Road accident forecast by using predictive modeling techniques

ilustraciones, diagramas, planos

Autores:
Gutierrez Osorio, Camilo Albeiro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84616
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84616
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Accidentes de tránsito
Tráfico de carreteras
Traffic accidents - research
Road traffic
Machine learning
Deep learning
traffic accident risk prediction
traffic accidents
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f83c923fc2577e7591519fb7cc9517dd
oai_identifier_str oai:repositorio.unal.edu.co:unal/84616
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Road accident forecast by using predictive modeling techniques
dc.title.translated.spa.fl_str_mv Pronóstico de accidentes de tráfico mediante el uso de técnicas de modelado predictivo
title Road accident forecast by using predictive modeling techniques
spellingShingle Road accident forecast by using predictive modeling techniques
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Accidentes de tránsito
Tráfico de carreteras
Traffic accidents - research
Road traffic
Machine learning
Deep learning
traffic accident risk prediction
traffic accidents
title_short Road accident forecast by using predictive modeling techniques
title_full Road accident forecast by using predictive modeling techniques
title_fullStr Road accident forecast by using predictive modeling techniques
title_full_unstemmed Road accident forecast by using predictive modeling techniques
title_sort Road accident forecast by using predictive modeling techniques
dc.creator.fl_str_mv Gutierrez Osorio, Camilo Albeiro
dc.contributor.advisor.none.fl_str_mv Pedraza Bonilla, César Augusto
González Osorio, Fabio Augusto
dc.contributor.author.none.fl_str_mv Gutierrez Osorio, Camilo Albeiro
dc.contributor.researchgroup.spa.fl_str_mv Plas Programming languages And Systems
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-9113-1369
dc.contributor.scopus.spa.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=57209267130
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Camilo-Gutierrez-Osorio
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=E4ICanMAAAAJ&hl=en
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
topic 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Accidentes de tránsito
Tráfico de carreteras
Traffic accidents - research
Road traffic
Machine learning
Deep learning
traffic accident risk prediction
traffic accidents
dc.subject.lemb.spa.fl_str_mv Accidentes de tránsito
Tráfico de carreteras
dc.subject.lemb.eng.fl_str_mv Traffic accidents - research
Road traffic
dc.subject.proposal.eng.fl_str_mv Machine learning
Deep learning
traffic accident risk prediction
traffic accidents
description ilustraciones, diagramas, planos
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-30T14:31:31Z
dc.date.available.none.fl_str_mv 2023-08-30T14:31:31Z
dc.date.issued.none.fl_str_mv 2023-08-29
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84616
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84616
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ahmed, M. M., & Abdel-Aty, M. A. (2012). The viability of using automatic vehicle identification data for real-time crash prediction. IEEE Transactions on Intelligent Transportation Systems, 13(2), 459–468. https://doi.org/10.1109/TITS.2011.2171052
Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1). https://doi.org/10.1002/for.2425
Amin-Naseri, M., Chakraborty, P., Sharma, A., Gilbert, S. B., & Hong, M. (2018). Evaluating the Reliability, Coverage, and Added Value of Crowdsourced Traffic Incident Reports from Waze. Transportation Research Record. https://doi.org/10.1177/0361198118790619
Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J. Z., & Wang, R. (2016). TrafficWatch: Real-Time Traffic Incident Detection and Monitoring Using Social Media. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9651, 540–551. https://doi.org/10.1007/978-3-319-31753-3
Bao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis and Prevention, 122(November 2018), 239–254. https://doi.org/10.1016/j.aap.2018.10.015
Bao, J., Liu, P., Yu, H., & Xu, C. (2017). Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas. Accident Analysis and Prevention, 106(July), 358–369. https://doi.org/10.1016/j.aap.2017.06.012
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions On, 35(8), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50
Bocarejo, J. P., Velasquez, J. M., Díaz, C. A., & Tafur, L. E. (2012). Impact of bus rapid transit systems on road safety: Lessons from Bogotá, Colombia. In Transportation Research Record (Vol. 2317). https://doi.org/10.3141/2317-01
Bonilla, J. A. (2019). The More Stringent, the Better? Rationing Car Use in Bogotá with Moderate and Drastic Restrictions. World Bank Economic Review, 33(2), 516–534. https://doi.org/10.1093/wber/lhw053
Branco, P., Ribeiro, R. P., Torgo, L., Krawczyk, B., & Moniz, N. (2017). SMOGN: a Pre-processing Approach for Imbalanced Regression. Proceedings of Machine Learning Research, 74, 36–50.
Cao, G., Michelini, J., Grigoriadis, K., Ebrahimi, B., & Franchek, M. A. (2015a). Cluster-based correlation of severe braking events with time and location. 2015 10th System of Systems Engineering Conference, SoSE 2015, 2450(June), 187–192. https://doi.org/10.1109/SYSOSE.2015.7151986
Castro, Y., & Kim, Y. J. (2016). Data mining on road safety: factor assessment on vehicle accidents using classification models. International Journal of Crashworthiness, 21(2), 104–111. https://doi.org/10.1080/13588265.2015.1122278
Chen, C., Fan, X., Zheng, C., Xiao, L., Cheng, M., & Wang, C. (2018). SDCAE: Stack Denoising Convolutional Autoencoder Model for Accident Risk Prediction Via Traffic Big Data. Proceedings - 2018 6th International Conference on Advanced Cloud and Big Data, CBD 2018, 328–333. https://doi.org/10.1109/CBD.2018.00065
Chen, Q., Song, X., Yamada, H., & Shibasaki, R. (2016). Learning deep representation from big and heterogeneous data for traffic accident inference. 30th AAAI Conference on Artificial Intelligence, AAAI 2016.
Chen, Y., Lv, Y., Wang, X., & Wang, F. Y. (2018). A convolutional neural network for traffic information sensing from social media text. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317650
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 1–9. Retrieved from http://arxiv.org/abs/1412.3555
Çodur, M. Y., & Tortum, A. (2015). An Artificial Neural Network Model for Highway Accident Prediction: A Case Study of Erzurum, Turkey. PROMET - Traffic&Transportation, 27(3), 217–225. https://doi.org/10.7307/ptt.v27i3.1551
D’Andrea, E., Ducange, P., Lazzerini, B., & Marcelloni, F. (2015). Real-Time Detection of Traffic from Twitter Stream Analysis. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2269–2283. https://doi.org/10.1109/TITS.2015.2404431
Dabiri, S., & Heaslip, K. (2019). Developing a Twitter-based traffic event detection model using deep learning architectures. Expert Systems with Applications, 118, 425–439. https://doi.org/10.1016/j.eswa.2018.10.017
Delen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38(3), 434–444. https://doi.org/10.1016/j.aap.2005.06.024
Fan, X., He, B., Wang, C., Li, J., Cheng, M., Huang, H., & Liu, X. (2015). Big data analytics and visualization with spatio-temporal correlations for traffic accidents. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9529). https://doi.org/10.1007/978-3-319-27122-4_18
Fawcett, L., Thorpe, N., Matthews, J., & Kremer, K. (2017). A novel Bayesian hierarchical model for road safety hotspot prediction. Accident Analysis and Prevention, 99, 262–271. https://doi.org/10.1016/j.aap.2016.11.021
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115. https://doi.org/10.1016/j.engappai.2022.105151
Geurts, K., Wets, G., Brijs, T., & Vanhoof, K. (2003). Profiling of High-Frequency Accident Locations by Use of Association Rules. Transportation Research Record, 1840(03), 123–130. https://doi.org/10.3141/1840-14
Ghosh, B., Asif, M. T., & Dauwels, J. (2017). Bayesian prediction of the duration of non-recurring road incidents. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 87–90. https://doi.org/10.1109/TENCON.2016.7847964
Governmen, Australian. (2019). Australia’s Regional Open Data Census - Open data - Traffic Accidents. Retrieved July 15, 2019, from http://australia.census.okfn.org/dataset/traffic-accidents
Government", "Colombian. (2019). datos.gov.co - Colombia - Open data catalog- Road accidents. Retrieved July 15, 2019, from https://www.datos.gov.co/browse?q=Registro nacional de accidentes de transito&sortBy=relevance
“Government US.” (2019). data.gov - United States - Open data catalog - Traffic accidents. Retrieved July 15, 2019, from https://catalog.data.gov/dataset?q=traffic+accidents&sort=views_recent+desc&tags=crash&as_sfid=AAAAAAXHjZkDY7gFA5iMx_28NUE0FLt7GCD6A_wjSzainkj_rspLB-fqUew5h3LiHfKwq25Q1jllDf64k8tuEJ03xVdCKo4_qW6HRpHe_XBlCPYQhLUOwC0CkWT-WHXEHYKSTII%3D&as_fid=be93db12e7584b
Gu, Y., Qian, Z. (Sean), & Chen, F. (2016). From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, 321–342. https://doi.org/10.1016/j.trc.2016.02.011
Gutierrez-Osorio, C., Gonzalez, F. A., & Pedraza, C. A. (2022). Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers, 11(9), 126.
Gutierrez-Osorio, C., & Pedraza, C. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 432–446. https://doi.org/10.1016/j.jtte.2020.05.002
Gutierrez-Osorio, C., & Pedraza, C. A. (2019a). Characterizing road accidents in urban areas of Bogota (Colombia): A data science approach. Proceedings of the 2nd Latin American Conference on Intelligent Transportation Systems, ITS LATAM 2019, 1–6. https://doi.org/10.1109/ITSLATAM.2019.8721334
Halim, Z., Kalsoom, R., Bashir, S., & Abbas, G. (2016). Artificial intelligence techniques for driving safety and vehicle crash prediction. Artificial Intelligence Review, 46(3), 351–387. https://doi.org/10.1007/s10462-016-9467-9
Hashmienejad, S. H., & Hossein, S. M. (2017). Traffic accident severity prediction using a novel multi-objective genetic algorithm. International Journal of Crashworthiness, 0(0), 1–16. https://doi.org/10.1080/13588265.2016.1275431
Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, Adoption Barriers and Myths of Open Data and Open Government. Information Systems Management, 29(4), 258–268. https://doi.org/10.1080/10580530.2012.716740
Kaplan, S., & Prato, C. G. (2013). Cyclist-motorist crash patterns in Denmark: a latent class clustering approach. Traffic Injury Prevention, 14(7), 725–733. https://doi.org/10.1080/15389588.2012.759654
Kononen, D. W., Flannagan, C. A. C., & Wang, S. C. (2011). Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes. Accident Analysis and Prevention, 43(1), 112–122. https://doi.org/10.1016/j.aap.2010.07.018
Kumar, S., & Toshniwal, D. (2016). A data mining approach to characterize road accident locations. Journal of Modern Transportation, 24(1). https://doi.org/10.1007/s40534-016-0095-5
Kumar, Sachin, & Toshniwal, D. (2015). A data mining framework to analyze road accident data. Journal of Big Data, 2(1), 26. https://doi.org/10.1186/s40537-015-0035-y
Kumar, Sachin, & Toshniwal, D. (2016). Analysis of hourly road accident counts using hierarchical clustering and cophenetic correlation coefficient (CPCC). Journal of Big Data, 3(1), 1–11. https://doi.org/10.1186/s40537-016-0046-3
Kunt, M. M., Aghayan, I., & Noii, N. (2011). Prediction for traffic accident severity: comparing the artificial neural network, genetic algorithm, combined genetic algorithm and pattern search methods. Transport, 26(4), 353–366. https://doi.org/10.3846/16484142.2011.635465
Li, P., Abdel-Aty, M., & Yuan, J. (2020). Real-time crash risk prediction on arterials based on LSTM-CNN. Accident Analysis and Prevention, 135(July 2019), 105371. https://doi.org/10.1016/j.aap.2019.105371
Lin, L., Wang, Q., & Sadek, A. W. (2015). A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transportation Research Part C: Emerging Technologies, 55(June), 444–459. https://doi.org/10.1016/j.trc.2015.03.015
Moghaddam, F. R., Afandizadeh, S., & Ziyadi, M. (2011). Prediction of accident severity using artificial neural networks. International Journal of Civil Engineering, 9(1), 41–49.
Mohamed, M. G., Saunier, N., Miranda-Moreno, L. F., & Ukkusuri, S. V. (2013). A clustering regression approach: A comprehensive injury severity analysis of pedestrian-vehicle crashes in New York, US and Montreal, Canada. Safety Science, 54, 27–37. https://doi.org/10.1016/j.ssci.2012.11.001
Moriya, K., Matsushima, S., & Yamanishi, K. (2018). Traffic Risk Mining From Heterogeneous Road Statistics. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3662–3675. https://doi.org/10.1109/TITS.2018.2856533
Pandhare, K. R., & Shah, M. A. (2017). Real time road traffic event detection using Twitter and spark. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2017, (Icicct), 445–449. https://doi.org/10.1109/ICICCT.2017.7975237
Park, S., Kim, S., & Ha, Y. (2016). Highway traffic accident prediction using VDS big data analysis. The Journal of Supercomputing, 72(7), 2815–2831. https://doi.org/10.1007/s11227-016-1624-z
Parnami, A., Bavi, P., Papanikolaou, D., Akella, S., Lee, M., & Krishnan, S. (2018). Deep Learning Based Urban Analytics Platform: Applications to Traffic Flow Modeling and Prediction. ACM SIGKDD Workshop on Mining Urban Data (MUD3).
Pérez-Espinosa, A., Reyes-Cabello, A. L., Quiroz-Fabián, J., & Bravo-Grajales, E. (2018). Trafico CDMX system: Using big data to improve the mobility in Mexico City. ACM International Conference Proceeding Series, (January), 13–17. https://doi.org/10.1145/3277104.3277114
Ren, H., Song, Y., Wang, J., Hu, Y., & Lei, J. (2017). A Deep Learning Approach to the Citywide Traffic Accident Risk Prediction. Retrieved from http://arxiv.org/abs/1710.09543
Roshandel, S., Zheng, Z., & Washington, S. (2015). Impact of real-time traffic characteristics on freeway crash occurrence: Systematic review and meta-analysis. Accident Analysis and Prevention, 79, 198–211. https://doi.org/10.1016/j.aap.2015.03.013
Salas, A., Georgakis, P., & Petalas, Y. (2018). Incident detection using data from social media. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 751–755. https://doi.org/10.1109/ITSC.2017.8317967
Scott-Parker, B., & Oviedo-Trespalacios, O. (2017). Young driver risky behaviour and predictors of crash risk in Australia, New Zealand and Colombia: Same but different? Accident Analysis and Prevention, 99, 30–38. https://doi.org/10.1016/j.aap.2016.11.001
Shi, Q., & Abdel-Aty, M. (2015). Big Data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Research Part C, 58, 380–394. https://doi.org/10.1016/j.trc.2015.02.022
Sinnott, R. O., & Yin, S. (2015). Accident Black Spot Identification and Verification through Social Media. Proceedings - 2015 IEEE International Conference on Data Science and Data Intensive Systems; 8th IEEE International Conference Cyber, Physical and Social Computing; 11th IEEE International Conference on Green Computing and Communications and 8th IEEE Inte, 17–24. https://doi.org/10.1109/DSDIS.2015.34
Suat-Rojas, N., Gutierrez-Osorio, C., & Pedraza, C. (2022). Extraction and Analysis of Social Networks Data to Detect Traffic Accidents. Information (Switzerland), 13(1). https://doi.org/10.3390/info13010026
Taamneh, M., Alkheder, S., & Taamneh, S. (2017). Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. Journal of Transportation Safety & Security, 9(2), 146–166. https://doi.org/10.1080/19439962.2016.1152338
Tiwari, P., Dao, H., & Nguyen, G. N. (2017). Performance evaluation of lazy, decision tree classifier and multilayer perceptron on traffic accident analysis. Informatica (Slovenia), 41(1), 39–46.
“United Kingdom Government.” (2019). data.gov.uk - United Kingdom - Open data catalog - traffic accidents. Retrieved July 15, 2019, from https://data.gov.uk/search?q=traffic+accidents
Veljković, N., Bogdanović-Dinić, S., & Stoimenov, L. (2014). Benchmarking open government: An open data perspective. Government Information Quarterly, 31(2), 278–290. https://doi.org/10.1016/j.giq.2013.10.011
Wenqi, L., Dongyu, L., & Menghua, Y. (2017). A model of traffic accident prediction based on convolutional neural network. 2017 2nd IEEE International Conference on Intelligent Transportation Engineering, ICITE 2017, 198–202. https://doi.org/10.1109/ICITE.2017.8056908
Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., & Xu, H. (2020). Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478.
Wirth, R., & Hipp, J. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the 4th International Conference on the Practical Application of Knowledge Discovery and Data Mining, (24959), 29–39. https://doi.org/10.1.1.198.5133
World Health Organization. (2015). Global Status Report on Road. In Foreign Affairs. Retrieved from https://www.who.int/publications/i/item/global-status-report-on-road-safety-2018
Xiong, X., Chen, L., & Liang, J. (2017). A new framework of vehicle collision prediction by combining SVM and HMM. IEEE Transactions on Intelligent Transportation Systems, 19(3), 699-710.
You, J., Wang, J., & Guo, J. (2017). Real-time crash prediction on freeways using data mining and emerging techniques. Journal of Modern Transportation, 25(2), 116–123. https://doi.org/10.1007/s40534-017-0129-7
Yu, L., Du, B., Hu, X., Sun, L., Han, L., & Lv, W. (2020). Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing, 423, 135–147. https://doi.org/10.1016/j.neucom.2020.09.043
Yuan, J., & Abdel-Aty, M. (2018). Approach-level real-time crash risk analysis for signalized intersections. Accident Analysis and Prevention, 119, 274–289. https://doi.org/10.1016/j.aap.2018.07.031
Zhang, Z., He, Q., Gao, J., & Ni, M. (2018). A deep learning approach for detecting traffic accidents from social media data. Transportation Research Part C: Emerging Technologies, 86(November 2017), 580–596. https://doi.org/10.1016/j.trc.2017.11.027
Zheng, M., Li, T., Zhu, R., Chen, J., Ma, Z., Tang, M., … Wang, Z. (2019). Traffic accident’s severity prediction: A deep-learning approach-based CNN network. IEEE Access, 7, 39897–39910. https://doi.org/10.1109/ACCESS.2019.2903319
Zhou, Z., Wang, Y., Xie, X., Chen, L., & Liu, H. (2020). RiskOracle: A minute-level citywide traffic accident forecasting framework. ArXiv, (December 2019). https://doi.org/10.1609/aaai.v34i01.5480
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 84 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84616/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84616/2/71775136.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84616/3/71775136.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9defd0e6c0e11287fae25f8b9e303390
68799d20cae9931903b31e74317c56de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089870850654208
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pedraza Bonilla, César Augustocba8a7e9dda8064a0b4e4fc53dc636d4González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Gutierrez Osorio, Camilo Albeiro18c54b3751620bb549bb8e22bc300e83Plas Programming languages And Systemshttps://orcid.org/0000-0002-9113-1369https://www.scopus.com/authid/detail.uri?authorId=57209267130https://www.researchgate.net/profile/Camilo-Gutierrez-Osoriohttps://scholar.google.com/citations?user=E4ICanMAAAAJ&hl=en2023-08-30T14:31:31Z2023-08-30T14:31:31Z2023-08-29https://repositorio.unal.edu.co/handle/unal/84616Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, planosLos accidentes de tránsito son una gran preocupación a nivel mundial, ya que tienen un impacto significativo en la seguridad, la salud y el bienestar de las personas, por lo que constituyen un importante campo de investigación sobre el uso de técnicas y algoritmos de última generación para analizarlos y predecirlos. El estudio de los accidentes de tráfico se ha realizado a partir de la información publicada por las entidades de tráfico, pero gracias a la ubicuidad y disponibilidad de las redes sociales es posible disponer de información detallada y en tiempo real de los accidentes de tráfico, lo que permite realizar estudios detallados que incluyen eventos de accidentalidad vial no registrados. El objetivo de esta tesis es proponer un modelo predictivo para estimar la probabilidad de accidentes de tránsito en un área determinada mediante la integración de información proveniente de entidades oficiales y redes sociales relacionadas con accidentes viales y eventos de infraestructura vial. El modelo diseñado fue un modelo de aprendizaje profundo, compuesto por unidades recurrentes cerradas y redes neuronales convolucionales. Los resultados obtenidos se compararon con resultados publicados por otros investigadores y muestran resultados prometedores, lo que indica que, en el contexto del problema, el modelo de aprendizaje profundo propuesto supera a otros modelos de aprendizaje profundo disponibles en la literatura. La información proporcionada por el modelo puede ser valiosa para que las agencias de control de tráfico planifiquen actividades de prevención de accidentes de tráfico. (Texto tomado de la fuente)Traffic accidents are a major global concern as they have a significant impact on safety, health, and well-being. Therefore, it is an important area of research to analyze and predict accidents using state-of-the-art techniques and algorithms. Traditionally, the study of traffic accidents has been conducted using information from traffic entities and road police forces. However, with the rise of social media platforms, it's now possible to access detailed and real-time information about road accidents in a specific region, which allows for more comprehensive studies, even including unrecorded road accident events. This thesis aims to develop a predictive model that estimates the probability of road accidents in a specific area by combining information from official entities and social media related to road accidents and road infrastructure events. The proposed model is an ensemble deep learning model made up of Gated Recurrent Units and Convolutional Neural Networks. The results were compared with other published research and the outcomes are promising, indicating that the proposed ensemble deep learning model is more effective than other deep learning models reported in literature. The information provided by the model could be valuable for traffic control agencies to plan road accident prevention activities.DoctoradoPh.D. en Ingeniería – Sistemas y ComputaciónSistemas Inteligentes de Transporte ITS84 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónAccidentes de tránsitoTráfico de carreterasTraffic accidents - researchRoad trafficMachine learningDeep learningtraffic accident risk predictiontraffic accidentsRoad accident forecast by using predictive modeling techniquesPronóstico de accidentes de tráfico mediante el uso de técnicas de modelado predictivoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAhmed, M. M., & Abdel-Aty, M. A. (2012). The viability of using automatic vehicle identification data for real-time crash prediction. IEEE Transactions on Intelligent Transportation Systems, 13(2), 459–468. https://doi.org/10.1109/TITS.2011.2171052Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1). https://doi.org/10.1002/for.2425Amin-Naseri, M., Chakraborty, P., Sharma, A., Gilbert, S. B., & Hong, M. (2018). Evaluating the Reliability, Coverage, and Added Value of Crowdsourced Traffic Incident Reports from Waze. Transportation Research Record. https://doi.org/10.1177/0361198118790619Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J. Z., & Wang, R. (2016). TrafficWatch: Real-Time Traffic Incident Detection and Monitoring Using Social Media. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9651, 540–551. https://doi.org/10.1007/978-3-319-31753-3Bao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis and Prevention, 122(November 2018), 239–254. https://doi.org/10.1016/j.aap.2018.10.015Bao, J., Liu, P., Yu, H., & Xu, C. (2017). Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas. Accident Analysis and Prevention, 106(July), 358–369. https://doi.org/10.1016/j.aap.2017.06.012Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions On, 35(8), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50Bocarejo, J. P., Velasquez, J. M., Díaz, C. A., & Tafur, L. E. (2012). Impact of bus rapid transit systems on road safety: Lessons from Bogotá, Colombia. In Transportation Research Record (Vol. 2317). https://doi.org/10.3141/2317-01Bonilla, J. A. (2019). The More Stringent, the Better? Rationing Car Use in Bogotá with Moderate and Drastic Restrictions. World Bank Economic Review, 33(2), 516–534. https://doi.org/10.1093/wber/lhw053Branco, P., Ribeiro, R. P., Torgo, L., Krawczyk, B., & Moniz, N. (2017). SMOGN: a Pre-processing Approach for Imbalanced Regression. Proceedings of Machine Learning Research, 74, 36–50.Cao, G., Michelini, J., Grigoriadis, K., Ebrahimi, B., & Franchek, M. A. (2015a). Cluster-based correlation of severe braking events with time and location. 2015 10th System of Systems Engineering Conference, SoSE 2015, 2450(June), 187–192. https://doi.org/10.1109/SYSOSE.2015.7151986Castro, Y., & Kim, Y. J. (2016). Data mining on road safety: factor assessment on vehicle accidents using classification models. International Journal of Crashworthiness, 21(2), 104–111. https://doi.org/10.1080/13588265.2015.1122278Chen, C., Fan, X., Zheng, C., Xiao, L., Cheng, M., & Wang, C. (2018). SDCAE: Stack Denoising Convolutional Autoencoder Model for Accident Risk Prediction Via Traffic Big Data. Proceedings - 2018 6th International Conference on Advanced Cloud and Big Data, CBD 2018, 328–333. https://doi.org/10.1109/CBD.2018.00065Chen, Q., Song, X., Yamada, H., & Shibasaki, R. (2016). Learning deep representation from big and heterogeneous data for traffic accident inference. 30th AAAI Conference on Artificial Intelligence, AAAI 2016.Chen, Y., Lv, Y., Wang, X., & Wang, F. Y. (2018). A convolutional neural network for traffic information sensing from social media text. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317650Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 1–9. Retrieved from http://arxiv.org/abs/1412.3555Çodur, M. Y., & Tortum, A. (2015). An Artificial Neural Network Model for Highway Accident Prediction: A Case Study of Erzurum, Turkey. PROMET - Traffic&Transportation, 27(3), 217–225. https://doi.org/10.7307/ptt.v27i3.1551D’Andrea, E., Ducange, P., Lazzerini, B., & Marcelloni, F. (2015). Real-Time Detection of Traffic from Twitter Stream Analysis. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2269–2283. https://doi.org/10.1109/TITS.2015.2404431Dabiri, S., & Heaslip, K. (2019). Developing a Twitter-based traffic event detection model using deep learning architectures. Expert Systems with Applications, 118, 425–439. https://doi.org/10.1016/j.eswa.2018.10.017Delen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38(3), 434–444. https://doi.org/10.1016/j.aap.2005.06.024Fan, X., He, B., Wang, C., Li, J., Cheng, M., Huang, H., & Liu, X. (2015). Big data analytics and visualization with spatio-temporal correlations for traffic accidents. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9529). https://doi.org/10.1007/978-3-319-27122-4_18Fawcett, L., Thorpe, N., Matthews, J., & Kremer, K. (2017). A novel Bayesian hierarchical model for road safety hotspot prediction. Accident Analysis and Prevention, 99, 262–271. https://doi.org/10.1016/j.aap.2016.11.021Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115. https://doi.org/10.1016/j.engappai.2022.105151Geurts, K., Wets, G., Brijs, T., & Vanhoof, K. (2003). Profiling of High-Frequency Accident Locations by Use of Association Rules. Transportation Research Record, 1840(03), 123–130. https://doi.org/10.3141/1840-14Ghosh, B., Asif, M. T., & Dauwels, J. (2017). Bayesian prediction of the duration of non-recurring road incidents. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 87–90. https://doi.org/10.1109/TENCON.2016.7847964Governmen, Australian. (2019). Australia’s Regional Open Data Census - Open data - Traffic Accidents. Retrieved July 15, 2019, from http://australia.census.okfn.org/dataset/traffic-accidentsGovernment", "Colombian. (2019). datos.gov.co - Colombia - Open data catalog- Road accidents. Retrieved July 15, 2019, from https://www.datos.gov.co/browse?q=Registro nacional de accidentes de transito&sortBy=relevance“Government US.” (2019). data.gov - United States - Open data catalog - Traffic accidents. Retrieved July 15, 2019, from https://catalog.data.gov/dataset?q=traffic+accidents&sort=views_recent+desc&tags=crash&as_sfid=AAAAAAXHjZkDY7gFA5iMx_28NUE0FLt7GCD6A_wjSzainkj_rspLB-fqUew5h3LiHfKwq25Q1jllDf64k8tuEJ03xVdCKo4_qW6HRpHe_XBlCPYQhLUOwC0CkWT-WHXEHYKSTII%3D&as_fid=be93db12e7584bGu, Y., Qian, Z. (Sean), & Chen, F. (2016). From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, 321–342. https://doi.org/10.1016/j.trc.2016.02.011Gutierrez-Osorio, C., Gonzalez, F. A., & Pedraza, C. A. (2022). Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers, 11(9), 126.Gutierrez-Osorio, C., & Pedraza, C. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 432–446. https://doi.org/10.1016/j.jtte.2020.05.002Gutierrez-Osorio, C., & Pedraza, C. A. (2019a). Characterizing road accidents in urban areas of Bogota (Colombia): A data science approach. Proceedings of the 2nd Latin American Conference on Intelligent Transportation Systems, ITS LATAM 2019, 1–6. https://doi.org/10.1109/ITSLATAM.2019.8721334Halim, Z., Kalsoom, R., Bashir, S., & Abbas, G. (2016). Artificial intelligence techniques for driving safety and vehicle crash prediction. Artificial Intelligence Review, 46(3), 351–387. https://doi.org/10.1007/s10462-016-9467-9Hashmienejad, S. H., & Hossein, S. M. (2017). Traffic accident severity prediction using a novel multi-objective genetic algorithm. International Journal of Crashworthiness, 0(0), 1–16. https://doi.org/10.1080/13588265.2016.1275431Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, Adoption Barriers and Myths of Open Data and Open Government. Information Systems Management, 29(4), 258–268. https://doi.org/10.1080/10580530.2012.716740Kaplan, S., & Prato, C. G. (2013). Cyclist-motorist crash patterns in Denmark: a latent class clustering approach. Traffic Injury Prevention, 14(7), 725–733. https://doi.org/10.1080/15389588.2012.759654Kononen, D. W., Flannagan, C. A. C., & Wang, S. C. (2011). Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes. Accident Analysis and Prevention, 43(1), 112–122. https://doi.org/10.1016/j.aap.2010.07.018Kumar, S., & Toshniwal, D. (2016). A data mining approach to characterize road accident locations. Journal of Modern Transportation, 24(1). https://doi.org/10.1007/s40534-016-0095-5Kumar, Sachin, & Toshniwal, D. (2015). A data mining framework to analyze road accident data. Journal of Big Data, 2(1), 26. https://doi.org/10.1186/s40537-015-0035-yKumar, Sachin, & Toshniwal, D. (2016). Analysis of hourly road accident counts using hierarchical clustering and cophenetic correlation coefficient (CPCC). Journal of Big Data, 3(1), 1–11. https://doi.org/10.1186/s40537-016-0046-3Kunt, M. M., Aghayan, I., & Noii, N. (2011). Prediction for traffic accident severity: comparing the artificial neural network, genetic algorithm, combined genetic algorithm and pattern search methods. Transport, 26(4), 353–366. https://doi.org/10.3846/16484142.2011.635465Li, P., Abdel-Aty, M., & Yuan, J. (2020). Real-time crash risk prediction on arterials based on LSTM-CNN. Accident Analysis and Prevention, 135(July 2019), 105371. https://doi.org/10.1016/j.aap.2019.105371Lin, L., Wang, Q., & Sadek, A. W. (2015). A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transportation Research Part C: Emerging Technologies, 55(June), 444–459. https://doi.org/10.1016/j.trc.2015.03.015Moghaddam, F. R., Afandizadeh, S., & Ziyadi, M. (2011). Prediction of accident severity using artificial neural networks. International Journal of Civil Engineering, 9(1), 41–49.Mohamed, M. G., Saunier, N., Miranda-Moreno, L. F., & Ukkusuri, S. V. (2013). A clustering regression approach: A comprehensive injury severity analysis of pedestrian-vehicle crashes in New York, US and Montreal, Canada. Safety Science, 54, 27–37. https://doi.org/10.1016/j.ssci.2012.11.001Moriya, K., Matsushima, S., & Yamanishi, K. (2018). Traffic Risk Mining From Heterogeneous Road Statistics. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3662–3675. https://doi.org/10.1109/TITS.2018.2856533Pandhare, K. R., & Shah, M. A. (2017). Real time road traffic event detection using Twitter and spark. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2017, (Icicct), 445–449. https://doi.org/10.1109/ICICCT.2017.7975237Park, S., Kim, S., & Ha, Y. (2016). Highway traffic accident prediction using VDS big data analysis. The Journal of Supercomputing, 72(7), 2815–2831. https://doi.org/10.1007/s11227-016-1624-zParnami, A., Bavi, P., Papanikolaou, D., Akella, S., Lee, M., & Krishnan, S. (2018). Deep Learning Based Urban Analytics Platform: Applications to Traffic Flow Modeling and Prediction. ACM SIGKDD Workshop on Mining Urban Data (MUD3).Pérez-Espinosa, A., Reyes-Cabello, A. L., Quiroz-Fabián, J., & Bravo-Grajales, E. (2018). Trafico CDMX system: Using big data to improve the mobility in Mexico City. ACM International Conference Proceeding Series, (January), 13–17. https://doi.org/10.1145/3277104.3277114Ren, H., Song, Y., Wang, J., Hu, Y., & Lei, J. (2017). A Deep Learning Approach to the Citywide Traffic Accident Risk Prediction. Retrieved from http://arxiv.org/abs/1710.09543Roshandel, S., Zheng, Z., & Washington, S. (2015). Impact of real-time traffic characteristics on freeway crash occurrence: Systematic review and meta-analysis. Accident Analysis and Prevention, 79, 198–211. https://doi.org/10.1016/j.aap.2015.03.013Salas, A., Georgakis, P., & Petalas, Y. (2018). Incident detection using data from social media. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 751–755. https://doi.org/10.1109/ITSC.2017.8317967Scott-Parker, B., & Oviedo-Trespalacios, O. (2017). Young driver risky behaviour and predictors of crash risk in Australia, New Zealand and Colombia: Same but different? Accident Analysis and Prevention, 99, 30–38. https://doi.org/10.1016/j.aap.2016.11.001Shi, Q., & Abdel-Aty, M. (2015). Big Data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Research Part C, 58, 380–394. https://doi.org/10.1016/j.trc.2015.02.022Sinnott, R. O., & Yin, S. (2015). Accident Black Spot Identification and Verification through Social Media. Proceedings - 2015 IEEE International Conference on Data Science and Data Intensive Systems; 8th IEEE International Conference Cyber, Physical and Social Computing; 11th IEEE International Conference on Green Computing and Communications and 8th IEEE Inte, 17–24. https://doi.org/10.1109/DSDIS.2015.34Suat-Rojas, N., Gutierrez-Osorio, C., & Pedraza, C. (2022). Extraction and Analysis of Social Networks Data to Detect Traffic Accidents. Information (Switzerland), 13(1). https://doi.org/10.3390/info13010026Taamneh, M., Alkheder, S., & Taamneh, S. (2017). Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. Journal of Transportation Safety & Security, 9(2), 146–166. https://doi.org/10.1080/19439962.2016.1152338Tiwari, P., Dao, H., & Nguyen, G. N. (2017). Performance evaluation of lazy, decision tree classifier and multilayer perceptron on traffic accident analysis. Informatica (Slovenia), 41(1), 39–46.“United Kingdom Government.” (2019). data.gov.uk - United Kingdom - Open data catalog - traffic accidents. Retrieved July 15, 2019, from https://data.gov.uk/search?q=traffic+accidentsVeljković, N., Bogdanović-Dinić, S., & Stoimenov, L. (2014). Benchmarking open government: An open data perspective. Government Information Quarterly, 31(2), 278–290. https://doi.org/10.1016/j.giq.2013.10.011Wenqi, L., Dongyu, L., & Menghua, Y. (2017). A model of traffic accident prediction based on convolutional neural network. 2017 2nd IEEE International Conference on Intelligent Transportation Engineering, ICITE 2017, 198–202. https://doi.org/10.1109/ICITE.2017.8056908Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., & Xu, H. (2020). Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478.Wirth, R., & Hipp, J. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the 4th International Conference on the Practical Application of Knowledge Discovery and Data Mining, (24959), 29–39. https://doi.org/10.1.1.198.5133World Health Organization. (2015). Global Status Report on Road. In Foreign Affairs. Retrieved from https://www.who.int/publications/i/item/global-status-report-on-road-safety-2018Xiong, X., Chen, L., & Liang, J. (2017). A new framework of vehicle collision prediction by combining SVM and HMM. IEEE Transactions on Intelligent Transportation Systems, 19(3), 699-710.You, J., Wang, J., & Guo, J. (2017). Real-time crash prediction on freeways using data mining and emerging techniques. Journal of Modern Transportation, 25(2), 116–123. https://doi.org/10.1007/s40534-017-0129-7Yu, L., Du, B., Hu, X., Sun, L., Han, L., & Lv, W. (2020). Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing, 423, 135–147. https://doi.org/10.1016/j.neucom.2020.09.043Yuan, J., & Abdel-Aty, M. (2018). Approach-level real-time crash risk analysis for signalized intersections. Accident Analysis and Prevention, 119, 274–289. https://doi.org/10.1016/j.aap.2018.07.031Zhang, Z., He, Q., Gao, J., & Ni, M. (2018). A deep learning approach for detecting traffic accidents from social media data. Transportation Research Part C: Emerging Technologies, 86(November 2017), 580–596. https://doi.org/10.1016/j.trc.2017.11.027Zheng, M., Li, T., Zhu, R., Chen, J., Ma, Z., Tang, M., … Wang, Z. (2019). Traffic accident’s severity prediction: A deep-learning approach-based CNN network. IEEE Access, 7, 39897–39910. https://doi.org/10.1109/ACCESS.2019.2903319Zhou, Z., Wang, Y., Xie, X., Chen, L., & Liu, H. (2020). RiskOracle: A minute-level citywide traffic accident forecasting framework. ArXiv, (December 2019). https://doi.org/10.1609/aaai.v34i01.5480InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84616/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL71775136.2023.pdf71775136.2023.pdfTesis de Doctorado en Ingeniería - Sistemas y Computaciónapplication/pdf1370888https://repositorio.unal.edu.co/bitstream/unal/84616/2/71775136.2023.pdf9defd0e6c0e11287fae25f8b9e303390MD52THUMBNAIL71775136.2023.pdf.jpg71775136.2023.pdf.jpgGenerated Thumbnailimage/jpeg4692https://repositorio.unal.edu.co/bitstream/unal/84616/3/71775136.2023.pdf.jpg68799d20cae9931903b31e74317c56deMD53unal/84616oai:repositorio.unal.edu.co:unal/846162024-08-12 23:12:22.304Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=