Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos

RESUMEN La babesiosis es una de las enfermedades veterinarias más importantes transmitidas por garrapatas que afecta principalmente a animales salvajes y domésticos, y recientemente es considerada como una zoonosis emergente que se distribuye en regiones tropicales y subtropicales alrededor del mund...

Full description

Autores:
Cuy Chaparro, Laura Esperanza
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85498
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85498
https://repositorio.unal.edu.co
Palabra clave:
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::616 - Enfermedades
Ticks
Erythrocyte indices
Host-parasite interactions
Immunogenicity, vaccine
Cattle-Immunology
Ácaros y garrapatas
Acari
Babesiosis
Índices de eritrocitos
Interacciones huésped-parásitos
Inmunogenicidad vacunal
Bovinos -Inmunología
Garrapatas
Babesia Bovis
Péptidos con alta capacidad de unión
Eritrocito bovino
Parasite adhesion
High activity binding peptides
Bovine erythrocyte
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f8c12ef5396e461d823dd3636524b950
oai_identifier_str oai:repositorio.unal.edu.co:unal/85498
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
dc.title.translated.none.fl_str_mv Identification of Babesia bovis' protein binding regions to bovine erythrocytes
title Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
spellingShingle Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::616 - Enfermedades
Ticks
Erythrocyte indices
Host-parasite interactions
Immunogenicity, vaccine
Cattle-Immunology
Ácaros y garrapatas
Acari
Babesiosis
Índices de eritrocitos
Interacciones huésped-parásitos
Inmunogenicidad vacunal
Bovinos -Inmunología
Garrapatas
Babesia Bovis
Péptidos con alta capacidad de unión
Eritrocito bovino
Parasite adhesion
High activity binding peptides
Bovine erythrocyte
title_short Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
title_full Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
title_fullStr Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
title_full_unstemmed Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
title_sort Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos
dc.creator.fl_str_mv Cuy Chaparro, Laura Esperanza
dc.contributor.advisor.spa.fl_str_mv Patarroyo Gutiérrez, Manuel Alfonso
Moreno Pérez, Darwin Andrés
dc.contributor.author.spa.fl_str_mv Cuy Chaparro, Laura Esperanza
dc.contributor.orcid.spa.fl_str_mv 0000-0002-2016-2117
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::616 - Enfermedades
topic 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::616 - Enfermedades
Ticks
Erythrocyte indices
Host-parasite interactions
Immunogenicity, vaccine
Cattle-Immunology
Ácaros y garrapatas
Acari
Babesiosis
Índices de eritrocitos
Interacciones huésped-parásitos
Inmunogenicidad vacunal
Bovinos -Inmunología
Garrapatas
Babesia Bovis
Péptidos con alta capacidad de unión
Eritrocito bovino
Parasite adhesion
High activity binding peptides
Bovine erythrocyte
dc.subject.decs.eng.fl_str_mv Ticks
Erythrocyte indices
Host-parasite interactions
Immunogenicity, vaccine
Cattle-Immunology
dc.subject.decs.spa.fl_str_mv Ácaros y garrapatas
Acari
Babesiosis
Índices de eritrocitos
Interacciones huésped-parásitos
Inmunogenicidad vacunal
Bovinos -Inmunología
dc.subject.lemb.spa.fl_str_mv Garrapatas
dc.subject.proposal.spa.fl_str_mv Babesia Bovis
Péptidos con alta capacidad de unión
Eritrocito bovino
dc.subject.proposal.eng.fl_str_mv Parasite adhesion
High activity binding peptides
Bovine erythrocyte
description RESUMEN La babesiosis es una de las enfermedades veterinarias más importantes transmitidas por garrapatas que afecta principalmente a animales salvajes y domésticos, y recientemente es considerada como una zoonosis emergente que se distribuye en regiones tropicales y subtropicales alrededor del mundo. Babesia bovis, uno de los hemoprotozoarios responsable de la babesiosis bovina, es el agente más patógeno del género Babesia que causa un impacto negativo en la industria ganadera dada las altas tasas de morbimortalidad que genera. Las principales estrategias de control y tratamiento de la babesiosis se han centrado en el uso de quimioterapéuticos dirigidos contra el parásito o de acaricidas contra el vector. Sin embargo, ante la aparición de resistencia a esta clase de productos químicos, la vacunación con organismos vivos atenuados de B. bovis se ha convertido en el principal método de control de la infección. Aunque el uso de este tipo de vacunas ha estado asociado con niveles parciales de protección, éstas tienen importantes limitaciones como una vida útil corta, riesgo de reversión de la virulencia, contaminación con otros patógenos transmitidos por sangre, falla en la inducción de inmunidad protectiva contra diferentes cepas y la pérdida de inmunogenicidad, lo que ha limitado la comercialización de la vacuna. Por lo tanto, se requieren otras estrategias alternas para mejorar las condiciones de sanidad animal bovina. El conocimiento de la biología básica del parásito en relación con la caracterización de las moléculas que éste usa para invadir a sus células diana es esencial para diseñar una medida de control eficaz contra la enfermedad, como es el caso de las vacunas. Por ende, este proyecto se encaminó a identificar proteínas de B. bovis o regiones derivadas de ellas que tengan capacidad de unirse a los eritrocitos bovinos como alternativa para contribuir al conocimiento de su biología en relación con la interacción parásito-célula. Para ello, se realizó la predicción de proteínas importantes para la invasión del parásito a sus células diana mediante la exploración in silico de los datos de transcriptoma y proteoma de B. bovis, obteniendo como resultado las proteínas BbMSA-1, BbAMA-1 y BbRON2. Posteriormente, varias regiones bajo restricción funcional y con presencia de codones seleccionados negativamente en BbMSA-1, BbAMA-1 y BbRON2 fueron inferidas a través de análisis de selección natural, con el objetivo de elegir fragmentos idóneos (regiones o péptidos de 20 residuos) y evaluar así su capacidad para unirse a los eritrocitos bovinos. Los ensayos altamente sensibles de interacción proteína-célula y péptido-célula permitieron identificar varias regiones con capacidad de unión a eritrocitos bovinos y diferentes péptidos con alta capacidad de unión (HABP, del inglés High Activity Binding Peptide) a sus células diana para BbMSA-1: 42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110) y 42426 (150TDIVEEDREKAVEYFKKHVY169); BbAMA-1: 42437 (100YMQKFDIPRNHGSGIYVDLG119), 42438 (120GYESVGSKSYRMPVGKSPVV139) y 42443 (302SPMHPVRDAIFGKWSGGSSV321); y BbRON2: 42918 (1218SFIMVKPPALHCVLKPVETL1237). Además, los análisis de predicción de la estructura terciaria y secundaria de las moléculas permitieron evidenciar que los HABPs 42422 y 42426 de MSA-1, así como 42437 y 42438 de AMA-1, son altamente helicoidales y contienen epítopes de células B y T, mientras que los HABPs 42424 de MSA-1 y 42918 de RON2 son no estructurados estando este último, localizado en una región intrínsecamente desordenada flanqueada por dos regiones helicoidales. Este es el primer estudio que analiza y describe las regiones mínimas (definidas en este estudio por componerse de 20 aminoácidos) implicadas en la unión de las proteínas MSA-1, AMA-1 y RON2 de B. bovis a su célula diana. En estudios futuros, se explorará el potencial antigénico de dichos péptidos durante la inmunización in vivo, y se evaluará su eficacia como potenciales candidatos a vacuna. (Texto tomado de la fuente)
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12
dc.date.accessioned.none.fl_str_mv 2024-01-29T20:07:37Z
dc.date.available.none.fl_str_mv 2024-01-29T20:07:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85498
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co
url https://repositorio.unal.edu.co/handle/unal/85498
https://repositorio.unal.edu.co
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Singh B, Varikuti S, Halsey G, Volpedo G, Hamza OM, Satoskar AR. Host-directed therapies for parasitic diseases. Future Med Chem. 2019;11(15):1999-2018.
Hunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37.
Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of catle. Parasitology. 2004;129(S1):S247-69.
Gray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006;296:131-6.
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25.
Rittpornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jitapalapong S, et al. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54.
Bram RA, George JE, Reichard RE, Tabachnick WJ. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J Med Entomol. 2002;39(3):405-16.
Gray JS, Estrada-Peña A, Zintl A. Vectors of Babesiosis. Annu Rev Entomol. 2019;64(1):149-65.
He L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, et al. Babesiosis as a potential threat for bovine production in China. Parasit Vectors. 2021;14(1):460.
Satti RA, Awadelkareem EA, Suganuma K, Salim B, Inoue N, Xuan X, et al. Catle anaplasmosis and babesiosis: Major tick-borne diseases affecting the catle industry in Khartoum State, Sudan. Vet Parasitol Reg Stud Rep. 2021;26:100632.
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol. 2019;49(2):183-97.
Vial HJ, Gorenflot A. Chemotherapy against babesiosis. Vet Parasitol. 2006;138(1- 2):147-60.
Nari A. Strategies for the control of one-host ticks and relationship with tick-borne diseases in South America. Vet Parasitol. marzo de 1995;57(1-3):153-65.
Andreotti R, Guerrero FD, Soares MA, Barros JC, Miller RJ, Léon AP de. Acaricide resistance of Rhipicephalus (Boophilus) microplus in State of Mato Grosso do Sul, Brazil. Rev Bras Parasitol Veterinária. 2011;20(2):127-33.
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnitger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141(12):1563-92.
de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1-2):88-96.
Gimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, et al. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577.
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit- Based Vaccine Development. Chem Rev. 2011;111(5):3459-507.
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol. 2017;8.
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9(2):131-55.
OIE. World Organization for Animal Health. 2019
ICA. Enfermedades de declaración obligatoria en Colombia. 2019.
OIE. World Organization for Animal Health. 2022.
ICA. Censo pecuario. 2018.
Calderon Alfonso, Maryinez Nicolás, Iguarán Haydée. Bovine hemoparasites frequency from colombian caribbean region. Revista UDCA Actualidad & Divulgación Cienyifica. 2016;19(1):131-8.
Instituto Colombiano Agropecuario - ICA. Boletin Sanidad Animal. 2016.
Vecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAP. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). Cienc Tecnol Agropecu. 2010;11(1):73-84.
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37.
Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin North Am. 2015;29(2):357-70.
Kivaria FM. Estimated direct economic costs associated with tick-borne diseases on catle in Tanzania. Trop Anim Health Prod. 2006;38(4):291-9.
Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13(3):451-69.
Jalovecka M, Sojka D, Ascencio M, Schnitger L. Babesia Life Cycle – When Phylogeny Meets Biology. Trends Parasitol. 2019;35(5):356-68.
Ueti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR, Reif KE, et al. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol. 2021;51(2-3):123- 36.
Hutchings CL, Li A, Fernandez KM, Fletcher T, Jackson LA, Molloy JB, et al. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol Microbiol. 2007;65(4):1092-105.
Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5.
Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors. 2016;9(1):439.
Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L. The Complexity of Piroplasms Life Cycles. Front Cell Infect Microbiol. 2018;8:248.
Mehlhorn H, Schein E. The Piroplasms: Life Cycle and Sexual Stages. En: Advances in Parasitology [Internet]. Elsevier; 1985: 37-103.
Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus ( Boophilus ) microplus during Acute Infection. J Clin Microbiol. 2007;45(2):426-31.
Bargieri D, Lagal V, Andenmaten N, Tardieux I, Meissner M, Ménard R. Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathog. 2014;10(9):e1004273.
Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1- 2):22-32.
Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Invited review Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol.1998;28(7):1007-13.
Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected catle. Mol Biochem Parasitol.1989;37(1):1-9.
Goff WL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun.1988;56(9):2363-8.
Hines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of catle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52.
Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol. 1992;55(1-2):85-94.
Genis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, et al. Phylogenetic Analysis of Mexican Babesia bovis Isolates Using msa and ssrRNA Gene Sequences. Ann N Y Acad Sci. 2008;1149(1):121-5.
Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503.
Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94.
Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Petri WA, editor. Infect Immun. 2000;68(12):6865-70.
Mosqueda J, McElwain TF, Stiller D, Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Atachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603.
Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites. PLoS Pathog. 2011;7(2):e1001276.
Mital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005;16(9):4341-9.
Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, et al. Conditional expression of apical membrane antigen 1 in P lasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56.
Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, et al. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis- infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280.
Tyler JS, Boothroyd JC. The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex. PLoS Pathog. 2011;7(2):e1001282.
Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLOS ONE. 2016;11(1):e0144764.
Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, et al. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized catle. Parasit Vectors. 2018;11(1):575.
Gardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, et al. CLAG-9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7.
Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol. 2012;15(4):449-55.
Brown WC, Norimine J, Knowles DP, Goff WL. Immune control of Babesia bovis infection. Vet Parasitol. 2006;138(1-2):75-87.
Goff WL, Johnson WC, Parish SM, Barrington GM, Tuo W, Valdez RA. The age-related immunity in catle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-γ and inducible nitric oxide synthase mRNA expression in the spleen: Type-1 atributes of innate immunity in calves to B. bovis. Parasite Immunol. 2001;23(9):463-71.
Goff WL, Johnson WC, Horn RH, Barrington GM, Knowles DP. The innate immune response in calves to Boophilus microplus tick transmited Babesia bovis involves type-1 cytokine induction and NK-like cells in the spleen. Parasite Immunol. 2003;25(4):185-8.
Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, et al. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci. 2020;21(22).
Brown WC, Zhao S, Woods VM, Dobbelaere DAE, Rice Ficht AC. Des clones de cellules T CD4+ spécifiques pour Babesia bovis, de bovins immunisés, expriment le profil de cytokines des cellules Th0 ou des Th1. Rev D’élevage Médecine Vét Pays Trop. 1993;46(1-2):65-9.
Shkap Varda, de Vos Albertus J, Zweygarth Erich, Jongejan Frans. Atenuated vaccines for tropical theileriosis, babesiosis and heartwater: the continuing necessity. Trends in Parasitology. 2007;23(9):420-6.
Alvarez JA, Rojas C, Figueroa JV. An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Atenuated Vaccines for Bovine Babesiosis in Mexico. Front Vet Sci. 2020;7:364.
Jorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1(1):6-13.
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, et al. Designing the Next Generation of Vaccines for Global Public Health. OMICS J Integr Biol. 2011;15(9):545-66.
Rappuoli R. Reverse Vaccinology and Genomics. Science. 2003;302(5645):602-602.
Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 2001;19(17-19):2688-91.
Bambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov Today. 2009;14(5-6):252-60.
Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111(34):12288-93.
Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. 2020;19(2):195-207.
Patarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA. Malaria Parasite Survival Depends on Conserved Binding Peptides’ Critical Biological Functions. Curr Issues Mol Biol. 2016;18:57-78.
Vera-Bravo R, Torres E, Valbuena JJ, Ocampo M, Rodríguez LE, Puentes Á, et al. Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochem Biophys Res Commun. 2005;332(3):771-81.
Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2016;18:11-9.
Cubillos M, Salazar LM, Torres L, Patarroyo ME. Protection against experimental P falciparum malaria is associated with short AMA-1 peptide analogue alpha-helical structures. Biochimie. 2002;84(12):1181-8.
Berens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats. Infect Immun. 2005;73(11):7180-9.
Suarez CE, Laughery JM, Bastos RG, Johnson WC, Norimine J, Asenzo G, et al. A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites. Parasitology. 2011;138(7):809-18.
Yokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, et al. Cellular Localization of Babesia bovis Merozoite Rhoptry-Associated Protein 1 and Its Erythrocyte-Binding Activity. Infect Immun. 2002;70(10):5822-6.
Terkawi MA, Rathanophart J, Salama A, AbouLaila M, Asada M, Ueno A, et al. Molecular Characterization of a New Babesia bovis Thrombospondin-Related Anonymous Protein (BbTRAP2). PLoS ONE. 2013;8(12):e83305.
Flores DA, Rodriguez AE, Tomazic ML, Torioni de Echaide S, Echaide I, Zamorano P, et al. Characterization of GASA-1, a new vaccine candidate antigen of Babesia bovis. Vet Parasitol. 2020;287:109275.
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55.
Antonio Alvarez J, Lopez U, Rojas C, Borgonio VM, Sanchez V, Castañeda R, et al. Immunization of Bos taurus Steers with Babesia bovis Recombinant Antigens MSA-1, MSA-2c and 12D3: Recombinant Proteins Immunization and Babesia bovis. Transbound Emerg Dis. 2010;57(1-2):87-90.
Fish L, Leibovich B, Krigel Y, McElwain T, Shkap V. Vaccination of catle against B. bovis infection with live atenuated parasites and non-viable immunogens. Vaccine. 2008;26:G29-33.
Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant Epitopes in Babesia bovis Rhoptry-Associated Protein 1 That Elicit Memory CD4+-T-Lymphocyte Responses in B. bovis-Immune Individuals Are Located in the Amino-Terminal Domain. Infect Immun. 2002;70(4):2039-48.
Lanzavecchia A, Frühwirth A, Perez L, Corti D. Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol. 2016;41:62-7.
Food and Agriculture Organization of the United Nations.
Yusuf JJ. Review on Bovine Babesiosis and its Economical Importance. J Vet Med Res. 2017;4 (5):1090.
Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science. 2011;333(6041):463-7.
Nielsen R. Molecular Signatures of Natural Selection. Annu Rev Genet. 2005;39(1):197-218.
Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet. 2018;9:372.
Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors. 2017;10(1):251.
Treeck M, Zacherl S, Herrmann S, Cabrera A, Kono M, Struck NS, et al. Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathog. 2009;5(3):e1000322.
Brown WC, Norimine J, Goff WL, Suarez CE, Mcelwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol. 2006;28(7):315-27.
Tonkin ML, Boulanger MJ. The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog. 2015;11(1):e1004539.
Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood. 2015;125(17):2704-11.
Li X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, et al. A Co-ligand Complex Anchors Plasmodium falciparum Merozoites to the Erythrocyte Invasion Receptor Band 3. J Biol Chem. 2004;279(7):5765-71.
Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534-7.
Chitnis CE, Chaudhuri A, Horuk R, Pogo AO, Miller LH. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med. 1996;184(4):1531-6.
Gruszczyk J, Kanjee U, Chan LJ, Menant S, Malleret B, Lim NTY, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359(6371):48-55.
Gaffar FR, Franssen FFJ, de Vries E. Babesia bovis merozoites invade human, ovine, equine, porcine and caprine erythrocytes by a sialic acid-dependent mechanism followed by developmental arrest after a single round of cell fission. Int J Parasitol. 2003;33(14):1595-603.
Takabatake N, Okamura M, Yokoyama N, Okubo K, Ikehara Y, Igarashi I. Involvement of a Host Erythrocyte Sialic Acid Content in Babesia bovis Infection. J Vet Med Sci. 2007;69(10):999-1004.
Patarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo ME. Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci. 2020;21(13):4729.
Silvie O, Franetich JF, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites. J Biol Chem. 2004;279(10):9490-6.
Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci. 2005;102(36):12736-41.
Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv [v], 36 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85498/5/1057590849.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85498/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85498/6/1057590849.2023.pdf.jpg
bitstream.checksum.fl_str_mv d9ce33fa85d413a9268a5b1fd7cc3256
eb34b1cf90b7e1103fc9dfd26be24b4a
7193ab1f69626cb700e2d6aea0e946c3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089750066233344
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Patarroyo Gutiérrez, Manuel Alfonso30322a85ae0ad9c1368bae791386bffeMoreno Pérez, Darwin Andrés2544f79cefd410a354e61644479f5435600Cuy Chaparro, Laura Esperanzaf92884620178c235a6a98a173bc000000000-0002-2016-21172024-01-29T20:07:37Z2024-01-29T20:07:37Z2023-12https://repositorio.unal.edu.co/handle/unal/85498Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.coRESUMEN La babesiosis es una de las enfermedades veterinarias más importantes transmitidas por garrapatas que afecta principalmente a animales salvajes y domésticos, y recientemente es considerada como una zoonosis emergente que se distribuye en regiones tropicales y subtropicales alrededor del mundo. Babesia bovis, uno de los hemoprotozoarios responsable de la babesiosis bovina, es el agente más patógeno del género Babesia que causa un impacto negativo en la industria ganadera dada las altas tasas de morbimortalidad que genera. Las principales estrategias de control y tratamiento de la babesiosis se han centrado en el uso de quimioterapéuticos dirigidos contra el parásito o de acaricidas contra el vector. Sin embargo, ante la aparición de resistencia a esta clase de productos químicos, la vacunación con organismos vivos atenuados de B. bovis se ha convertido en el principal método de control de la infección. Aunque el uso de este tipo de vacunas ha estado asociado con niveles parciales de protección, éstas tienen importantes limitaciones como una vida útil corta, riesgo de reversión de la virulencia, contaminación con otros patógenos transmitidos por sangre, falla en la inducción de inmunidad protectiva contra diferentes cepas y la pérdida de inmunogenicidad, lo que ha limitado la comercialización de la vacuna. Por lo tanto, se requieren otras estrategias alternas para mejorar las condiciones de sanidad animal bovina. El conocimiento de la biología básica del parásito en relación con la caracterización de las moléculas que éste usa para invadir a sus células diana es esencial para diseñar una medida de control eficaz contra la enfermedad, como es el caso de las vacunas. Por ende, este proyecto se encaminó a identificar proteínas de B. bovis o regiones derivadas de ellas que tengan capacidad de unirse a los eritrocitos bovinos como alternativa para contribuir al conocimiento de su biología en relación con la interacción parásito-célula. Para ello, se realizó la predicción de proteínas importantes para la invasión del parásito a sus células diana mediante la exploración in silico de los datos de transcriptoma y proteoma de B. bovis, obteniendo como resultado las proteínas BbMSA-1, BbAMA-1 y BbRON2. Posteriormente, varias regiones bajo restricción funcional y con presencia de codones seleccionados negativamente en BbMSA-1, BbAMA-1 y BbRON2 fueron inferidas a través de análisis de selección natural, con el objetivo de elegir fragmentos idóneos (regiones o péptidos de 20 residuos) y evaluar así su capacidad para unirse a los eritrocitos bovinos. Los ensayos altamente sensibles de interacción proteína-célula y péptido-célula permitieron identificar varias regiones con capacidad de unión a eritrocitos bovinos y diferentes péptidos con alta capacidad de unión (HABP, del inglés High Activity Binding Peptide) a sus células diana para BbMSA-1: 42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110) y 42426 (150TDIVEEDREKAVEYFKKHVY169); BbAMA-1: 42437 (100YMQKFDIPRNHGSGIYVDLG119), 42438 (120GYESVGSKSYRMPVGKSPVV139) y 42443 (302SPMHPVRDAIFGKWSGGSSV321); y BbRON2: 42918 (1218SFIMVKPPALHCVLKPVETL1237). Además, los análisis de predicción de la estructura terciaria y secundaria de las moléculas permitieron evidenciar que los HABPs 42422 y 42426 de MSA-1, así como 42437 y 42438 de AMA-1, son altamente helicoidales y contienen epítopes de células B y T, mientras que los HABPs 42424 de MSA-1 y 42918 de RON2 son no estructurados estando este último, localizado en una región intrínsecamente desordenada flanqueada por dos regiones helicoidales. Este es el primer estudio que analiza y describe las regiones mínimas (definidas en este estudio por componerse de 20 aminoácidos) implicadas en la unión de las proteínas MSA-1, AMA-1 y RON2 de B. bovis a su célula diana. En estudios futuros, se explorará el potencial antigénico de dichos péptidos durante la inmunización in vivo, y se evaluará su eficacia como potenciales candidatos a vacuna. (Texto tomado de la fuente)Babesiosis is one of the most important tick-borne veterinary diseases affecting both wild and domestic animals. Recently, it has been considered also as an emerging zoonosis distributed in tropical and subtropical regions around the world. Babesia bovis, the hemoprotozoa responsible for bovine babesiosis, is the most pathogenic agent in the Babesia genus causing a negative impact on the livestock industry related to the high morbidity and mortality rates it generates. The main control and treatment strategies for babesiosis have been focused on chemotherapeutics against the parasite or acaricides against the vector. However, the emergence of resistance against these chemicals have made vaccination with live atenuated B. bovis organisms the main infection control method. Although this type of vaccines has been associated with significant levels of protection, there are limitations such as a short shelf life, risk of virulence reversal, contamination with other blood-borne pathogens, failure to induce protective immunity against different strains and immunogenicity loss. Those restrictions have limited the vaccine commercialization making alternative strategies needed to improve bovine animal welfare. Knowledge of the parasite’s basic biology and the characterization of the molecules used to invade its target cells is essential to design an effective control measure against the disease. This project was thus aimed at identifying B. bovis proteins or protein-regions with the ability to bind to bovine erythrocytes (its target cell) to elucidate the parasite-cell interaction. For this, the prediction of parasite’s important proteins for the invasion to its target cells was carried out in silico by transcriptome and proteome data exploration, which led to selecting BbMSA-1, BbAMA-1 and BbRON2 proteins. Subsequently, several regions under functional restriction and presenting negatively selected codons in BbMSA-1, BbAMA-1 and BbRON2 were inferred through natural selection analysis to choose suitable fragments (20-mer peptide regions) to evaluate their ability to bind to bovine erythrocytes. Highly sensitive protein-cell and peptide-cell interaction assays allowed the identification of several binding regions to bovine erythrocytes and different High Activity Binding Peptides (HABPs) to their target cells; for BbMSA1: peptides 42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110 ) and 42426 (150TDIVEEDREKAVEYFKKHVY169); for BbAMA-1: peptides 42437 (100YMQKFDIPRNHGSGIYVDLG119), 42438 (120GYESVGSKSYRMPVGKSPVV139) and 42443 (302SPMHPVRDAIFGKWSGGSSV321), and for BbRON2: peptide 42918 (1218SFIMVKPPALHCVLKPVETL1237). Tertiary and secondary structure prediction analysis showed that HABPs 42422 and 42426 of MSA-1, together with 42437 and 42438 of AMA-1 are highly helical and can contain epitopes for B and T cells. MSA-1 HABP 42424 is unstructured, while RON2 HABP 42918 is in an intrinsically disordered region flanked by two helical regions. This is the first study describing the minimal regions (defined here as being 20 aa long) involved in the binding of the B. bovis MSA1, AMA-1 and RON2 proteins to their target cell. Further studies should follow to explore the antigenic potential of these peptides by in vivo immunization, to assess their efficacy as potential anti-B. bovis vaccine candidates.DoctoradoDoctora en Biotecnología[v], 36 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::636 - Producción animal610 - Medicina y salud::616 - EnfermedadesTicksErythrocyte indicesHost-parasite interactionsImmunogenicity, vaccineCattle-ImmunologyÁcaros y garrapatasAcariBabesiosisÍndices de eritrocitosInteracciones huésped-parásitosInmunogenicidad vacunalBovinos -InmunologíaGarrapatasBabesia BovisPéptidos con alta capacidad de uniónEritrocito bovinoParasite adhesionHigh activity binding peptidesBovine erythrocyteIndentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinosIdentification of Babesia bovis' protein binding regions to bovine erythrocytesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDSingh B, Varikuti S, Halsey G, Volpedo G, Hamza OM, Satoskar AR. Host-directed therapies for parasitic diseases. Future Med Chem. 2019;11(15):1999-2018.Hunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37.Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of catle. Parasitology. 2004;129(S1):S247-69.Gray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006;296:131-6.Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25.Rittpornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jitapalapong S, et al. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54.Bram RA, George JE, Reichard RE, Tabachnick WJ. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J Med Entomol. 2002;39(3):405-16.Gray JS, Estrada-Peña A, Zintl A. Vectors of Babesiosis. Annu Rev Entomol. 2019;64(1):149-65.He L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, et al. Babesiosis as a potential threat for bovine production in China. Parasit Vectors. 2021;14(1):460.Satti RA, Awadelkareem EA, Suganuma K, Salim B, Inoue N, Xuan X, et al. Catle anaplasmosis and babesiosis: Major tick-borne diseases affecting the catle industry in Khartoum State, Sudan. Vet Parasitol Reg Stud Rep. 2021;26:100632.Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol. 2019;49(2):183-97.Vial HJ, Gorenflot A. Chemotherapy against babesiosis. Vet Parasitol. 2006;138(1- 2):147-60.Nari A. Strategies for the control of one-host ticks and relationship with tick-borne diseases in South America. Vet Parasitol. marzo de 1995;57(1-3):153-65.Andreotti R, Guerrero FD, Soares MA, Barros JC, Miller RJ, Léon AP de. Acaricide resistance of Rhipicephalus (Boophilus) microplus in State of Mato Grosso do Sul, Brazil. Rev Bras Parasitol Veterinária. 2011;20(2):127-33.Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnitger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141(12):1563-92.de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1-2):88-96.Gimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, et al. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577.Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit- Based Vaccine Development. Chem Rev. 2011;111(5):3459-507.López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol. 2017;8.Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9(2):131-55.OIE. World Organization for Animal Health. 2019ICA. Enfermedades de declaración obligatoria en Colombia. 2019.OIE. World Organization for Animal Health. 2022.ICA. Censo pecuario. 2018.Calderon Alfonso, Maryinez Nicolás, Iguarán Haydée. Bovine hemoparasites frequency from colombian caribbean region. Revista UDCA Actualidad & Divulgación Cienyifica. 2016;19(1):131-8.Instituto Colombiano Agropecuario - ICA. Boletin Sanidad Animal. 2016.Vecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAP. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). Cienc Tecnol Agropecu. 2010;11(1):73-84.Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37.Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin North Am. 2015;29(2):357-70.Kivaria FM. Estimated direct economic costs associated with tick-borne diseases on catle in Tanzania. Trop Anim Health Prod. 2006;38(4):291-9.Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13(3):451-69.Jalovecka M, Sojka D, Ascencio M, Schnitger L. Babesia Life Cycle – When Phylogeny Meets Biology. Trends Parasitol. 2019;35(5):356-68.Ueti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR, Reif KE, et al. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol. 2021;51(2-3):123- 36.Hutchings CL, Li A, Fernandez KM, Fletcher T, Jackson LA, Molloy JB, et al. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol Microbiol. 2007;65(4):1092-105.Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5.Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors. 2016;9(1):439.Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L. The Complexity of Piroplasms Life Cycles. Front Cell Infect Microbiol. 2018;8:248.Mehlhorn H, Schein E. The Piroplasms: Life Cycle and Sexual Stages. En: Advances in Parasitology [Internet]. Elsevier; 1985: 37-103.Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus ( Boophilus ) microplus during Acute Infection. J Clin Microbiol. 2007;45(2):426-31.Bargieri D, Lagal V, Andenmaten N, Tardieux I, Meissner M, Ménard R. Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathog. 2014;10(9):e1004273.Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1- 2):22-32.Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Invited review Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol.1998;28(7):1007-13.Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected catle. Mol Biochem Parasitol.1989;37(1):1-9.Goff WL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun.1988;56(9):2363-8.Hines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of catle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52.Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol. 1992;55(1-2):85-94.Genis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, et al. Phylogenetic Analysis of Mexican Babesia bovis Isolates Using msa and ssrRNA Gene Sequences. Ann N Y Acad Sci. 2008;1149(1):121-5.Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503.Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94.Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Petri WA, editor. Infect Immun. 2000;68(12):6865-70.Mosqueda J, McElwain TF, Stiller D, Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Atachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603.Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites. PLoS Pathog. 2011;7(2):e1001276.Mital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005;16(9):4341-9.Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, et al. Conditional expression of apical membrane antigen 1 in P lasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56.Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, et al. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis- infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280.Tyler JS, Boothroyd JC. The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex. PLoS Pathog. 2011;7(2):e1001282.Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLOS ONE. 2016;11(1):e0144764.Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, et al. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized catle. Parasit Vectors. 2018;11(1):575.Gardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, et al. CLAG-9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7.Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol. 2012;15(4):449-55.Brown WC, Norimine J, Knowles DP, Goff WL. Immune control of Babesia bovis infection. Vet Parasitol. 2006;138(1-2):75-87.Goff WL, Johnson WC, Parish SM, Barrington GM, Tuo W, Valdez RA. The age-related immunity in catle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-γ and inducible nitric oxide synthase mRNA expression in the spleen: Type-1 atributes of innate immunity in calves to B. bovis. Parasite Immunol. 2001;23(9):463-71.Goff WL, Johnson WC, Horn RH, Barrington GM, Knowles DP. The innate immune response in calves to Boophilus microplus tick transmited Babesia bovis involves type-1 cytokine induction and NK-like cells in the spleen. Parasite Immunol. 2003;25(4):185-8.Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, et al. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci. 2020;21(22).Brown WC, Zhao S, Woods VM, Dobbelaere DAE, Rice Ficht AC. Des clones de cellules T CD4+ spécifiques pour Babesia bovis, de bovins immunisés, expriment le profil de cytokines des cellules Th0 ou des Th1. Rev D’élevage Médecine Vét Pays Trop. 1993;46(1-2):65-9.Shkap Varda, de Vos Albertus J, Zweygarth Erich, Jongejan Frans. Atenuated vaccines for tropical theileriosis, babesiosis and heartwater: the continuing necessity. Trends in Parasitology. 2007;23(9):420-6.Alvarez JA, Rojas C, Figueroa JV. An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Atenuated Vaccines for Bovine Babesiosis in Mexico. Front Vet Sci. 2020;7:364.Jorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1(1):6-13.Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, et al. Designing the Next Generation of Vaccines for Global Public Health. OMICS J Integr Biol. 2011;15(9):545-66.Rappuoli R. Reverse Vaccinology and Genomics. Science. 2003;302(5645):602-602.Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 2001;19(17-19):2688-91.Bambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov Today. 2009;14(5-6):252-60.Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111(34):12288-93.Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. 2020;19(2):195-207.Patarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA. Malaria Parasite Survival Depends on Conserved Binding Peptides’ Critical Biological Functions. Curr Issues Mol Biol. 2016;18:57-78.Vera-Bravo R, Torres E, Valbuena JJ, Ocampo M, Rodríguez LE, Puentes Á, et al. Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochem Biophys Res Commun. 2005;332(3):771-81.Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2016;18:11-9.Cubillos M, Salazar LM, Torres L, Patarroyo ME. Protection against experimental P falciparum malaria is associated with short AMA-1 peptide analogue alpha-helical structures. Biochimie. 2002;84(12):1181-8.Berens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats. Infect Immun. 2005;73(11):7180-9.Suarez CE, Laughery JM, Bastos RG, Johnson WC, Norimine J, Asenzo G, et al. A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites. Parasitology. 2011;138(7):809-18.Yokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, et al. Cellular Localization of Babesia bovis Merozoite Rhoptry-Associated Protein 1 and Its Erythrocyte-Binding Activity. Infect Immun. 2002;70(10):5822-6.Terkawi MA, Rathanophart J, Salama A, AbouLaila M, Asada M, Ueno A, et al. Molecular Characterization of a New Babesia bovis Thrombospondin-Related Anonymous Protein (BbTRAP2). PLoS ONE. 2013;8(12):e83305.Flores DA, Rodriguez AE, Tomazic ML, Torioni de Echaide S, Echaide I, Zamorano P, et al. Characterization of GASA-1, a new vaccine candidate antigen of Babesia bovis. Vet Parasitol. 2020;287:109275.Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55.Antonio Alvarez J, Lopez U, Rojas C, Borgonio VM, Sanchez V, Castañeda R, et al. Immunization of Bos taurus Steers with Babesia bovis Recombinant Antigens MSA-1, MSA-2c and 12D3: Recombinant Proteins Immunization and Babesia bovis. Transbound Emerg Dis. 2010;57(1-2):87-90.Fish L, Leibovich B, Krigel Y, McElwain T, Shkap V. Vaccination of catle against B. bovis infection with live atenuated parasites and non-viable immunogens. Vaccine. 2008;26:G29-33.Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant Epitopes in Babesia bovis Rhoptry-Associated Protein 1 That Elicit Memory CD4+-T-Lymphocyte Responses in B. bovis-Immune Individuals Are Located in the Amino-Terminal Domain. Infect Immun. 2002;70(4):2039-48.Lanzavecchia A, Frühwirth A, Perez L, Corti D. Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol. 2016;41:62-7.Food and Agriculture Organization of the United Nations.Yusuf JJ. Review on Bovine Babesiosis and its Economical Importance. J Vet Med Res. 2017;4 (5):1090.Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science. 2011;333(6041):463-7.Nielsen R. Molecular Signatures of Natural Selection. Annu Rev Genet. 2005;39(1):197-218.Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet. 2018;9:372.Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors. 2017;10(1):251.Treeck M, Zacherl S, Herrmann S, Cabrera A, Kono M, Struck NS, et al. Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathog. 2009;5(3):e1000322.Brown WC, Norimine J, Goff WL, Suarez CE, Mcelwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol. 2006;28(7):315-27.Tonkin ML, Boulanger MJ. The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog. 2015;11(1):e1004539.Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood. 2015;125(17):2704-11.Li X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, et al. A Co-ligand Complex Anchors Plasmodium falciparum Merozoites to the Erythrocyte Invasion Receptor Band 3. J Biol Chem. 2004;279(7):5765-71.Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534-7.Chitnis CE, Chaudhuri A, Horuk R, Pogo AO, Miller LH. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med. 1996;184(4):1531-6.Gruszczyk J, Kanjee U, Chan LJ, Menant S, Malleret B, Lim NTY, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359(6371):48-55.Gaffar FR, Franssen FFJ, de Vries E. Babesia bovis merozoites invade human, ovine, equine, porcine and caprine erythrocytes by a sialic acid-dependent mechanism followed by developmental arrest after a single round of cell fission. Int J Parasitol. 2003;33(14):1595-603.Takabatake N, Okamura M, Yokoyama N, Okubo K, Ikehara Y, Igarashi I. Involvement of a Host Erythrocyte Sialic Acid Content in Babesia bovis Infection. J Vet Med Sci. 2007;69(10):999-1004.Patarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo ME. Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci. 2020;21(13):4729.Silvie O, Franetich JF, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites. J Biol Chem. 2004;279(10):9490-6.Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci. 2005;102(36):12736-41.Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1057590849.2023.pdf1057590849.2023.pdfTesis de Doctorado en Biotecnologíaapplication/pdf4328501https://repositorio.unal.edu.co/bitstream/unal/85498/5/1057590849.2023.pdfd9ce33fa85d413a9268a5b1fd7cc3256MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85498/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1057590849.2023.pdf.jpg1057590849.2023.pdf.jpgGenerated Thumbnailimage/jpeg3965https://repositorio.unal.edu.co/bitstream/unal/85498/6/1057590849.2023.pdf.jpg7193ab1f69626cb700e2d6aea0e946c3MD56unal/85498oai:repositorio.unal.edu.co:unal/854982024-08-21 23:13:00.619Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=