Producción de hidrógeno verde a partir de agua de producción petrolera
The main objective of this study is to evaluate the effect of the oil content of oilfield production water on the production of green hydrogen by electrolysis in the presence of carbon quantum dots (CQDs). For this purpose, various electrochemical techniques, such as linear sweep voltammetry (LSV),...
- Autores:
-
Herrera Ríos, Ever
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85738
- Palabra clave:
- Hidrógeno
Electrolisis del agua
Aceites minerales
Campos petrolíferos - Métodos de producción
Recursos energéticos renovables
Crude oil
CQDs
Electrolysis
Hydrogen
Produced water
Graphite
Agua de producción
Electrólisis
Grafito
Hidrógeno
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f8c87462a9c5924cef68f948828140e3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85738 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Producción de hidrógeno verde a partir de agua de producción petrolera |
dc.title.translated.none.fl_str_mv |
Generation of green hydrogen from oil production water |
title |
Producción de hidrógeno verde a partir de agua de producción petrolera |
spellingShingle |
Producción de hidrógeno verde a partir de agua de producción petrolera Hidrógeno Electrolisis del agua Aceites minerales Campos petrolíferos - Métodos de producción Recursos energéticos renovables Crude oil CQDs Electrolysis Hydrogen Produced water Graphite Agua de producción Electrólisis Grafito Hidrógeno |
title_short |
Producción de hidrógeno verde a partir de agua de producción petrolera |
title_full |
Producción de hidrógeno verde a partir de agua de producción petrolera |
title_fullStr |
Producción de hidrógeno verde a partir de agua de producción petrolera |
title_full_unstemmed |
Producción de hidrógeno verde a partir de agua de producción petrolera |
title_sort |
Producción de hidrógeno verde a partir de agua de producción petrolera |
dc.creator.fl_str_mv |
Herrera Ríos, Ever |
dc.contributor.advisor.none.fl_str_mv |
Cortés Correa, Farid B. |
dc.contributor.author.none.fl_str_mv |
Herrera Ríos, Ever |
dc.contributor.researchgroup.spa.fl_str_mv |
Fenómenos de Superficie Michael Polanyi |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0009-0002-2032-7089 |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0002154141 |
dc.subject.lemb.none.fl_str_mv |
Hidrógeno Electrolisis del agua Aceites minerales Campos petrolíferos - Métodos de producción Recursos energéticos renovables |
topic |
Hidrógeno Electrolisis del agua Aceites minerales Campos petrolíferos - Métodos de producción Recursos energéticos renovables Crude oil CQDs Electrolysis Hydrogen Produced water Graphite Agua de producción Electrólisis Grafito Hidrógeno |
dc.subject.proposal.eng.fl_str_mv |
Crude oil CQDs Electrolysis Hydrogen Produced water |
dc.subject.proposal.none.fl_str_mv |
Graphite |
dc.subject.proposal.spa.fl_str_mv |
Agua de producción Electrólisis Grafito Hidrógeno |
description |
The main objective of this study is to evaluate the effect of the oil content of oilfield production water on the production of green hydrogen by electrolysis in the presence of carbon quantum dots (CQDs). For this purpose, various electrochemical techniques, such as linear sweep voltammetry (LSV), cyclic voltammetry (CV), and potentiometry were used to identify the effect of crude oil during hydrogen production. The results show that the use of CQDs affects the Faradaic efficiency, which increases from 78% to 83% with the incorporation of CQDs. In the presence of CQDs, the effects generated by the presence of the oil are inhibited at low oil concentrations. On the contrary, hydrogen production increases by 10.0% (0.1 ml/min) with a faradaic efficiency of 83% and a half-cell efficiency of 41%, compared to the record obtained with the maximum concentration of emulsified crude oil (400 mg/L). Thermogravimetric analysis (TGA), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR) were employed to discern the adsorption of crude oil onto the electrodes, quantify the gas fractions generated during the process, and identify the functional groups present at the conclusion of the procedure, respectively. The size of the initial emulsion droplets was 3.4 µm, at the end of the test there was evidence of complete breakage of the emulsion due to the effect of the applied electric field. No evidence of adsorption of crude oil on graphite electrodes during electrolysis is observed based on the tests. It has been shown that green hydrogen production from crude oil production water is feasible due to the proposed of a disruptive electrolyte in the produced water which inhibite the effect of the oil content in the O/W emulsion. This allows the implementation of a new green energy production initiative aligned with the global goal of achieving net zero emissions (NZE) by 2050. The current investigation presents a prospective alternative for harnessing the 18 kW electrical energy potential employed within emulsion-breaking processes within a Colombian field for treatment around of 1000 bblopd. This alternative offers a theoretical potential for hydrogen production, approximating 7.6 kW, thus representing a promising opportunity for practical field deployment. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-28T20:13:03Z |
dc.date.available.none.fl_str_mv |
2024-02-28T20:13:03Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85738 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85738 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Ajanovic, A., M. Sayer, and R. Haas, The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 2022. Khan, Z., et al., Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. 165: p. 602-627. Safari, F. and I. Dincer, A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management, 2020. 205: p. 112182. Atilhan, S., et al., Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 2021. 31: p. 100668. Sazali, N., Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy, 2020. 45(38): p. 18753-18771. De Souza, R.F., et al., Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device. Journal of Power Sources, 2007. 164(2): p. 792-798. Kumar, S.S. and V. Himabindu, Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2019. 2(3): p. 442-454. Mohammed-Ibrahim, J. and H. Moussab, Recent advances on hydrogen production through seawater electrolysis. Materials Science for Energy Technologies, 2020. 3: p. 780-807. Huang, X.-N., et al., Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure. International journal of hydrogen energy, 2012. 37(9): p. 7457-7463. Zhang, Y., et al., High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting. Journal of Alloys and Compounds, 2018. 732: p. 248-256. Nagai, N., et al., Existence of optimum space between electrodes on hydrogen production by water electrolysis. International journal of hydrogen energy, 2003. 28(1): p. 35-41. Amikam, G., P. Nativ, and Y. Gendel, Chlorine-free alkaline seawater electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2018. 43(13): p. 6504-6514. Wang, C., et al., Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021. 291: p. 120071. Villegas, J.P., et al., Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartículas magnéticas. Dyna, 2017. 84(202): p. 65-74. Abdallah, M., et al., Corrosion behavior of nickel electrode in NaOH solution and its inhibition by some natural oils. Int. J. Electrochem. Sci, 2014. 9(3): p. 1071-1086. Jang, D., H.-S. Cho, and S. Kang, Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Applied Energy, 2021. 287: p. 116554. Selvaraju, N., K. Ravichandran, and G. Venugopal, A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic Hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023. 48(10): p. 3807-3823. Wu, H., et al., Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical Energy Reviews, 2021. 4(3): p. 473-507. Cannone, S.F., A. Lanzini, and M. Santarelli, A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies, 2021. 14(2): p. 387. Olabi, A. and M.A. Abdelkareem, Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 2022. 158: p. 112111. Olabi, A., et al., Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renewable and Sustainable Energy Reviews, 2022. 153: p. 111710. Gustavsson, L., et al., Climate effects of forestry and substitution of concrete buildings and fossil energy. Renewable and Sustainable Energy Reviews, 2021. 136: p. 110435. He, C., et al., Future global urban water scarcity and potential solutions. Nature Communications, 2021. 12(1): p. 4667. Tian, L., et al., Carbon quantum dots for advanced electrocatalysis. Journal of Energy Chemistry, 2021. 55: p. 279-294. Lavasani, A. and M. Vakili, Experimental study of photothermal specifications and stability of graphene oxide nanoplatelets nanofluid as working fluid for low-temperature Direct Absorption Solar Collectors (DASCs). Solar Energy Materials and Solar Cells, 2017. 164: p. 32-39. Zhao, M., et al., Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chemical Communications, 2019. 55(11): p. 1635-1638. Franco, C.A., et al., Easy and rapid synthesis of carbon quantum dots from Mortino (Vaccinium Meridionale Swartz) extract for use as green tracers in the oil and gas industry: Lab-to-field trial development in Colombia. Industrial & Engineering Chemistry Research, 2020. 59(25): p. 11359-11369. Wu, H., S. Lu, and B. Yang, Carbon-dot-enhanced electrocatalytic hydrogen evolution. Accounts of Materials Research, 2022. 3(3): p. 319-330. Wei, S., et al., Experimental study of hydrogen production using electrolyte nanofluids with a simulated light source. international journal of hydrogen energy, 2022. 47(12): p. 7522-7534. Wei, S., B.V. Balakin, and P. Kosinski, Investigation of nanofluids in alkaline electrolytes: Stability, electrical properties, and hydrogen production. Journal of Cleaner Production, 2023: p. 137723. Quan, X., et al., Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. Rsc Advances, 2017. 7(57): p. 35875-35882. Charin, R.M., et al., Crude oil electrical conductivity measurements at high temperatures: introduction of apparatus and methodology. Energy & Fuels, 2017. 31(4): p. 3669-3674. Kim, S.K., D.-M. Shin, and J.W. Rhim, Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream. Journal of Membrane Science, 2021. 630: p. 119318. Chung, C.M., et al., Effects of anode materials and chloride ions on current efficiency of electrochemical oxidation of carbohydrate compounds. Journal of the Electrochemical Society, 2019. 166(13): p. H628. Katsounaros, I., J.C. Meier, and K.J. Mayrhofer, The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalysts. Electrochimica Acta, 2013. 110: p. 790-795. Yu, J., et al., Seawater electrolyte-based metal–air batteries: from strategies to applications. Energy & Environmental Science, 2020. 13(10): p. 3253-3268. Liu, Y., Y. Wang, and S. Zhao, Journey of electrochemical chlorine production: From brine to seawater. Current Opinion in Electrochemistry, 2022: p. 101202. Chen, Y., et al., Study of ion transmission in an electrolyte of graphene quantum dots under ultraviolet light. Ceramics International, 2018. 44(12): p. 14417-14424. Lim, S.Y., W. Shen, and Z. Gao, Carbon quantum dots and their applications. Chemical Society Reviews, 2015. 44(1): p. 362-381. Su, H., et al., Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application. Carbon Energy, 2023: p. e280. Sharma, K., et al., Treatment of crude oil contaminated wastewater via an electrochemical reaction. RSC advances, 2020. 10(4): p. 1925-1936. Eow, J.S. and M. Ghadiri, Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chemical Engineering Journal, 2002. 85(2-3): p. 357-368. Huang, X., et al., Charge-transfer-induced noncoalescence and chain formation of free droplets under a pulsed dc electric field. Langmuir, 2020. 36(47): p. 14255-14267. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
54 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Analítica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85738/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85738/2/Tesis%20MSc.pdf https://repositorio.unal.edu.co/bitstream/unal/85738/3/Tesis%20MSc.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 66a9e6be85a1370225f7092d4abdf8fe 9a0e562a7501ecac4e92351143fcddd1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089377624621056 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correa, Farid B.d528af65971fbc53bd87738e23b4c686Herrera Ríos, Ever8d1c2e7639d0be731ee1b61697e2192bFenómenos de Superficie Michael Polanyihttps://orcid.org/0009-0002-2032-7089https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00021541412024-02-28T20:13:03Z2024-02-28T20:13:03Z2024https://repositorio.unal.edu.co/handle/unal/85738Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The main objective of this study is to evaluate the effect of the oil content of oilfield production water on the production of green hydrogen by electrolysis in the presence of carbon quantum dots (CQDs). For this purpose, various electrochemical techniques, such as linear sweep voltammetry (LSV), cyclic voltammetry (CV), and potentiometry were used to identify the effect of crude oil during hydrogen production. The results show that the use of CQDs affects the Faradaic efficiency, which increases from 78% to 83% with the incorporation of CQDs. In the presence of CQDs, the effects generated by the presence of the oil are inhibited at low oil concentrations. On the contrary, hydrogen production increases by 10.0% (0.1 ml/min) with a faradaic efficiency of 83% and a half-cell efficiency of 41%, compared to the record obtained with the maximum concentration of emulsified crude oil (400 mg/L). Thermogravimetric analysis (TGA), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR) were employed to discern the adsorption of crude oil onto the electrodes, quantify the gas fractions generated during the process, and identify the functional groups present at the conclusion of the procedure, respectively. The size of the initial emulsion droplets was 3.4 µm, at the end of the test there was evidence of complete breakage of the emulsion due to the effect of the applied electric field. No evidence of adsorption of crude oil on graphite electrodes during electrolysis is observed based on the tests. It has been shown that green hydrogen production from crude oil production water is feasible due to the proposed of a disruptive electrolyte in the produced water which inhibite the effect of the oil content in the O/W emulsion. This allows the implementation of a new green energy production initiative aligned with the global goal of achieving net zero emissions (NZE) by 2050. The current investigation presents a prospective alternative for harnessing the 18 kW electrical energy potential employed within emulsion-breaking processes within a Colombian field for treatment around of 1000 bblopd. This alternative offers a theoretical potential for hydrogen production, approximating 7.6 kW, thus representing a promising opportunity for practical field deployment.El principal objetivo de este estudio es evaluar el efecto del contenido de aceite del agua de producción de campos petroleros sobre la producción de hidrógeno verde por electrólisis en presencia de puntos cuánticos de carbono (CQD). Para ello, se utilizaron diversas técnicas electroquímicas, como la voltametría de barrido lineal (LSV), la voltametría cíclica (CV) y la potenciometría, para identificar el efecto del petróleo crudo durante la producción de hidrógeno. Los resultados muestran que el uso de CQD afecta la eficiencia faradaica, la cual aumenta del 78% al 83% con la incorporación de CQD. En presencia de CQD, los efectos generados por la presencia del petróleo se inhiben a bajas concentraciones de petróleo. Por el contrario, la producción de hidrógeno aumenta un 10,0% (0,1 ml/min) con una eficiencia Faradaica del 83% y una eficiencia de media celda del 41%, frente al récord obtenido con la máxima concentración de crudo emulsionado (400 mg/ L). Se emplearon análisis termogravimétricos (TGA), espectrometría de masas (MS) y espectroscopía infrarroja por transformada de Fourier (FTIR) para discernir la adsorción de petróleo crudo en los electrodos, cuantificar las fracciones de gas generadas durante el proceso e identificar los grupos funcionales presentes en la conclusión del procedimiento, respectivamente. El tamaño de las gotas iniciales de la emulsión fue de 3,4 µm, al final de la prueba hubo evidencia de rotura completa de la emulsión debido al efecto del campo eléctrico aplicado. Según las pruebas, no se observa evidencia de adsorción de petróleo crudo en electrodos de grafito durante la electrólisis. Se ha demostrado que la producción de hidrógeno verde a partir del agua de producción de petróleo crudo es factible debido a la propuesta de un electrolito disruptivo en el agua producida que inhibe el efecto del contenido de aceite en la emulsión O/W. Esto permite la implementación de una nueva iniciativa de producción de energía verde alineada con el objetivo global de lograr cero emisiones netas (NZE) para 2050. La investigación actual presenta una alternativa prospectiva para aprovechar el potencial de energía eléctrica de 18 kW empleado en los procesos de ruptura de emulsiones dentro de un Campo colombiano para tratamiento alrededor de 1000 bblopd. Esta alternativa ofrece un potencial teórico para la producción de hidrógeno, de aproximadamente 7,6 kW, lo que representa una oportunidad prometedora para el despliegue práctico en el campo. (Tomado de la fuente)MaestríaMagíster en Ingeniería - AnalíticaIngeniería De Sistemas E Informática.Sede Medellín54 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede MedellínProducción de hidrógeno verde a partir de agua de producción petroleraGeneration of green hydrogen from oil production waterTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAjanovic, A., M. Sayer, and R. Haas, The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 2022.Khan, Z., et al., Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. 165: p. 602-627.Safari, F. and I. Dincer, A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management, 2020. 205: p. 112182.Atilhan, S., et al., Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 2021. 31: p. 100668.Sazali, N., Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy, 2020. 45(38): p. 18753-18771.De Souza, R.F., et al., Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device. Journal of Power Sources, 2007. 164(2): p. 792-798.Kumar, S.S. and V. Himabindu, Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2019. 2(3): p. 442-454.Mohammed-Ibrahim, J. and H. Moussab, Recent advances on hydrogen production through seawater electrolysis. Materials Science for Energy Technologies, 2020. 3: p. 780-807.Huang, X.-N., et al., Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure. International journal of hydrogen energy, 2012. 37(9): p. 7457-7463.Zhang, Y., et al., High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting. Journal of Alloys and Compounds, 2018. 732: p. 248-256.Nagai, N., et al., Existence of optimum space between electrodes on hydrogen production by water electrolysis. International journal of hydrogen energy, 2003. 28(1): p. 35-41.Amikam, G., P. Nativ, and Y. Gendel, Chlorine-free alkaline seawater electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2018. 43(13): p. 6504-6514.Wang, C., et al., Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021. 291: p. 120071.Villegas, J.P., et al., Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartículas magnéticas. Dyna, 2017. 84(202): p. 65-74.Abdallah, M., et al., Corrosion behavior of nickel electrode in NaOH solution and its inhibition by some natural oils. Int. J. Electrochem. Sci, 2014. 9(3): p. 1071-1086.Jang, D., H.-S. Cho, and S. Kang, Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Applied Energy, 2021. 287: p. 116554.Selvaraju, N., K. Ravichandran, and G. Venugopal, A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic Hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023. 48(10): p. 3807-3823.Wu, H., et al., Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical Energy Reviews, 2021. 4(3): p. 473-507.Cannone, S.F., A. Lanzini, and M. Santarelli, A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies, 2021. 14(2): p. 387.Olabi, A. and M.A. Abdelkareem, Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 2022. 158: p. 112111.Olabi, A., et al., Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renewable and Sustainable Energy Reviews, 2022. 153: p. 111710.Gustavsson, L., et al., Climate effects of forestry and substitution of concrete buildings and fossil energy. Renewable and Sustainable Energy Reviews, 2021. 136: p. 110435.He, C., et al., Future global urban water scarcity and potential solutions. Nature Communications, 2021. 12(1): p. 4667.Tian, L., et al., Carbon quantum dots for advanced electrocatalysis. Journal of Energy Chemistry, 2021. 55: p. 279-294.Lavasani, A. and M. Vakili, Experimental study of photothermal specifications and stability of graphene oxide nanoplatelets nanofluid as working fluid for low-temperature Direct Absorption Solar Collectors (DASCs). Solar Energy Materials and Solar Cells, 2017. 164: p. 32-39.Zhao, M., et al., Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chemical Communications, 2019. 55(11): p. 1635-1638.Franco, C.A., et al., Easy and rapid synthesis of carbon quantum dots from Mortino (Vaccinium Meridionale Swartz) extract for use as green tracers in the oil and gas industry: Lab-to-field trial development in Colombia. Industrial & Engineering Chemistry Research, 2020. 59(25): p. 11359-11369.Wu, H., S. Lu, and B. Yang, Carbon-dot-enhanced electrocatalytic hydrogen evolution. Accounts of Materials Research, 2022. 3(3): p. 319-330.Wei, S., et al., Experimental study of hydrogen production using electrolyte nanofluids with a simulated light source. international journal of hydrogen energy, 2022. 47(12): p. 7522-7534.Wei, S., B.V. Balakin, and P. Kosinski, Investigation of nanofluids in alkaline electrolytes: Stability, electrical properties, and hydrogen production. Journal of Cleaner Production, 2023: p. 137723.Quan, X., et al., Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. Rsc Advances, 2017. 7(57): p. 35875-35882.Charin, R.M., et al., Crude oil electrical conductivity measurements at high temperatures: introduction of apparatus and methodology. Energy & Fuels, 2017. 31(4): p. 3669-3674.Kim, S.K., D.-M. Shin, and J.W. Rhim, Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream. Journal of Membrane Science, 2021. 630: p. 119318.Chung, C.M., et al., Effects of anode materials and chloride ions on current efficiency of electrochemical oxidation of carbohydrate compounds. Journal of the Electrochemical Society, 2019. 166(13): p. H628.Katsounaros, I., J.C. Meier, and K.J. Mayrhofer, The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalysts. Electrochimica Acta, 2013. 110: p. 790-795.Yu, J., et al., Seawater electrolyte-based metal–air batteries: from strategies to applications. Energy & Environmental Science, 2020. 13(10): p. 3253-3268.Liu, Y., Y. Wang, and S. Zhao, Journey of electrochemical chlorine production: From brine to seawater. Current Opinion in Electrochemistry, 2022: p. 101202.Chen, Y., et al., Study of ion transmission in an electrolyte of graphene quantum dots under ultraviolet light. Ceramics International, 2018. 44(12): p. 14417-14424.Lim, S.Y., W. Shen, and Z. Gao, Carbon quantum dots and their applications. Chemical Society Reviews, 2015. 44(1): p. 362-381.Su, H., et al., Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application. Carbon Energy, 2023: p. e280.Sharma, K., et al., Treatment of crude oil contaminated wastewater via an electrochemical reaction. RSC advances, 2020. 10(4): p. 1925-1936.Eow, J.S. and M. Ghadiri, Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chemical Engineering Journal, 2002. 85(2-3): p. 357-368.Huang, X., et al., Charge-transfer-induced noncoalescence and chain formation of free droplets under a pulsed dc electric field. Langmuir, 2020. 36(47): p. 14255-14267.HidrógenoElectrolisis del aguaAceites mineralesCampos petrolíferos - Métodos de producciónRecursos energéticos renovablesCrude oilCQDsElectrolysisHydrogenProduced waterGraphiteAgua de producciónElectrólisisGrafitoHidrógenoPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85738/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis MSc.pdfTesis MSc.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf1240031https://repositorio.unal.edu.co/bitstream/unal/85738/2/Tesis%20MSc.pdf66a9e6be85a1370225f7092d4abdf8feMD52THUMBNAILTesis MSc.pdf.jpgTesis MSc.pdf.jpgGenerated Thumbnailimage/jpeg4651https://repositorio.unal.edu.co/bitstream/unal/85738/3/Tesis%20MSc.pdf.jpg9a0e562a7501ecac4e92351143fcddd1MD53unal/85738oai:repositorio.unal.edu.co:unal/857382024-08-23 23:10:18.154Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |