasca, J. J. (2008). Modeling of GE Wind Turbine-Generators for Grid Studies Prepared by : May.Mondal, D., Chakrabarti, A., & Sengupta, A. (2014). Optimal and Robust Control. In Power System Small Signal Stability Analysis and Control (pp. i–ii). Elsevier. https://doi.org/10.1016/b978-0-12-800572-9.09987-xMondal, D., Chakrabarti, A., & Sengupta, A. (2020). Power System Small Signal Stability Analysis and Control.Nkosi, N. R., Bansal, R. C., Adefarati, T., Naidoo, R. M., & Bansal, S. K. (2023). A review of small-signal stability analysis of DFIG-based wind power system. International Journal of Modelling and Simulation, 43(3), 153–170. https://doi.org/10.1080/02286203.2022.2056951Noori, A., Jafari Shahbazadeh, M., & Eslami, M. (2020). Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator. International Journal of Electrical Power and Energy Systems, 119. https://doi.org/10.1016/j.ijepes.2020.105936Ogata, Katsuhiko. (2009). Ingeniería de Control Moderna. Pearson Educación.Padiyar K. R. (2008). Power system dynamics. www.mhm20.blogfa.comPaternina, M. R. A., Ramirez-Arredondo, J. M., Lara-Jimenez, J. D., & Zamora-Mendez, A. (2017). Dynamic Equivalents by Modal Decomposition of Tie-Line Active Power Flows. IEEE Transactions on Power Systems, 32(2), 1304–1314. https://doi.org/10.1109/TPWRS.2016.2572601Power System Dynamic Performance Committee. (2020). Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies.Prakash, A., Singh, P., Kumar, K., & Parida, S. K. (2022). Design of a Reduced-Order WADC for Wind Turbine System-Integrated Power System. IEEE Transactions on Industry Applications, 58(3), 3250–3260. https://doi.org/10.1109/TIA.2022.3159319Prakash, A., Tiwari, R. K., Kumar, K., & Parida, S. K. (2022). Interacting Multiple Model Strategy Based Adaptive Wide-Area Damping Controller Design for Wind Farm Embedded Power System. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2022.3231647Rawal, M., Nauityal, D. C., & Rawat, M. S. (2021). Analysis of small signal stability in DFIG integrated power system. Proceedings of the 2021 1st International Conference on Advances in Electrical, Computing, Communications and Sustainable Technologies, ICAECT 2021. https://doi.org/10.1109/ICAECT49130.2021.9392505Rergis, C. M., Kamwa, I., Khazaka, R., & Messina, A. R. (2019). A Loewner Interpolation Method for Power System Identification and Order Reduction. IEEE Transactions on Power Systems, 34(3), 1834–1844. https://doi.org/10.1109/TPWRS.2018.2884655Rokni Nakhi, P., & Ahmadi Kamarposhti, M. (2020). Multi objective design of type II fuzzy based power system stabilizer for power system with wind farm turbine considering uncertainty. International Transactions on Electrical Energy Systems, 30(4). https://doi.org/10.1002/2050-7038.12285Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox. In Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e. https://doi.org/10.1002/9781119355755Shahgholian, G. (2013). Review of Power System Stabilizer: Application, Modeling, Analysys and Control Strategy. International Journal on "Technical and Physical Problems of Engineering. www.iotpe.comSharma, A., Sahu, B., Triphathy, N. P., Nagar, L. K., & Patidar, N. P. (2014). Time latency compensation for wide area damping controller. Proceedings of 6th IEEE Power India International Conference, PIICON 2014, 2–7. https://doi.org/10.1109/34084POWERI.2014.7117609Shen, Y., Liang, L., Zhang, B., Liao, K., Xu, Y., Yang, H., & Yu, Q. (2018). Power Modulation of DFIG-based Wind Turbines for System Oscillation Damping. International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 1124–1129. https://doi.org/10.1109/ISGT-Asia.2018.8467869Simon, L., & Swarup, S. (2017). Wide Area Oscillation Damping Control with DFIG based Wind Turbines using WAMS.Slootweg, J. G., & Kling, W. L. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9–20. https://doi.org/10.1016/S0378-7796(03)00089-0Vittal, E., O’Malley, M., & Keane, A. (2012). Rotor angle stability with high penetrations of wind generation. IEEE Transactions on Power Systems, 27(1), 353–362. https://doi.org/10.1109/TPWRS.2011.2161097Wilches-Bernal, F. (2015). Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification. PhD Thesis, 2015(August 2015).Wilches-Bernal, F., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Impact of wind generation power electronic interface on power system inter-area oscillations. IEEE Power and Energy Society General Meeting, 2016-Novem(July), 1–5. https://doi.org/10.1109/PESGM.2016.7741212Wilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Small-signal analysis of power system swing modes as affected by wind turbine-generators. 2016 IEEE Power and Energy Conference at Illinois, PECI 2016, February, 7–12. https://doi.org/10.1109/PECI.2016.7459228Wilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2019). Effects of wind turbine generators on inter-area oscillations and damping control design. Proceedings of the Annual Hawaii International Conference on System Sciences, 2019-Janua(d), 3649–3658. https://doi.org/10.24251/hicss.2019.441World Energy Trade. (2019). ¿Cómo funcionan los aerogeneradores? https://www.worldenergytrade.com/energias-alternativas/energia-eolica/como-funcionan-los-aerogeneradoresYao, W., Jiang, L., Wen, J., Wu, Q., & Cheng, S. (2015). Wide-area damping controller for power system interarea oscillations: A networked predictive control approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. https://doi.org/10.1109/TCST.2014.2311852Yousefian, R., Bhattarai, R., & Kamalasadan, S. (2017). Transient Stability Enhancement of Power Grid with Integrated Wide Area Control of Wind Farms and Synchronous Generators. IEEE Transactions on Power Systems, 32(6), 4818–4831. https://doi.org/10.1109/TPWRS.2017.2676138Zelaya Arrazabal, F. A. (2019). Identificación de modelos de sistemas de potencia basado en datos. Universidad Nacional Autonoma de Mexico.Zelaya, F. A., Chow, J. H., Paternina, M. R. A., & Zamora, A. (2020). Power system linear model selective identification by exploiting the Loewner interpolation method. IEEE Power and Energy Society General Meeting, 2020-August. https://doi.org/10.1109/PESGM41954.2020.9282088Zhang, X., Lu, C., Liu, S., & Wang, X. (2016). A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation. Renewable and Sustainable Energy Reviews, 57, 45–58. https://doi.org/10.1016/j.rser.2015.12.167Zhang, Z., & Zhao, X. (2022). Control of HVDC-Connected PMSG-Based Wind Turbines for Power System Oscillation Damping. 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2022. https://doi.org/10.1109/PEDG54999.2022.9923123Zhao, Y., Zhu, L., Xiao, H., Liu, Y., Farantatos, E., Patel, M., Darvishi, A., & Fardanesh, B. (2019). An Adaptive Wide-Area Damping Controller via FACTS for the New York State Grid Using a Measurement-Driven Model.EstudiantesInvestigadoresTHUMBNAIL1047996682.2023.pdf.jpg1047996682.2023.pdf.jpgGenerated Thumbnailimage/jpeg4619https://repositorio.unal.edu.co/bitstream/unal/84740/3/1047996682.2023.pdf.jpgf47bb307901c38eced36802594ba7f28MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84740/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1047996682.2023.pdf1047996682.2023.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf4848205https://repositorio.unal.edu.co/bitstream/unal/84740/2/1047996682.2023.pdf37d6c286b48a3224ccbcb459ff68d01aMD52unal/84740oai:repositorio.unal.edu.co:unal/847402023-10-02 23:03:41.569Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=