Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane
ilustraciones, fotografías
- Autores:
-
Osorio Zabala, María Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85052
- Palabra clave:
- 540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Catalizadores
Inhibidores químicos
Catalysts
Chemical inhibitors
Synthesis gas
Gas de síntesis
Reformado
Metano
Óxidos mixtos
Monolito
Efectivo invernadero
Reforming
Methane
Mixed oxides
Monolith
Greenhouse effect
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_f888f833a12820dfc3ef858083d859b2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85052 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
dc.title.translated.none.fl_str_mv |
Catalizadores de Ni-Ce inmovilizados en monolitos de cordierita para el reformado seco de metano |
title |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
spellingShingle |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane 540 - Química y ciencias afines::546 - Química inorgánica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales Catalizadores Inhibidores químicos Catalysts Chemical inhibitors Synthesis gas Gas de síntesis Reformado Metano Óxidos mixtos Monolito Efectivo invernadero Reforming Methane Mixed oxides Monolith Greenhouse effect |
title_short |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
title_full |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
title_fullStr |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
title_full_unstemmed |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
title_sort |
Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane |
dc.creator.fl_str_mv |
Osorio Zabala, María Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Daza Velásquez, Carlos Enrique |
dc.contributor.author.none.fl_str_mv |
Osorio Zabala, María Alejandra |
dc.contributor.researchgroup.spa.fl_str_mv |
Estado Sólido y Catálisis Ambiental |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::546 - Química inorgánica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales |
topic |
540 - Química y ciencias afines::546 - Química inorgánica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales Catalizadores Inhibidores químicos Catalysts Chemical inhibitors Synthesis gas Gas de síntesis Reformado Metano Óxidos mixtos Monolito Efectivo invernadero Reforming Methane Mixed oxides Monolith Greenhouse effect |
dc.subject.lemb.spa.fl_str_mv |
Catalizadores Inhibidores químicos |
dc.subject.lemb.eng.fl_str_mv |
Catalysts Chemical inhibitors |
dc.subject.proposal.spa.fl_str_mv |
Synthesis gas Gas de síntesis Reformado Metano Óxidos mixtos Monolito Efectivo invernadero |
dc.subject.proposal.eng.fl_str_mv |
Reforming Methane Mixed oxides Monolith Greenhouse effect |
description |
ilustraciones, fotografías |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-07T15:46:43Z |
dc.date.available.none.fl_str_mv |
2023-12-07T15:46:43Z |
dc.date.issued.none.fl_str_mv |
2023-12-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85052 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85052 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
H. H. Cho, V. Strezov, and T. J. Evans, “A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies,” Sustainable Materials and Technologies, vol. 35, Apr. 2023, doi: 10.1016/j.susmat.2023.e00567. M. Tsangas, I. Papamichael, and A. A. Zorpas, “Sustainable Energy Planning in a New Situation,” Energies (Basel), vol. 16, no. 4, Feb. 2023, doi: 10.3390/en16041626. J. C. J. Bart, N. Palmeri, and S. Cavallaro, “Evolution of biodiesel and alternative diesel fuels,” in Biodiesel Science and Technology, Elsevier, 2010, pp. 713–782. doi: 10.1533/9781845697761.713. T. J. Mazanec, R. Prasad, R. Odegard, C. Steyn, and E. T. Robinson, “Oxygen transport membranes for syngas production,” in Studies in Surface Science and Catalysis, Elsevier Inc., 2001, pp. 147–152. doi: 10.1016/s0167-2991(01)80295-0. P. Gupta, L. G. Velazquez-Vargas, and L. S. Fan, “Syngas redox (SGR) process to produce hydrogen from coal derived syngas,” Energy and Fuels, vol. 21, no. 5, pp. 2900–2908, Sep. 2007, doi: 10.1021/ef060512k. P. C. Munasinghe and S. K. Khanal, “Biomass-derived syngas fermentation into biofuels: Opportunities and challenges,” Bioresource Technology, vol. 101, no. 13. pp. 5013–5022, Jul. 2010. doi: 10.1016/j.biortech.2009.12.098. D. J. Roddy, “A syngas network for reducing industrial carbon footprint and energy use,” Appl Therm Eng, vol. 53, no. 2, pp. 299–304, 2013, doi: 10.1016/j.applthermaleng.2012.02.032. K. Wittich, M. Krämer, N. Bottke, and S. A. Schunk, “Catalytic Dry Reforming of Methane: Insights from Model Systems,” ChemCatChem, vol. 12, no. 8. Wiley Blackwell, pp. 2130– 2147, Apr. 20, 2020. doi: 10.1002/cctc.201902142. J. Gao, Z. Hou, H. Lou, and X. Zheng, Dry (CO2) Reforming, First Edit. Elsevier, 2011. doi: 10.1016/B978-0-444-53563-4.10007-0. S. Aouad et al., “A Review on the Dry Reforming Processes for Hydrogen Production: Catalytic Materials and Technologies,” in Frontiers in Ceramic Science Catalytic Materials for Hydrogen Production and Electro-oxidation Reactions, 2018, pp. 60–128. doi: 10.2174/9781681087580118020007. M. Usman, W. M. A. Wan Daud, and H. F. Abbas, “Dry reforming of methane: Influence of process parameters - A review,” Renewable and Sustainable Energy Reviews, vol. 45. Elsevier Ltd, pp. 710–744, 2015. doi: 10.1016/j.rser.2015.02.026. A. Abdulrasheed, A. A. Jalil, Y. Gambo, M. Ibrahim, H. U. Hambali, and M. Y. Shahul Hamid, “A review on catalyst development for dry reforming of methane to syngas: Recent advances,” Renewable and Sustainable Energy Reviews, vol. 108. Elsevier Ltd, pp. 175– 193, Jul. 01, 2019. doi: 10.1016/j.rser.2019.03.054. L. S. Neiva, “A Study On The Characteristics Of The Reforming Of Methane: A Review,” Brazilian Journal of Petroleum and Gas, pp. 119–127, Sep. 2010, doi: 10.5419/bjpg2010- 0013. Y. H. Hu, “Advances in catalysts for CO2 reforming of methane,” ACS Symposium Series, vol. 1056, pp. 155–174, 2010, doi: 10.1021/bk-2010-1056.ch010. O. Muraza and A. Galadima, “A review on coke management during dry reforming of methane,” Archives of Thermodynamics, vol. 33, no. 4, pp. 23–40, 2014, doi: 10.1002/er. R. J. Zhang, G. F. Xia, M. F. Li, Y. Wu, H. Nie, and D. D. Li, “Effect of support on catalytic performance of Ni-based catayst in methane dry reforming,” Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, vol. 43, no. 11, pp. 1359–1365, 2015, doi: 10.1016/S1872-5813(15)30040-2. M. Chaghouri, C. Ciotonea, F. Cazier, L. H. Tidahy, C. Gennequin, and E. Abi-Aad, “Hydrogen production through dry reforming of biogas on hydrotalcite derived materials,” in 2022 13th International Renewable Energy Congress, IREC 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/IREC56325.2022.10002063. C. E. Daza, A. Kiennemann, S. Moreno, and R. Molina, “Dry reforming of methane using Ni-Ce catalysts supported on a modified mineral clay,” Appl Catal A Gen, vol. 364, no. 1–2, pp. 65–74, 2009, doi: 10.1016/j.apcata.2009.05.029. R. Guil-López, V. La Parola, M. A. Peña, and J. L. G. Fierro, “Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the CO x-free hydrogen production by methane decomposition,” in International Journal of Hydrogen Energy, Apr. 2012, pp. 7042–7055. doi: 10.1016/j.ijhydene.2011.11.083. A. Chatla, F. Abu-Rub, A. V. Prakash, G. Ibrahim, and N. O. Elbashir, “Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn,” Fuel, vol. 308, Jan. 2022, doi: 10.1016/j.fuel.2021.122042. W. Y. Kim, J. S. Jang, E. C. Ra, K. Y. Kim, E. H. Kim, and J. S. Lee, “Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane,” Appl Catal A Gen, vol. 575, no. November 2018, pp. 198–203, 2019, doi: 10.1016/j.apcata.2019.02.029. X. Cai and Y. H. Hu, “Advances in catalytic conversion of methane and carbon dioxide to highly valuable products,” Energy Science and Engineering, vol. 7, no. 1. John Wiley and Sons Ltd, pp. 4–29, Feb. 01, 2019. doi: 10.1002/ese3.278. A. V. P. Lino, E. M. Assaf, and J. M. Assaf, “Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load,” Catal Today, vol. 289, pp. 78–88, 2017, doi: 10.1016/j.cattod.2016.08.022. O. H. Ojeda-Niño, F. Gracia, and C. Daza, “Role of Pr on Ni-Mg-Al Mixed Oxides Synthesized by Microwave-Assisted Self-Combustion for Dry Reforming of Methane,” Ind Eng Chem Res, vol. 58, no. 19, pp. 7909–7921, May 2019, doi: 10.1021/acs.iecr.9b00557. S. Govender and H. B. Friedrich, “Monoliths: A review of the basics, preparation methods and their relevance to oxidation,” Catalysts, vol. 7, no. 2. MDPI, Feb. 16, 2017. doi: 10.3390/catal7020062. J. L. Williams, “Monolith structures, materials, properties and uses,” 2001. S. Govender and H. B. Friedrich, “Monoliths: A review of the basics, preparation methods and their relevance to oxidation,” Catalysts, vol. 7, no. 2, 2017, doi: 10.3390/catal7020062. C. E. Daza, S. Moreno, and R. Molina, “Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane,” Int J Hydrogen Energy, vol. 36, no. 6, pp. 3886–3894, Mar. 2011, doi: 10.1016/j.ijhydene.2010.12.082. J. Jiang, B. Ye, and J. Liu, “Research on the peak of CO2 emissions in the developing world: Current progress and future prospect,” Applied Energy, vol. 235. Elsevier Ltd, pp. 186–203, Feb. 01, 2019. doi: 10.1016/j.apenergy.2018.10.089. W. F. Lamb et al., “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018,” Environmental Research Letters, vol. 16, no. 7. IOP Publishing Ltd, Jul. 01, 2021. doi: 10.1088/1748-9326/abee4e. G. Grassi et al., “Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks,” Nat Clim Chang, vol. 8, no. 10, pp. 914–920, Oct. 2018, doi: 10.1038/s41558-018-0283-x. P. Friedlingstein et al., “Global carbon budget 2019,” Earth Syst Sci Data, vol. 11, no. 4, pp. 1783–1838, Dec. 2019, doi: 10.5194/essd-11-1783-2019. S. Kirschke et al., “Three decades of global methane sources and sinks,” Nature Geoscience, vol. 6, no. 10. pp. 813–823, Oct. 2013. doi: 10.1038/ngeo1955. M. Saunois et al., “The global methane budget 2000-2017,” Earth Syst Sci Data, vol. 12, no. 3, pp. 1561–1623, Jul. 2020, doi: 10.5194/essd-12-1561-2020. G. Janssens-Maenhout et al., “EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012”, doi: 10.5194/essd-2017-79. H. Tian et al., “A comprehensive quantification of global nitrous oxide sources and sinks,” Nature, vol. 586, no. 7828, pp. 248–256, Oct. 2020, doi: 10.1038/s41586-020-2780-0. A. Kumar, P. Singh, P. Raizada, and C. M. Hussain, “Impact of COVID-19 on greenhouse gases emissions: A critical review,” Science of the Total Environment, vol. 806. Elsevier B.V., Feb. 01, 2022. doi: 10.1016/j.scitotenv.2021.150349. H. Ritchie, M. Roser, and P. Rosado, “CO₂ and Greenhouse Gas EmissionsRetrieved,” Our World in Data, 2022, Accessed: Jan. 30, 2023. [Online]. Available: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions J. G. J. Olivier and J. A. H. W. Peters, “TRENDS IN GLOBAL CO 2 AND TOTAL GREENHOUSE GAS EMISSIONS 2020 Report Trends in global CO2 and total greenhouse gas emissions: 2020 Report,” 2020. [Online]. Available: www.pbl.nl/en. M. Roelfsema et al., “Taking stock of national climate policies to evaluate implementation of the Paris Agreement,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020- 15414-6. L. Aleluia Reis and M. Tavoni, “Glasgow to Paris—The impact of the Glasgow commitments for the Paris climate agreement,” iScience, vol. 26, no. 2, p. 105933, Feb. 2023, doi: 10.1016/j.isci.2023.105933. Z. Yu, I. Lanre Ridwan, A. ur R. Irshad, M. Tanveer, and S. A. R. Khan, “Investigating the nexuses between transportation Infrastructure, renewable energy Sources, and economic Growth: Striving towards sustainable development,” Ain Shams Engineering Journal, Mar. 2022, doi: 10.1016/j.asej.2022.101843. J. Hardoy and P. Romero Lankao, “Latin American cities and climate change: Challenges and options to mitigation and adaptation responses,” Current Opinion in Environmental Sustainability, vol. 3, no. 3. pp. 158–163, May 2011. doi: 10.1016/j.cosust.2011.01.004. D. Delgado Pugley, “América Latina frente a la COP26 Posiciones y perspectivas,” 2021. F. D. Meylan, V. Moreau, and S. Erkman, “CO2 utilization in the perspective of industrial ecology, an overview,” Journal of CO2 Utilization, vol. 12, pp. 101–108, 2015, doi: 10.1016/j.jcou.2015.05.003. D. Cebrucean, V. Cebrucean, and I. Ionel, “CO2 capture and storage from fossil fuel power plants,” Energy Procedia, vol. 63, no. ii, pp. 18–26, 2014, doi: 10.1016/j.egypro.2014.11.003. H. Yang et al., “Progress in carbon dioxide separation and capture: A review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008, doi: 10.1016/S1001- 0742(08)60002-9. M. Bui et al., “Carbon capture and storage (CCS): The way forward,” Energy Environ Sci, vol. 11, no. 5, pp. 1062–1176, 2018, doi: 10.1039/c7ee02342a. K. Kelektsoglou, “Carbon capture and storage: A review of mineral storage of CO2 in Greece,” Sustainability (Switzerland), vol. 10, no. 12, 2018, doi: 10.3390/su10124400. T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, and K. Tejima, “A twin fluid-bed reactor for removal of CO2 from combustion processes,” Chemical Engineering Research and Design, vol. 77, no. 1, pp. 62–68, 1999, doi: 10.1205/026387699525882. R. Ramezani, S. Mazinani, and R. Di Felice, Characterization and kinetics of CO2 absorption in potassium carbonate solution promoted by 2-methylpiperazine, vol. 6, no. 2. Elsevier B.V., 2018. doi: 10.1016/j.jece.2018.05.019. M. House and P. Brownsort, “Scottish Carbon Capture & Storage Ship transport of CO 2 for Enhanced Oil Recovery – Literature Survey,” vol. 44, no. January, 2015, [Online]. Available: www.sccs.org.uk N. Dewangan et al., “Recent progress on layered double hydroxide (LDH) derived metal- based catalysts for CO2 conversion to valuable chemicals,” Catal Today, vol. 356, pp. 490– 513, Oct. 2020, doi: 10.1016/j.cattod.2020.06.020. K. Świrk, J. Grams, M. Motak, P. Da Costa, and T. Grzybek, “Understanding of tri- reforming of methane over Ni/Mg/Al hydrotalcite-derived catalyst for CO2utilization from flue gases from natural gas-fired power plants,” Journal of CO2 Utilization, vol. 42, Dec. 2020, doi: 10.1016/j.jcou.2020.101317. A. Iulianelli, S. Liguori, J. Wilcox, and A. Basile, “Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review,” Catal Rev Sci Eng, vol. 58, no. 1, pp. 1–35, Jan. 2016, doi: 10.1080/01614940.2015.1099882. D. P. Minh et al., “Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane,” in Hydrogen Supply Chain: Design, Deployment and Operation, Elsevier, 2018, pp. 111–166. doi: 10.1016/B978-0-12-811197-0.00004-X. A. P. E. York, T. Xiao, and M. L. H. Green, “Brief overview of the partial oxidation of methane to synthesis gas,” 2003. E. le Saché and T. R. Reina, “Analysis of Dry Reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies,” Progress in Energy and Combustion Science, vol. 89. Elsevier Ltd, Mar. 01, 2022. doi: 10.1016/j.pecs.2021.100970. M. K. Nikoo and N. A. S. Amin, “Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation,” Fuel Processing Technology, vol. 92, no. 3, pp. 678–691, Mar. 2011, doi: 10.1016/j.fuproc.2010.11.027. S. Arora and R. Prasad, “An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts,” RSC Advances, vol. 6, no. 110. Royal Society of Chemistry, pp. 108668–108688, 2016. doi: 10.1039/c6ra20450c. Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, and S. Kawi, “Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts,” Chemical Engineering Journal, vol. 278, pp. 62–78, 2015, doi: 10.1016/j.cej.2014.11.143. M. C. J. Bradford and M. A. Vannice, “CO2 reforming of CH4,” Catal Rev Sci Eng, vol. 41, no. 1, pp. 1–42, 1999, doi: 10.1081/CR-100101948. M. Takht Ravanchi and S. Sahebdelfar, “Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges,” Appl Petrochem Res, vol. 4, no. 1, pp. 63–77, May 2014, doi: 10.1007/s13203-014-0050-5. J. Xu and G. F. Froment, “Methane Steam Reforming, Methanation and Water-Gas Shift: 1. Intrinsic Kinetics,” AIChE Journal, vol. 35, no. 1, pp. 88–96, Jan. 1989. Y. A. Zhu, D. Chen, X. G. Zhou, and W. K. Yuan, “DFT studies of dry reforming of methane on Ni catalyst,” Catal Today, vol. 148, no. 3–4, pp. 260–267, Nov. 2009, doi: 10.1016/j.cattod.2009.08.022. M. C. J. Bradford and M. A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics,” Appl Catal A Gen, vol. 142, pp. 97–122, 1996. T. Osaki, T. Horiuchi, K. Suzuki, and T. Mori, “Suppression of carbon deposition in CO2- reforming of methane on metal sulfide catalysts,” Catal Letters, vol. 35, pp. 39–43, 1995. J. Wei and E. Iglesia, “Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts,” J Catal, vol. 224, no. 2, pp. 370–383, 2004, doi: 10.1016/j.jcat.2004.02.032. Z. J. Zhao, C. C. Chiu, and J. Gong, “Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts,” Chem Sci, vol. 6, no. 8, pp. 4403–4425, Aug. 2015, doi: 10.1039/c5sc01227a. P. Djinović, J. Batista, and A. Pintar, “Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst,” Int J Hydrogen Energy, vol. 37, no. 3, pp. 2699–2707, 2012, doi: 10.1016/j.ijhydene.2011.10.107. H. Y. Wang and E. Ruckenstein, “Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support,” Appl Catal A Gen, vol. 204, no. 1, pp. 143–152, 2000, doi: 10.1016/S0926-860X(00)00547-0. N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, “Catalyst design for dry reforming of methane: Analysis review,” Renewable and Sustainable Energy Reviews, vol. 82, no. December 2016, pp. 2570–2585, 2018, doi: 10.1016/j.rser.2017.09.076. N. A. K. Aramouni, J. Zeaiter, W. Kwapinski, and M. N. Ahmad, “Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation,” Energy Convers Manag, vol. 150, pp. 614–622, 2017, doi: 10.1016/j.enconman.2017.08.056. J. Zhang, H. Wang, and A. K. Dalai, “Development of stable bimetallic catalysts for carbon dioxide reforming of methane,” J Catal, vol. 249, no. 2, pp. 300–310, 2007, doi: 10.1016/j.jcat.2007.05.004. J. R. Rostrup-Nielsen and J. H. Bak Hansen, “CO2-reforming of methane over transition metals,” Journal of Catalysis, vol. 144, no. 1. pp. 38–49, 1993. doi: 10.1006/jcat.1993.1312. T. P. Beebe, D. W. Goodman, B. D. Kay, and J. T. Yates, “Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces,” J Chem Phys, vol. 87, no. 4, pp. 2305–2315, 1987, doi: 10.1063/1.453162. R. Dębek, M. Motak, T. Grzybek, M. E. Galvez, and P. Da Costa, “A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane,” Catalysts, vol. 7, no. 1. MDPI, Jan. 18, 2017. doi: 10.3390/catal7010032. S. Saeedi, X. T. Nguyen, F. Bossola, C. Evangelisti, and V. Dal Santo, “Methane Reforming Processes: Advances on Mono- and Bimetallic Ni-Based Catalysts Supported on Mg-Al Mixed Oxides,” Catalysts, vol. 13, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/catal13020379. D. Suescum-Morales, J. R. Jiménez, and J. M. Fernández-Rodríguez, “Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation,” ChemEngineering, vol. 6, no. 4. MDPI, Aug. 01, 2022. doi: 10.3390/chemengineering6040050. L. K. G. Bhatta, S. Subramanyam, M. D. Chengala, S. Olivera, and K. Venkatesh, “Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: A review,” J Clean Prod, vol. 103, pp. 171–196, 2015, doi: 10.1016/j.jclepro.2014.12.059. A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, and T. Hayakawa, “Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides,” 2003. [Online]. Available: www.elsevier.com/locate/jcat R. Kumar and K. K. Pant, “Hydrotalcite-derived Ni-Zn-Mg-Al catalyst for Tri-reforming of methane: Effect of divalent to trivalent metal ratio and Ni loading,” Fuel Processing Technology, vol. 210, Dec. 2020, doi: 10.1016/j.fuproc.2020.106559. R. A. R. Ferreira, C. N. Ávila-Neto, F. B. Noronha, and C. E. Hori, “Study of LPG steam reform using Ni/Mg/Al hydrotalcite-type precursors,” Int J Hydrogen Energy, vol. 44, no. 45, pp. 24471–24484, Sep. 2019, doi: 10.1016/j.ijhydene.2019.07.193. R. Dębek, M. E. Galvez, F. Launay, M. Motak, T. Grzybek, and P. Da Costa, “Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite- derived catalysts,” Int J Hydrogen Energy, vol. 41, no. 27, pp. 11616–11623, Jul. 2016, doi: 10.1016/j.ijhydene.2016.02.074. D. Y. Kalai, K. Stangeland, W. M. Tucho, Y. Jin, and Z. Yu, “Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion,” 82 Journal of CO2 Utilization, vol. 33, pp. 189–200, Oct. 2019, doi: 10.1016/j.jcou.2019.05.011. W. N. Manan, W. N. R. Wan Isahak, and Z. Yaakob, “CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review,” Catalysts, vol. 12, no. 5. MDPI, May 01, 2022. doi: 10.3390/catal12050452. L. P. Teh, H. D. Setiabudi, S. N. Timmiati, M. A. A. Aziz, N. H. R. Annuar, and N. N. Ruslan, “Recent progress in ceria-based catalysts for the dry reforming of methane: A review,” Chem Eng Sci, vol. 242, Oct. 2021, doi: 10.1016/j.ces.2021.116606. H. P. Ren et al., “Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane,” Chemical Engineering Journal, vol. 259, pp. 581–593, Jan. 2015, doi: 10.1016/j.cej.2014.08.029. R. Di Monte and J. Kašpar, “Heterogeneous environmental catalysis - A gentle art: CeO 2- ZrO2 mixed oxides as a case history,” in Catalysis Today, Feb. 2005, pp. 27–35. doi: 10.1016/j.cattod.2004.11.005. J. Abou Rached et al., “Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production,” Int J Hydrogen Energy, vol. 42, no. 17, pp. 12829–12840, Apr. 2017, doi: 10.1016/j.ijhydene.2016.10.053. R. Dębek, M. Motak, M. E. Galvez, P. Da Costa, and T. Grzybek, “Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition,” Reaction Kinetics, Mechanisms and Catalysis, vol. 121, no. 1, pp. 185–208, Jun. 2017, doi: 10.1007/s11144-017-1167-1. F. Rahbar Shamskar, F. Meshkani, and M. Rezaei, “Preparation and characterization of ultrasound-assisted co-precipitated nanocrystalline La-, Ce-, Zr -promoted Ni-Al2O3 catalysts for dry reforming reaction,” Journal of CO2 Utilization, vol. 22, pp. 124–134, Dec. 2017, doi: 10.1016/j.jcou.2017.09.014. R. Y. Chein and W. Y. Fung, “Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts,” Int J Hydrogen Energy, vol. 44, no. 28, pp. 14303–14315, May 2019, doi: 10.1016/j.ijhydene.2019.01.113. M. Khajenoori, M. Rezaei, and F. Meshkani, “Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio,” Journal of Industrial and Engineering Chemistry, vol. 21, pp. 717–722, Jan. 2015, doi: 10.1016/j.jiec.2014.03.043. C. E. Daza, J. Gallego, J. A. Moreno, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides,” Catal Today, vol. 133–135, no. 1– 4, pp. 357–366, 2008, doi: 10.1016/j.cattod.2007.12.081. C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce- promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, Mar. 2010, doi: 10.1016/j.fuel.2009.10.010. C. E. Daza, C. R. Cabrera, S. Moreno, and R. Molina, “Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method,” Appl Catal A Gen, vol. 378, no. 2, pp. 125–133, Apr. 2010, doi: 10.1016/j.apcata.2010.01.037. C. E. Daza, S. Moreno, and R. Molina, “Ce - Promoted catalyst from hydrotalcites for CO2 reforming of methane: Calcination temperature effect,” Quim Nova, vol. 35, no. 7, pp. 1325– 1328, 2012, doi: 10.1590/S0100-40422012000700008. R. Dębek et al., “Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity,” Catal Today, vol. 257, no. P1, pp. 59–65, Nov. 2015, doi: 10.1016/j.cattod.2015.03.017. G. A. Tafete and N. G. Habtu, “Reactor configuration, operations and structural catalyst design in process intensification of catalytic reactors: A review,” Chemical Engineering and Processing - Process Intensification, vol. 184. Elsevier B.V., Feb. 01, 2023. doi: 10.1016/j.cep.2023.109290. V. Tomašić and F. Jović, “State-of-the-art in the monolithic catalysts/reactors,” Appl Catal A Gen, vol. 311, no. 1–2, pp. 112–121, Sep. 2006, doi: 10.1016/j.apcata.2006.06.013. R. M. Heck, S. Gulati, and R. J. Farrauto, “The application of monoliths for gas phase catalytic reactions,” 2001. I. Luisetto et al., “Ni supported on γ-Al2O3promoted by Ru for the dry reforming of methane in packed and monolithic reactors,” Fuel Processing Technology, vol. 158, pp. 130–140, 2017, doi: 10.1016/j.fuproc.2016.12.015. F. Agueniou et al., “3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: the Ni-based catalysts in methane dry reforming showcase,” Catal Commun, vol. 148, no. October 2020, p. 106181, 2021, doi: 10.1016/j.catcom.2020.106181. H. Liu et al., “Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas,” Catal Commun, vol. 9, no. 1, pp. 51–54, 2008, doi: 10.1016/j.catcom.2007.05.002. J. Chen, H. Yang, N. Wang, Z. Ring, and T. Dabros, “Mathematical modeling of monolith catalysts and reactors for gas phase reactions,” Applied Catalysis A: General, vol. 345, no. 1. pp. 1–11, Jul. 31, 2008. doi: 10.1016/j.apcata.2008.04.010. I. Cornejo, P. Nikrityuk, C. Lange, and R. E. Hayes, “Influence of upstream turbulence on the pressure drop inside a monolith,” Chemical Engineering and Processing - Process Intensification, vol. 147, Jan. 2020, doi: 10.1016/j.cep.2019.107735. M. Tu, R. Ratnakar, and V. Balakotaiah, “Reduced order models with local property dependent transfer coefficients for real time simulations of monolith reactors,” Chemical Engineering Journal, vol. 383, Mar. 2020, doi: 10.1016/j.cej.2019.123074. O. Deutschmann, R. Schwiedernoch, L. I. Maier, and D. Chatterjee, “Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena,” Stud Surf Sci Catal, pp. 251–258, 2001. T. A. Nijhuis, A. E. W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, and J. A. Moulijn, “Preparation of monolithic catalysts,” Catalysis Reviews - Science and Engineering, vol. 43, no. 4. pp. 345–380, Nov. 2001. doi: 10.1081/CR-120001807. C. Agrafiotis and A. Tsetsekou, “Effect of processing parameters on the properties of γ- alumina washcoats deposited on ceramic honeycombs,” J Mater Sci, vol. 35, no. 4, pp. 951– 960, 2000, doi: 10.1023/A:1004762827623. M. Valentini, G. Groppi, C. Cristiani, M. Levi, E. Tronconi, and P. Forzatti, “The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts,” Catal Today, vol. 69, no. 1–4, pp. 307–314, 2001, doi: 10.1016/S0920- 5861(01)00383-2. L. Villegas, F. Masset, and N. Guilhaume, “Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity,” Appl Catal A Gen, vol. 320, pp. 43–55, Mar. 2007, doi: 10.1016/j.apcata.2006.12.011. A. C. C. Chang and K. Y. Lee, “Biogas reforming by the honeycomb reactor for hydrogen production,” Int J Hydrogen Energy, vol. 41, no. 7, pp. 4358–4365, Feb. 2016, doi: 10.1016/j.ijhydene.2015.09.018. A. Leba and R. Yıldırım, “Determining most effective structural form of nickel-cobalt catalysts for dry reforming of methane,” Int J Hydrogen Energy, 2020, doi: 10.1016/j.ijhydene.2019.12.020. P. Oñativia and R. De Gaona, “Catalysts for the dry reforming of methane and method for the preparation.” pp. 5–10, 2016. H. L. Huynh and Z. Yu, “CO2 Methanation on Hydrotalcite-Derived Catalysts and Structured Reactors: A Review,” Energy Technology, vol. 8, no. 5. Wiley-VCH Verlag, May 01, 2020. doi: 10.1002/ente.201901475. X. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, “Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane,” Nanoscale, vol. 5, no. 7, pp. 2659–2663, 2013, doi: 10.1039/c3nr33921a. F. Agueniou et al., “Ultrathin washcoat and very low loading monolithic catalyst with outstanding activity and stability in dry reforming of methane,” Nanomaterials, vol. 10, no. 3, 2020, doi: 10.3390/nano10030445. M. J. Ledoux and C. Pham-Huu, “Silicon carbide a novel catalyst support for heterogeneous catalysis,” Cattech, vol. 5, no. 4, pp. 226–246, 2001, doi: 10.1023/A:1014092930183. X. Gao et al., “Carbon nanofibers decorated SiC foam monoliths as the support of anti- sintering Ni catalyst for methane dry reforming,” Int J Hydrogen Energy, vol. 42, no. 26, pp. 16547–16556, 2017, doi: 10.1016/j.ijhydene.2017.05.164. O. Daoura et al., “One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming,” Appl Catal B, vol. 280, no. May 2020, p. 119417, 2021, doi: 10.1016/j.apcatb.2020.119417. E. Soghrati, M. Kazemeini, A. M. Rashidi, and K. Jafari Jozani, “Preparation and characterization of Co-Mo catalyst supported on CNT coated cordierite monoliths utilized for naphta HDS process,” Procedia Eng, vol. 42, no. August, pp. 1484–1492, 2012, doi: 10.1016/j.proeng.2012.07.541. F. Agueniou et al., “Supplementary Materials: Ultrathin washcoat and very low loading monolithic catalyst with outstanding activity and stability in dry reforming of methane,” Nanomaterials, vol. 10, no. 3, 2020, doi: 10.3390/nano10030445. S. O. Soloviev, A. Y. Kapran, S. N. Orlyk, and E. V. Gubareni, “Carbon dioxide reforming of methane on monolithic Ni/Al2O 3-based catalysts,” Journal of Natural Gas Chemistry, vol. 20, no. 2, pp. 184–190, Mar. 2011, doi: 10.1016/S1003-9953(10)60149-1. P. Pornruangsakun, S. Tungkamani, T. Ratana, M. Phongaksorn, and T. Sornchamni, “Investigation of Coke Formation in Dry Methane Reforming over Nickel-based Monolithic Catalysts,” The International Journal of Advanced Culture Technology, vol. 3, no. 1, pp. 31– 38, Jun. 2015, doi: 10.17703/ijact.2015.3.1.31. F. Agueniou et al., “Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane,” Catal Today, 2020, doi: 10.1016/j.cattod.2020.07.030. R. Chava, D. Purbia, B. Roy, V. M. Janardhanan, A. Bahurudeen, and S. Appari, “Effect of Calcination Time on the Catalytic Activity of Ni/γ-Al2O3 Cordierite Monolith for Dry Reforming of Biogas,” Int J Hydrogen Energy, vol. 46, no. 9, pp. 6341–6357, Feb. 2021, doi: 10.1016/j.ijhydene.2020.11.125. R. Chava, A. V. D. Bhaskar, B. Roy, and S. Appari, “Reforming of model biogas using Ni/CeO2/γ-Al2O3 monolith catalyst,” Mater Today Proc, vol. 72, pp. 134–139, Jan. 2023, doi: 10.1016/j.matpr.2022.06.234. C. Wang, T. Wang, L. Ma, Y. Gao, and C. Wu, “Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst,” Energy Convers Manag, vol. 51, no. 3, pp. 446–451, Mar. 2010, doi: 10.1016/j.enconman.2009.10.006. A. Vita, C. Italiano, M. A. Ashraf, L. Pino, and S. Specchia, “Syngas production by steam and oxy-steam reforming of biogas on monolith-supported CeO2-based catalysts,” Int J Hydrogen Energy, vol. 43, no. 26, pp. 11731–11744, Jun. 2018, doi: 10.1016/j.ijhydene.2017.11.140. Y. Zhu et al., “Optimization of the washcoat slurry for hydrotalcite-based lnt catalyst,” Catalysts, vol. 9, no. 8, Aug. 2019, doi: 10.3390/CATAL9080696. C. Daza, A. Kiennemann, S. Moreno, and R. Molina, “Stability of Ni-Ce catalysts supported over Al-PVA modified mineral clay in dry reforming of methane,” Energy and Fuels, vol. 23, no. 7, pp. 3497–3509, 2009, doi: 10.1021/ef9000874. S. S. Miri, F. Meshkani, A. Rastegarpanah, and M. Rezaei, “Influence of Fe, La, Zr, Ce, and Ca on the catalytic performance and coke formation in dry reforming of methane over Ni/MgO.Al2O3 catalyst,” Chem Eng Sci, vol. 250, Mar. 2022, doi: 10.1016/j.ces.2021.116956. S. Yu, Y. Hu, H. Cui, Z. Cheng, and Z. Zhou, “Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane,” Chem Eng Sci, vol. 232, Mar. 2021, doi: 10.1016/j.ces.2020.116379. F. Meng, Z. Li, J. Liu, X. Cui, and H. Zheng, “Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor,” J Nat Gas Sci Eng, vol. 23, pp. 250–258, Mar. 2015, doi: 10.1016/j.jngse.2015.01.041. Z. Alipour, M. Rezaei, and F. Meshkani, “Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane,” Journal of Energy Chemistry, vol. 23, no. 5, pp. 633–638, 2014, doi: 10.1016/S2095- 4956(14)60194-7. M. Boaro, S. Colussi, and A. Trovarelli, “Ceria-based materials in hydrogenation and reforming reactions for CO 2 valorization,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., Feb. 01, 2019. doi: 10.3389/fchem.2019.00028. L. P. Matte et al., “Influence of the CeO2 Support on the Reduction Properties of Cu/CeO2 and Ni/CeO2 Nanoparticles,” Journal of Physical Chemistry C, vol. 119, no. 47, pp. 26459– 26470, Nov. 2015, doi: 10.1021/acs.jpcc.5b07654. J. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia, and C. R. Apesteguía, “Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides,” 1998. A. Cárdenas-Arenas et al., “Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts,” Appl Catal B, vol. 265, May 2020, doi: 10.1016/j.apcatb.2019.118538. Z. Yu, D. Chen, M. Rønning, T. Vrålstad, E. Ochoa-Fernández, and A. Holmen, “Large- scale synthesis of carbon nanofibers on Ni-Fe-Al hydrotalcite derived catalysts. I. Preparation and characterization of the Ni-Fe-Al hydrotalcites and their derived catalysts,” Appl Catal A Gen, vol. 338, no. 1–2, pp. 136–146, Apr. 2008, doi: 10.1016/j.apcata.2008.01.003. C. Lv, H. Chen, M. Hu, T. Ai, and H. Fu, “Nano-oxides washcoat for enhanced catalytic oxidation activity toward the perovskite-based monolithic catalyst,” Environmental Science and Pollution Research, vol. 28, no. 28, pp. 37142–37157, Jul. 2021, doi: 10.1007/s11356- 021-13354-2. S. L. Kharatyan, H. A. Chatilyan, and K. V Manukyan, “Kinetics and Mechanism of Nickel Oxide Reduction by Methane,” J Phys Chem, vol. 123, pp. 21513–21521, 2019, doi: https://doi.org/10.1021/acs.jpcc.9b04506. C. Jensen and M. S. Duyar, “Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas,” Energy Technology, vol. 9, no. 7, Jul. 2021, doi: 10.1002/ente.202100106. R. Dębek, M. Motak, M. E. Galvez, T. Grzybek, and P. Da Costa, “Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming,” Int J Hydrogen Energy, vol. 42, no. 37, pp. 23556–23567, Sep. 2017, doi: 10.1016/j.ijhydene.2016.12.121. X. Feng, J. Feng, and W. Li, “Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4,” Cuihua Xuebao/Chinese Journal of Catalysis, vol. 39, no. 1, pp. 88–98, Jan. 2018, doi: 10.1016/S1872-2067(17)62928-0. J. Ashok and S. Kawi, “Steam reforming of toluene as a biomass tar model compound over CeO 2 promoted Ni/CaOeAl2O3 catalytic systems,” Int J Hydrogen Energy, vol. 38, no. 32, pp. 13938–13949, Oct. 2013, doi: 10.1016/j.ijhydene.2013.08.029. S. Katheria, G. Deo, and D. Kunzru, “Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane,” Energy and Fuels, vol. 31, no. 3, pp. 3143– 3153, Mar. 2017, doi: 10.1021/acs.energyfuels.6b03423. D. Ugues, S. Specchia, and G. Saracco, “Optimal Microstructural Design of a Catalytic Premixed FeCrAlloy Fiber Burner for Methane Combustion,” Ind Eng Chem Res, vol. 43, no. 9, pp. 1990–1998, Apr. 2004, doi: 10.1021/ie034202q. N. de Miguel, J. Manzanedo, J. Thormann, P. Pfeifer, and P. L. Arias, “Ni catalyst coating on Fecralloy ® Microchanneled foils and testing for Methane steam reforming,” Chem Eng Technol, vol. 33, no. 1, pp. 155–166, Jan. 2010, doi: 10.1002/ceat.200900439. Z. Ma, P. Perreault, D. C. Pelegrin, D. C. Boffito, and G. S. Patience, “Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2 FeCralloy catalysts,” Chemical Engineering Journal, vol. 380, Jan. 2020, doi: 10.1016/j.cej.2019.122470. V. N. Rogozhnikov et al., “Structured composite catalyst Pd/Ce0.75Zr0.25O2-x/θ- Al2O3/FeCrAlloy for complete oxidation of methane,” Mater Lett, vol. 310, Mar. 2022, doi: 10.1016/j.matlet.2021.131481. C. Y. Chou, J. A. Loiland, and R. F. Lobo, “Reverse water-gas shift iron catalyst derived from magnetite,” Catalysts, vol. 9, no. 9, Sep. 2019, doi: 10.3390/catal9090773. M. Jafarbegloo, A. Tarlani, A. W. Mesbah, and S. Sahebdelfar, “Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance,” Int J Hydrogen Energy, vol. 40, no. 6, pp. 2445–2451, Feb. 2015, doi: 10.1016/j.ijhydene.2014.12.103. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
90 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85052/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85052/2/1032490325.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85052/3/1032490325.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c95e50aaf4fe888b1e51fe5949699e42 df89f442a720d60fb93aab402f89f8ed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089756467789824 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Daza Velásquez, Carlos Enrique570beab15b4d630adc94c5b455f359ecOsorio Zabala, María Alejandra10424c032e232a9ff1bb2d4e9f0b2e93Estado Sólido y Catálisis Ambiental2023-12-07T15:46:43Z2023-12-07T15:46:43Z2023-12-05https://repositorio.unal.edu.co/handle/unal/85052Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasEn esta tesis de maestría, catalizadores tipo óxido mixto de Ni-Mg-Al promovidos con Ce (1-6%) inmovilizados y en polvo de se obtuvieron mediante el método de coprecipitación y recubrimiento en suspensión de precursores tipo hidrotalcita. Se estudió el comportamiento de los materiales en el reformado en seco de metano, teniendo en cuenta el papel promotor del Ce y el efecto de la inmovilizar de los óxidos mixtos en monolitos de cordierita sobre las propiedades fisicoquímicas del catalizador. Los catalizadores se caracterizaron por diversas técnicas analíticas para evaluar su composición química, propiedades térmicas, estructurales, reductivas, básicas y morfológicas. La evaluación catalítica se estudió mediante varias pruebas de estabilidad durante 8h a 700 °C (para catalizadores no reducidos) y a 600 °C (para catalizadores prereducidos) con valores WHSV de 94,680 y de 23.670 mL·gCat-1·h-1. (Texto tomado de la fuente)In this master’s thesis, Ni-Mg-Al powdered and immobilized mixed oxide-type catalysts promoted with Ce (1-6%) were obtained by the method of coprecipitation and slurry coating of hydrotalcite precursors. The promoter role of the Ce and the effect of immobilizing the mixed oxides in cordierite monoliths on the physicochemical properties and the catalytic performance of the materials in the dry reforming of methane were studied. The catalysts were characterized by diverse analytical techniques to evaluate their chemical composition, thermal and structural properties, and reductive, basic, and morphological properties. The catalytic evaluation was studied through several stability tests for 8h at 700 ° C (for non-reduced catalysts) and at 600 °C (for pre-reduced catalysts) with WHSV of 94,680 and 23,670 mL·gCat -1·h-1.MaestríaMagíster en Ciencias - QuímicaCatalizadores para el reformado seco de metano90 páginasapplication/pdfeng540 - Química y ciencias afines::546 - Química inorgánica540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesCatalizadoresInhibidores químicosCatalystsChemical inhibitorsSynthesis gasGas de síntesisReformadoMetanoÓxidos mixtosMonolitoEfectivo invernaderoReformingMethaneMixed oxidesMonolithGreenhouse effectNi-Ce immobilized catalysts in cordierite monoliths for dry reforming of methaneCatalizadores de Ni-Ce inmovilizados en monolitos de cordierita para el reformado seco de metanoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáH. H. Cho, V. Strezov, and T. J. Evans, “A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies,” Sustainable Materials and Technologies, vol. 35, Apr. 2023, doi: 10.1016/j.susmat.2023.e00567.M. Tsangas, I. Papamichael, and A. A. Zorpas, “Sustainable Energy Planning in a New Situation,” Energies (Basel), vol. 16, no. 4, Feb. 2023, doi: 10.3390/en16041626.J. C. J. Bart, N. Palmeri, and S. Cavallaro, “Evolution of biodiesel and alternative diesel fuels,” in Biodiesel Science and Technology, Elsevier, 2010, pp. 713–782. doi: 10.1533/9781845697761.713.T. J. Mazanec, R. Prasad, R. Odegard, C. Steyn, and E. T. Robinson, “Oxygen transport membranes for syngas production,” in Studies in Surface Science and Catalysis, Elsevier Inc., 2001, pp. 147–152. doi: 10.1016/s0167-2991(01)80295-0.P. Gupta, L. G. Velazquez-Vargas, and L. S. Fan, “Syngas redox (SGR) process to produce hydrogen from coal derived syngas,” Energy and Fuels, vol. 21, no. 5, pp. 2900–2908, Sep. 2007, doi: 10.1021/ef060512k.P. C. Munasinghe and S. K. Khanal, “Biomass-derived syngas fermentation into biofuels: Opportunities and challenges,” Bioresource Technology, vol. 101, no. 13. pp. 5013–5022, Jul. 2010. doi: 10.1016/j.biortech.2009.12.098.D. J. Roddy, “A syngas network for reducing industrial carbon footprint and energy use,” Appl Therm Eng, vol. 53, no. 2, pp. 299–304, 2013, doi: 10.1016/j.applthermaleng.2012.02.032.K. Wittich, M. Krämer, N. Bottke, and S. A. Schunk, “Catalytic Dry Reforming of Methane: Insights from Model Systems,” ChemCatChem, vol. 12, no. 8. Wiley Blackwell, pp. 2130– 2147, Apr. 20, 2020. doi: 10.1002/cctc.201902142.J. Gao, Z. Hou, H. Lou, and X. Zheng, Dry (CO2) Reforming, First Edit. Elsevier, 2011. doi: 10.1016/B978-0-444-53563-4.10007-0.S. Aouad et al., “A Review on the Dry Reforming Processes for Hydrogen Production: Catalytic Materials and Technologies,” in Frontiers in Ceramic Science Catalytic Materials for Hydrogen Production and Electro-oxidation Reactions, 2018, pp. 60–128. doi: 10.2174/9781681087580118020007.M. Usman, W. M. A. Wan Daud, and H. F. Abbas, “Dry reforming of methane: Influence of process parameters - A review,” Renewable and Sustainable Energy Reviews, vol. 45. Elsevier Ltd, pp. 710–744, 2015. doi: 10.1016/j.rser.2015.02.026.A. Abdulrasheed, A. A. Jalil, Y. Gambo, M. Ibrahim, H. U. Hambali, and M. Y. Shahul Hamid, “A review on catalyst development for dry reforming of methane to syngas: Recent advances,” Renewable and Sustainable Energy Reviews, vol. 108. Elsevier Ltd, pp. 175– 193, Jul. 01, 2019. doi: 10.1016/j.rser.2019.03.054.L. S. Neiva, “A Study On The Characteristics Of The Reforming Of Methane: A Review,” Brazilian Journal of Petroleum and Gas, pp. 119–127, Sep. 2010, doi: 10.5419/bjpg2010- 0013.Y. H. Hu, “Advances in catalysts for CO2 reforming of methane,” ACS Symposium Series, vol. 1056, pp. 155–174, 2010, doi: 10.1021/bk-2010-1056.ch010.O. Muraza and A. Galadima, “A review on coke management during dry reforming of methane,” Archives of Thermodynamics, vol. 33, no. 4, pp. 23–40, 2014, doi: 10.1002/er.R. J. Zhang, G. F. Xia, M. F. Li, Y. Wu, H. Nie, and D. D. Li, “Effect of support on catalytic performance of Ni-based catayst in methane dry reforming,” Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, vol. 43, no. 11, pp. 1359–1365, 2015, doi: 10.1016/S1872-5813(15)30040-2.M. Chaghouri, C. Ciotonea, F. Cazier, L. H. Tidahy, C. Gennequin, and E. Abi-Aad, “Hydrogen production through dry reforming of biogas on hydrotalcite derived materials,” in 2022 13th International Renewable Energy Congress, IREC 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/IREC56325.2022.10002063.C. E. Daza, A. Kiennemann, S. Moreno, and R. Molina, “Dry reforming of methane using Ni-Ce catalysts supported on a modified mineral clay,” Appl Catal A Gen, vol. 364, no. 1–2, pp. 65–74, 2009, doi: 10.1016/j.apcata.2009.05.029.R. Guil-López, V. La Parola, M. A. Peña, and J. L. G. Fierro, “Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the CO x-free hydrogen production by methane decomposition,” in International Journal of Hydrogen Energy, Apr. 2012, pp. 7042–7055. doi: 10.1016/j.ijhydene.2011.11.083.A. Chatla, F. Abu-Rub, A. V. Prakash, G. Ibrahim, and N. O. Elbashir, “Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn,” Fuel, vol. 308, Jan. 2022, doi: 10.1016/j.fuel.2021.122042.W. Y. Kim, J. S. Jang, E. C. Ra, K. Y. Kim, E. H. Kim, and J. S. Lee, “Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane,” Appl Catal A Gen, vol. 575, no. November 2018, pp. 198–203, 2019, doi: 10.1016/j.apcata.2019.02.029.X. Cai and Y. H. Hu, “Advances in catalytic conversion of methane and carbon dioxide to highly valuable products,” Energy Science and Engineering, vol. 7, no. 1. John Wiley and Sons Ltd, pp. 4–29, Feb. 01, 2019. doi: 10.1002/ese3.278.A. V. P. Lino, E. M. Assaf, and J. M. Assaf, “Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load,” Catal Today, vol. 289, pp. 78–88, 2017, doi: 10.1016/j.cattod.2016.08.022.O. H. Ojeda-Niño, F. Gracia, and C. Daza, “Role of Pr on Ni-Mg-Al Mixed Oxides Synthesized by Microwave-Assisted Self-Combustion for Dry Reforming of Methane,” Ind Eng Chem Res, vol. 58, no. 19, pp. 7909–7921, May 2019, doi: 10.1021/acs.iecr.9b00557.S. Govender and H. B. Friedrich, “Monoliths: A review of the basics, preparation methods and their relevance to oxidation,” Catalysts, vol. 7, no. 2. MDPI, Feb. 16, 2017. doi: 10.3390/catal7020062.J. L. Williams, “Monolith structures, materials, properties and uses,” 2001.S. Govender and H. B. Friedrich, “Monoliths: A review of the basics, preparation methods and their relevance to oxidation,” Catalysts, vol. 7, no. 2, 2017, doi: 10.3390/catal7020062.C. E. Daza, S. Moreno, and R. Molina, “Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane,” Int J Hydrogen Energy, vol. 36, no. 6, pp. 3886–3894, Mar. 2011, doi: 10.1016/j.ijhydene.2010.12.082.J. Jiang, B. Ye, and J. Liu, “Research on the peak of CO2 emissions in the developing world: Current progress and future prospect,” Applied Energy, vol. 235. Elsevier Ltd, pp. 186–203, Feb. 01, 2019. doi: 10.1016/j.apenergy.2018.10.089.W. F. Lamb et al., “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018,” Environmental Research Letters, vol. 16, no. 7. IOP Publishing Ltd, Jul. 01, 2021. doi: 10.1088/1748-9326/abee4e.G. Grassi et al., “Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks,” Nat Clim Chang, vol. 8, no. 10, pp. 914–920, Oct. 2018, doi: 10.1038/s41558-018-0283-x.P. Friedlingstein et al., “Global carbon budget 2019,” Earth Syst Sci Data, vol. 11, no. 4, pp. 1783–1838, Dec. 2019, doi: 10.5194/essd-11-1783-2019.S. Kirschke et al., “Three decades of global methane sources and sinks,” Nature Geoscience, vol. 6, no. 10. pp. 813–823, Oct. 2013. doi: 10.1038/ngeo1955.M. Saunois et al., “The global methane budget 2000-2017,” Earth Syst Sci Data, vol. 12, no. 3, pp. 1561–1623, Jul. 2020, doi: 10.5194/essd-12-1561-2020.G. Janssens-Maenhout et al., “EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012”, doi: 10.5194/essd-2017-79.H. Tian et al., “A comprehensive quantification of global nitrous oxide sources and sinks,” Nature, vol. 586, no. 7828, pp. 248–256, Oct. 2020, doi: 10.1038/s41586-020-2780-0.A. Kumar, P. Singh, P. Raizada, and C. M. Hussain, “Impact of COVID-19 on greenhouse gases emissions: A critical review,” Science of the Total Environment, vol. 806. Elsevier B.V., Feb. 01, 2022. doi: 10.1016/j.scitotenv.2021.150349.H. Ritchie, M. Roser, and P. Rosado, “CO₂ and Greenhouse Gas EmissionsRetrieved,” Our World in Data, 2022, Accessed: Jan. 30, 2023. [Online]. Available: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsJ. G. J. Olivier and J. A. H. W. Peters, “TRENDS IN GLOBAL CO 2 AND TOTAL GREENHOUSE GAS EMISSIONS 2020 Report Trends in global CO2 and total greenhouse gas emissions: 2020 Report,” 2020. [Online]. Available: www.pbl.nl/en.M. Roelfsema et al., “Taking stock of national climate policies to evaluate implementation of the Paris Agreement,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020- 15414-6.L. Aleluia Reis and M. Tavoni, “Glasgow to Paris—The impact of the Glasgow commitments for the Paris climate agreement,” iScience, vol. 26, no. 2, p. 105933, Feb. 2023, doi: 10.1016/j.isci.2023.105933.Z. Yu, I. Lanre Ridwan, A. ur R. Irshad, M. Tanveer, and S. A. R. Khan, “Investigating the nexuses between transportation Infrastructure, renewable energy Sources, and economic Growth: Striving towards sustainable development,” Ain Shams Engineering Journal, Mar. 2022, doi: 10.1016/j.asej.2022.101843.J. Hardoy and P. Romero Lankao, “Latin American cities and climate change: Challenges and options to mitigation and adaptation responses,” Current Opinion in Environmental Sustainability, vol. 3, no. 3. pp. 158–163, May 2011. doi: 10.1016/j.cosust.2011.01.004.D. Delgado Pugley, “América Latina frente a la COP26 Posiciones y perspectivas,” 2021.F. D. Meylan, V. Moreau, and S. Erkman, “CO2 utilization in the perspective of industrial ecology, an overview,” Journal of CO2 Utilization, vol. 12, pp. 101–108, 2015, doi: 10.1016/j.jcou.2015.05.003.D. Cebrucean, V. Cebrucean, and I. Ionel, “CO2 capture and storage from fossil fuel power plants,” Energy Procedia, vol. 63, no. ii, pp. 18–26, 2014, doi: 10.1016/j.egypro.2014.11.003.H. Yang et al., “Progress in carbon dioxide separation and capture: A review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008, doi: 10.1016/S1001- 0742(08)60002-9.M. Bui et al., “Carbon capture and storage (CCS): The way forward,” Energy Environ Sci, vol. 11, no. 5, pp. 1062–1176, 2018, doi: 10.1039/c7ee02342a.K. Kelektsoglou, “Carbon capture and storage: A review of mineral storage of CO2 in Greece,” Sustainability (Switzerland), vol. 10, no. 12, 2018, doi: 10.3390/su10124400.T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, and K. Tejima, “A twin fluid-bed reactor for removal of CO2 from combustion processes,” Chemical Engineering Research and Design, vol. 77, no. 1, pp. 62–68, 1999, doi: 10.1205/026387699525882.R. Ramezani, S. Mazinani, and R. Di Felice, Characterization and kinetics of CO2 absorption in potassium carbonate solution promoted by 2-methylpiperazine, vol. 6, no. 2. Elsevier B.V., 2018. doi: 10.1016/j.jece.2018.05.019.M. House and P. Brownsort, “Scottish Carbon Capture & Storage Ship transport of CO 2 for Enhanced Oil Recovery – Literature Survey,” vol. 44, no. January, 2015, [Online]. Available: www.sccs.org.ukN. Dewangan et al., “Recent progress on layered double hydroxide (LDH) derived metal- based catalysts for CO2 conversion to valuable chemicals,” Catal Today, vol. 356, pp. 490– 513, Oct. 2020, doi: 10.1016/j.cattod.2020.06.020.K. Świrk, J. Grams, M. Motak, P. Da Costa, and T. Grzybek, “Understanding of tri- reforming of methane over Ni/Mg/Al hydrotalcite-derived catalyst for CO2utilization from flue gases from natural gas-fired power plants,” Journal of CO2 Utilization, vol. 42, Dec. 2020, doi: 10.1016/j.jcou.2020.101317.A. Iulianelli, S. Liguori, J. Wilcox, and A. Basile, “Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review,” Catal Rev Sci Eng, vol. 58, no. 1, pp. 1–35, Jan. 2016, doi: 10.1080/01614940.2015.1099882.D. P. Minh et al., “Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane,” in Hydrogen Supply Chain: Design, Deployment and Operation, Elsevier, 2018, pp. 111–166. doi: 10.1016/B978-0-12-811197-0.00004-X.A. P. E. York, T. Xiao, and M. L. H. Green, “Brief overview of the partial oxidation of methane to synthesis gas,” 2003.E. le Saché and T. R. Reina, “Analysis of Dry Reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies,” Progress in Energy and Combustion Science, vol. 89. Elsevier Ltd, Mar. 01, 2022. doi: 10.1016/j.pecs.2021.100970.M. K. Nikoo and N. A. S. Amin, “Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation,” Fuel Processing Technology, vol. 92, no. 3, pp. 678–691, Mar. 2011, doi: 10.1016/j.fuproc.2010.11.027.S. Arora and R. Prasad, “An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts,” RSC Advances, vol. 6, no. 110. Royal Society of Chemistry, pp. 108668–108688, 2016. doi: 10.1039/c6ra20450c.Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, and S. Kawi, “Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts,” Chemical Engineering Journal, vol. 278, pp. 62–78, 2015, doi: 10.1016/j.cej.2014.11.143.M. C. J. Bradford and M. A. Vannice, “CO2 reforming of CH4,” Catal Rev Sci Eng, vol. 41, no. 1, pp. 1–42, 1999, doi: 10.1081/CR-100101948.M. Takht Ravanchi and S. Sahebdelfar, “Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges,” Appl Petrochem Res, vol. 4, no. 1, pp. 63–77, May 2014, doi: 10.1007/s13203-014-0050-5.J. Xu and G. F. Froment, “Methane Steam Reforming, Methanation and Water-Gas Shift: 1. Intrinsic Kinetics,” AIChE Journal, vol. 35, no. 1, pp. 88–96, Jan. 1989.Y. A. Zhu, D. Chen, X. G. Zhou, and W. K. Yuan, “DFT studies of dry reforming of methane on Ni catalyst,” Catal Today, vol. 148, no. 3–4, pp. 260–267, Nov. 2009, doi: 10.1016/j.cattod.2009.08.022.M. C. J. Bradford and M. A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics,” Appl Catal A Gen, vol. 142, pp. 97–122, 1996.T. Osaki, T. Horiuchi, K. Suzuki, and T. Mori, “Suppression of carbon deposition in CO2- reforming of methane on metal sulfide catalysts,” Catal Letters, vol. 35, pp. 39–43, 1995.J. Wei and E. Iglesia, “Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts,” J Catal, vol. 224, no. 2, pp. 370–383, 2004, doi: 10.1016/j.jcat.2004.02.032.Z. J. Zhao, C. C. Chiu, and J. Gong, “Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts,” Chem Sci, vol. 6, no. 8, pp. 4403–4425, Aug. 2015, doi: 10.1039/c5sc01227a.P. Djinović, J. Batista, and A. Pintar, “Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst,” Int J Hydrogen Energy, vol. 37, no. 3, pp. 2699–2707, 2012, doi: 10.1016/j.ijhydene.2011.10.107.H. Y. Wang and E. Ruckenstein, “Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support,” Appl Catal A Gen, vol. 204, no. 1, pp. 143–152, 2000, doi: 10.1016/S0926-860X(00)00547-0.N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, “Catalyst design for dry reforming of methane: Analysis review,” Renewable and Sustainable Energy Reviews, vol. 82, no. December 2016, pp. 2570–2585, 2018, doi: 10.1016/j.rser.2017.09.076.N. A. K. Aramouni, J. Zeaiter, W. Kwapinski, and M. N. Ahmad, “Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation,” Energy Convers Manag, vol. 150, pp. 614–622, 2017, doi: 10.1016/j.enconman.2017.08.056.J. Zhang, H. Wang, and A. K. Dalai, “Development of stable bimetallic catalysts for carbon dioxide reforming of methane,” J Catal, vol. 249, no. 2, pp. 300–310, 2007, doi: 10.1016/j.jcat.2007.05.004.J. R. Rostrup-Nielsen and J. H. Bak Hansen, “CO2-reforming of methane over transition metals,” Journal of Catalysis, vol. 144, no. 1. pp. 38–49, 1993. doi: 10.1006/jcat.1993.1312.T. P. Beebe, D. W. Goodman, B. D. Kay, and J. T. Yates, “Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces,” J Chem Phys, vol. 87, no. 4, pp. 2305–2315, 1987, doi: 10.1063/1.453162.R. Dębek, M. Motak, T. Grzybek, M. E. Galvez, and P. Da Costa, “A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane,” Catalysts, vol. 7, no. 1. MDPI, Jan. 18, 2017. doi: 10.3390/catal7010032.S. Saeedi, X. T. Nguyen, F. Bossola, C. Evangelisti, and V. Dal Santo, “Methane Reforming Processes: Advances on Mono- and Bimetallic Ni-Based Catalysts Supported on Mg-Al Mixed Oxides,” Catalysts, vol. 13, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/catal13020379.D. Suescum-Morales, J. R. Jiménez, and J. M. Fernández-Rodríguez, “Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation,” ChemEngineering, vol. 6, no. 4. MDPI, Aug. 01, 2022. doi: 10.3390/chemengineering6040050.L. K. G. Bhatta, S. Subramanyam, M. D. Chengala, S. Olivera, and K. Venkatesh, “Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: A review,” J Clean Prod, vol. 103, pp. 171–196, 2015, doi: 10.1016/j.jclepro.2014.12.059.A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, and T. Hayakawa, “Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides,” 2003. [Online]. Available: www.elsevier.com/locate/jcatR. Kumar and K. K. Pant, “Hydrotalcite-derived Ni-Zn-Mg-Al catalyst for Tri-reforming of methane: Effect of divalent to trivalent metal ratio and Ni loading,” Fuel Processing Technology, vol. 210, Dec. 2020, doi: 10.1016/j.fuproc.2020.106559.R. A. R. Ferreira, C. N. Ávila-Neto, F. B. Noronha, and C. E. Hori, “Study of LPG steam reform using Ni/Mg/Al hydrotalcite-type precursors,” Int J Hydrogen Energy, vol. 44, no. 45, pp. 24471–24484, Sep. 2019, doi: 10.1016/j.ijhydene.2019.07.193.R. Dębek, M. E. Galvez, F. Launay, M. Motak, T. Grzybek, and P. Da Costa, “Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite- derived catalysts,” Int J Hydrogen Energy, vol. 41, no. 27, pp. 11616–11623, Jul. 2016, doi: 10.1016/j.ijhydene.2016.02.074.D. Y. Kalai, K. Stangeland, W. M. Tucho, Y. Jin, and Z. Yu, “Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion,” 82 Journal of CO2 Utilization, vol. 33, pp. 189–200, Oct. 2019, doi: 10.1016/j.jcou.2019.05.011.W. N. Manan, W. N. R. Wan Isahak, and Z. Yaakob, “CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review,” Catalysts, vol. 12, no. 5. MDPI, May 01, 2022. doi: 10.3390/catal12050452.L. P. Teh, H. D. Setiabudi, S. N. Timmiati, M. A. A. Aziz, N. H. R. Annuar, and N. N. Ruslan, “Recent progress in ceria-based catalysts for the dry reforming of methane: A review,” Chem Eng Sci, vol. 242, Oct. 2021, doi: 10.1016/j.ces.2021.116606.H. P. Ren et al., “Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane,” Chemical Engineering Journal, vol. 259, pp. 581–593, Jan. 2015, doi: 10.1016/j.cej.2014.08.029.R. Di Monte and J. Kašpar, “Heterogeneous environmental catalysis - A gentle art: CeO 2- ZrO2 mixed oxides as a case history,” in Catalysis Today, Feb. 2005, pp. 27–35. doi: 10.1016/j.cattod.2004.11.005.J. Abou Rached et al., “Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production,” Int J Hydrogen Energy, vol. 42, no. 17, pp. 12829–12840, Apr. 2017, doi: 10.1016/j.ijhydene.2016.10.053.R. Dębek, M. Motak, M. E. Galvez, P. Da Costa, and T. Grzybek, “Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition,” Reaction Kinetics, Mechanisms and Catalysis, vol. 121, no. 1, pp. 185–208, Jun. 2017, doi: 10.1007/s11144-017-1167-1.F. Rahbar Shamskar, F. Meshkani, and M. Rezaei, “Preparation and characterization of ultrasound-assisted co-precipitated nanocrystalline La-, Ce-, Zr -promoted Ni-Al2O3 catalysts for dry reforming reaction,” Journal of CO2 Utilization, vol. 22, pp. 124–134, Dec. 2017, doi: 10.1016/j.jcou.2017.09.014.R. Y. Chein and W. Y. Fung, “Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts,” Int J Hydrogen Energy, vol. 44, no. 28, pp. 14303–14315, May 2019, doi: 10.1016/j.ijhydene.2019.01.113.M. Khajenoori, M. Rezaei, and F. Meshkani, “Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio,” Journal of Industrial and Engineering Chemistry, vol. 21, pp. 717–722, Jan. 2015, doi: 10.1016/j.jiec.2014.03.043.C. E. Daza, J. Gallego, J. A. Moreno, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides,” Catal Today, vol. 133–135, no. 1– 4, pp. 357–366, 2008, doi: 10.1016/j.cattod.2007.12.081.C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce- promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, Mar. 2010, doi: 10.1016/j.fuel.2009.10.010.C. E. Daza, C. R. Cabrera, S. Moreno, and R. Molina, “Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method,” Appl Catal A Gen, vol. 378, no. 2, pp. 125–133, Apr. 2010, doi: 10.1016/j.apcata.2010.01.037.C. E. Daza, S. Moreno, and R. Molina, “Ce - Promoted catalyst from hydrotalcites for CO2 reforming of methane: Calcination temperature effect,” Quim Nova, vol. 35, no. 7, pp. 1325– 1328, 2012, doi: 10.1590/S0100-40422012000700008.R. Dębek et al., “Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity,” Catal Today, vol. 257, no. P1, pp. 59–65, Nov. 2015, doi: 10.1016/j.cattod.2015.03.017.G. A. Tafete and N. G. Habtu, “Reactor configuration, operations and structural catalyst design in process intensification of catalytic reactors: A review,” Chemical Engineering and Processing - Process Intensification, vol. 184. Elsevier B.V., Feb. 01, 2023. doi: 10.1016/j.cep.2023.109290.V. Tomašić and F. Jović, “State-of-the-art in the monolithic catalysts/reactors,” Appl Catal A Gen, vol. 311, no. 1–2, pp. 112–121, Sep. 2006, doi: 10.1016/j.apcata.2006.06.013.R. M. Heck, S. Gulati, and R. J. Farrauto, “The application of monoliths for gas phase catalytic reactions,” 2001.I. Luisetto et al., “Ni supported on γ-Al2O3promoted by Ru for the dry reforming of methane in packed and monolithic reactors,” Fuel Processing Technology, vol. 158, pp. 130–140, 2017, doi: 10.1016/j.fuproc.2016.12.015.F. Agueniou et al., “3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: the Ni-based catalysts in methane dry reforming showcase,” Catal Commun, vol. 148, no. October 2020, p. 106181, 2021, doi: 10.1016/j.catcom.2020.106181.H. Liu et al., “Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas,” Catal Commun, vol. 9, no. 1, pp. 51–54, 2008, doi: 10.1016/j.catcom.2007.05.002.J. Chen, H. Yang, N. Wang, Z. Ring, and T. Dabros, “Mathematical modeling of monolith catalysts and reactors for gas phase reactions,” Applied Catalysis A: General, vol. 345, no. 1. pp. 1–11, Jul. 31, 2008. doi: 10.1016/j.apcata.2008.04.010.I. Cornejo, P. Nikrityuk, C. Lange, and R. E. Hayes, “Influence of upstream turbulence on the pressure drop inside a monolith,” Chemical Engineering and Processing - Process Intensification, vol. 147, Jan. 2020, doi: 10.1016/j.cep.2019.107735.M. Tu, R. Ratnakar, and V. Balakotaiah, “Reduced order models with local property dependent transfer coefficients for real time simulations of monolith reactors,” Chemical Engineering Journal, vol. 383, Mar. 2020, doi: 10.1016/j.cej.2019.123074.O. Deutschmann, R. Schwiedernoch, L. I. Maier, and D. Chatterjee, “Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena,” Stud Surf Sci Catal, pp. 251–258, 2001.T. A. Nijhuis, A. E. W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, and J. A. Moulijn, “Preparation of monolithic catalysts,” Catalysis Reviews - Science and Engineering, vol. 43, no. 4. pp. 345–380, Nov. 2001. doi: 10.1081/CR-120001807.C. Agrafiotis and A. Tsetsekou, “Effect of processing parameters on the properties of γ- alumina washcoats deposited on ceramic honeycombs,” J Mater Sci, vol. 35, no. 4, pp. 951– 960, 2000, doi: 10.1023/A:1004762827623.M. Valentini, G. Groppi, C. Cristiani, M. Levi, E. Tronconi, and P. Forzatti, “The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts,” Catal Today, vol. 69, no. 1–4, pp. 307–314, 2001, doi: 10.1016/S0920- 5861(01)00383-2.L. Villegas, F. Masset, and N. Guilhaume, “Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity,” Appl Catal A Gen, vol. 320, pp. 43–55, Mar. 2007, doi: 10.1016/j.apcata.2006.12.011.A. C. C. Chang and K. Y. Lee, “Biogas reforming by the honeycomb reactor for hydrogen production,” Int J Hydrogen Energy, vol. 41, no. 7, pp. 4358–4365, Feb. 2016, doi: 10.1016/j.ijhydene.2015.09.018.A. Leba and R. Yıldırım, “Determining most effective structural form of nickel-cobalt catalysts for dry reforming of methane,” Int J Hydrogen Energy, 2020, doi: 10.1016/j.ijhydene.2019.12.020.P. Oñativia and R. De Gaona, “Catalysts for the dry reforming of methane and method for the preparation.” pp. 5–10, 2016.H. L. Huynh and Z. Yu, “CO2 Methanation on Hydrotalcite-Derived Catalysts and Structured Reactors: A Review,” Energy Technology, vol. 8, no. 5. Wiley-VCH Verlag, May 01, 2020. doi: 10.1002/ente.201901475.X. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, “Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane,” Nanoscale, vol. 5, no. 7, pp. 2659–2663, 2013, doi: 10.1039/c3nr33921a.F. Agueniou et al., “Ultrathin washcoat and very low loading monolithic catalyst with outstanding activity and stability in dry reforming of methane,” Nanomaterials, vol. 10, no. 3, 2020, doi: 10.3390/nano10030445.M. J. Ledoux and C. Pham-Huu, “Silicon carbide a novel catalyst support for heterogeneous catalysis,” Cattech, vol. 5, no. 4, pp. 226–246, 2001, doi: 10.1023/A:1014092930183.X. Gao et al., “Carbon nanofibers decorated SiC foam monoliths as the support of anti- sintering Ni catalyst for methane dry reforming,” Int J Hydrogen Energy, vol. 42, no. 26, pp. 16547–16556, 2017, doi: 10.1016/j.ijhydene.2017.05.164.O. Daoura et al., “One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming,” Appl Catal B, vol. 280, no. May 2020, p. 119417, 2021, doi: 10.1016/j.apcatb.2020.119417.E. Soghrati, M. Kazemeini, A. M. Rashidi, and K. Jafari Jozani, “Preparation and characterization of Co-Mo catalyst supported on CNT coated cordierite monoliths utilized for naphta HDS process,” Procedia Eng, vol. 42, no. August, pp. 1484–1492, 2012, doi: 10.1016/j.proeng.2012.07.541.F. Agueniou et al., “Supplementary Materials: Ultrathin washcoat and very low loading monolithic catalyst with outstanding activity and stability in dry reforming of methane,” Nanomaterials, vol. 10, no. 3, 2020, doi: 10.3390/nano10030445.S. O. Soloviev, A. Y. Kapran, S. N. Orlyk, and E. V. Gubareni, “Carbon dioxide reforming of methane on monolithic Ni/Al2O 3-based catalysts,” Journal of Natural Gas Chemistry, vol. 20, no. 2, pp. 184–190, Mar. 2011, doi: 10.1016/S1003-9953(10)60149-1.P. Pornruangsakun, S. Tungkamani, T. Ratana, M. Phongaksorn, and T. Sornchamni, “Investigation of Coke Formation in Dry Methane Reforming over Nickel-based Monolithic Catalysts,” The International Journal of Advanced Culture Technology, vol. 3, no. 1, pp. 31– 38, Jun. 2015, doi: 10.17703/ijact.2015.3.1.31.F. Agueniou et al., “Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane,” Catal Today, 2020, doi: 10.1016/j.cattod.2020.07.030.R. Chava, D. Purbia, B. Roy, V. M. Janardhanan, A. Bahurudeen, and S. Appari, “Effect of Calcination Time on the Catalytic Activity of Ni/γ-Al2O3 Cordierite Monolith for Dry Reforming of Biogas,” Int J Hydrogen Energy, vol. 46, no. 9, pp. 6341–6357, Feb. 2021, doi: 10.1016/j.ijhydene.2020.11.125.R. Chava, A. V. D. Bhaskar, B. Roy, and S. Appari, “Reforming of model biogas using Ni/CeO2/γ-Al2O3 monolith catalyst,” Mater Today Proc, vol. 72, pp. 134–139, Jan. 2023, doi: 10.1016/j.matpr.2022.06.234.C. Wang, T. Wang, L. Ma, Y. Gao, and C. Wu, “Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst,” Energy Convers Manag, vol. 51, no. 3, pp. 446–451, Mar. 2010, doi: 10.1016/j.enconman.2009.10.006.A. Vita, C. Italiano, M. A. Ashraf, L. Pino, and S. Specchia, “Syngas production by steam and oxy-steam reforming of biogas on monolith-supported CeO2-based catalysts,” Int J Hydrogen Energy, vol. 43, no. 26, pp. 11731–11744, Jun. 2018, doi: 10.1016/j.ijhydene.2017.11.140.Y. Zhu et al., “Optimization of the washcoat slurry for hydrotalcite-based lnt catalyst,” Catalysts, vol. 9, no. 8, Aug. 2019, doi: 10.3390/CATAL9080696.C. Daza, A. Kiennemann, S. Moreno, and R. Molina, “Stability of Ni-Ce catalysts supported over Al-PVA modified mineral clay in dry reforming of methane,” Energy and Fuels, vol. 23, no. 7, pp. 3497–3509, 2009, doi: 10.1021/ef9000874.S. S. Miri, F. Meshkani, A. Rastegarpanah, and M. Rezaei, “Influence of Fe, La, Zr, Ce, and Ca on the catalytic performance and coke formation in dry reforming of methane over Ni/MgO.Al2O3 catalyst,” Chem Eng Sci, vol. 250, Mar. 2022, doi: 10.1016/j.ces.2021.116956.S. Yu, Y. Hu, H. Cui, Z. Cheng, and Z. Zhou, “Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane,” Chem Eng Sci, vol. 232, Mar. 2021, doi: 10.1016/j.ces.2020.116379.F. Meng, Z. Li, J. Liu, X. Cui, and H. Zheng, “Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor,” J Nat Gas Sci Eng, vol. 23, pp. 250–258, Mar. 2015, doi: 10.1016/j.jngse.2015.01.041.Z. Alipour, M. Rezaei, and F. Meshkani, “Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane,” Journal of Energy Chemistry, vol. 23, no. 5, pp. 633–638, 2014, doi: 10.1016/S2095- 4956(14)60194-7.M. Boaro, S. Colussi, and A. Trovarelli, “Ceria-based materials in hydrogenation and reforming reactions for CO 2 valorization,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., Feb. 01, 2019. doi: 10.3389/fchem.2019.00028.L. P. Matte et al., “Influence of the CeO2 Support on the Reduction Properties of Cu/CeO2 and Ni/CeO2 Nanoparticles,” Journal of Physical Chemistry C, vol. 119, no. 47, pp. 26459– 26470, Nov. 2015, doi: 10.1021/acs.jpcc.5b07654.J. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia, and C. R. Apesteguía, “Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides,” 1998.A. Cárdenas-Arenas et al., “Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts,” Appl Catal B, vol. 265, May 2020, doi: 10.1016/j.apcatb.2019.118538.Z. Yu, D. Chen, M. Rønning, T. Vrålstad, E. Ochoa-Fernández, and A. Holmen, “Large- scale synthesis of carbon nanofibers on Ni-Fe-Al hydrotalcite derived catalysts. I. Preparation and characterization of the Ni-Fe-Al hydrotalcites and their derived catalysts,” Appl Catal A Gen, vol. 338, no. 1–2, pp. 136–146, Apr. 2008, doi: 10.1016/j.apcata.2008.01.003.C. Lv, H. Chen, M. Hu, T. Ai, and H. Fu, “Nano-oxides washcoat for enhanced catalytic oxidation activity toward the perovskite-based monolithic catalyst,” Environmental Science and Pollution Research, vol. 28, no. 28, pp. 37142–37157, Jul. 2021, doi: 10.1007/s11356- 021-13354-2.S. L. Kharatyan, H. A. Chatilyan, and K. V Manukyan, “Kinetics and Mechanism of Nickel Oxide Reduction by Methane,” J Phys Chem, vol. 123, pp. 21513–21521, 2019, doi: https://doi.org/10.1021/acs.jpcc.9b04506.C. Jensen and M. S. Duyar, “Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas,” Energy Technology, vol. 9, no. 7, Jul. 2021, doi: 10.1002/ente.202100106.R. Dębek, M. Motak, M. E. Galvez, T. Grzybek, and P. Da Costa, “Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming,” Int J Hydrogen Energy, vol. 42, no. 37, pp. 23556–23567, Sep. 2017, doi: 10.1016/j.ijhydene.2016.12.121.X. Feng, J. Feng, and W. Li, “Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4,” Cuihua Xuebao/Chinese Journal of Catalysis, vol. 39, no. 1, pp. 88–98, Jan. 2018, doi: 10.1016/S1872-2067(17)62928-0.J. Ashok and S. Kawi, “Steam reforming of toluene as a biomass tar model compound over CeO 2 promoted Ni/CaOeAl2O3 catalytic systems,” Int J Hydrogen Energy, vol. 38, no. 32, pp. 13938–13949, Oct. 2013, doi: 10.1016/j.ijhydene.2013.08.029.S. Katheria, G. Deo, and D. Kunzru, “Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane,” Energy and Fuels, vol. 31, no. 3, pp. 3143– 3153, Mar. 2017, doi: 10.1021/acs.energyfuels.6b03423.D. Ugues, S. Specchia, and G. Saracco, “Optimal Microstructural Design of a Catalytic Premixed FeCrAlloy Fiber Burner for Methane Combustion,” Ind Eng Chem Res, vol. 43, no. 9, pp. 1990–1998, Apr. 2004, doi: 10.1021/ie034202q.N. de Miguel, J. Manzanedo, J. Thormann, P. Pfeifer, and P. L. Arias, “Ni catalyst coating on Fecralloy ® Microchanneled foils and testing for Methane steam reforming,” Chem Eng Technol, vol. 33, no. 1, pp. 155–166, Jan. 2010, doi: 10.1002/ceat.200900439.Z. Ma, P. Perreault, D. C. Pelegrin, D. C. Boffito, and G. S. Patience, “Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2 FeCralloy catalysts,” Chemical Engineering Journal, vol. 380, Jan. 2020, doi: 10.1016/j.cej.2019.122470.V. N. Rogozhnikov et al., “Structured composite catalyst Pd/Ce0.75Zr0.25O2-x/θ- Al2O3/FeCrAlloy for complete oxidation of methane,” Mater Lett, vol. 310, Mar. 2022, doi: 10.1016/j.matlet.2021.131481.C. Y. Chou, J. A. Loiland, and R. F. Lobo, “Reverse water-gas shift iron catalyst derived from magnetite,” Catalysts, vol. 9, no. 9, Sep. 2019, doi: 10.3390/catal9090773.M. Jafarbegloo, A. Tarlani, A. W. Mesbah, and S. Sahebdelfar, “Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance,” Int J Hydrogen Energy, vol. 40, no. 6, pp. 2445–2451, Feb. 2015, doi: 10.1016/j.ijhydene.2014.12.103.Catalizadores de Ni a partir de hidrotalcitas inmovilizadas en monolitos para la transformación de gases de efecto invernaderoEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85052/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032490325.2023.pdf1032490325.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4310762https://repositorio.unal.edu.co/bitstream/unal/85052/2/1032490325.2023.pdfc95e50aaf4fe888b1e51fe5949699e42MD52THUMBNAIL1032490325.2023.pdf.jpg1032490325.2023.pdf.jpgGenerated Thumbnailimage/jpeg4675https://repositorio.unal.edu.co/bitstream/unal/85052/3/1032490325.2023.pdf.jpgdf89f442a720d60fb93aab402f89f8edMD53unal/85052oai:repositorio.unal.edu.co:unal/850522023-12-07 23:03:58.031Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |