Producción de acetato de fusel por destilación reactiva

En este trabajo se investigan las trayectorias directas de procesos de destilación reactiva (DR) para la síntesis de acetatos a partir de la esterificación de ácido acético con aceite de fusel (AF). El problema se encuentra limitado a una descripción aproximada donde el AF se considera como una mezc...

Full description

Autores:
Sánchez Correa, César Augusto
Tipo de recurso:
Book
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77741
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77741
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
660 - Ingeniería química
fusel oil
isoamyl acetate
ethyl acetate
reactive distillation
aceite de fusel
acetato de isoamilo
acetato de etilo
destilación reactiva
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_f8065db71d908b981b3aa914d0e53770
oai_identifier_str oai:repositorio.unal.edu.co:unal/77741
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Producción de acetato de fusel por destilación reactiva
dc.title.alternative.spa.fl_str_mv Fusel acetate production by reactive distillation
title Producción de acetato de fusel por destilación reactiva
spellingShingle Producción de acetato de fusel por destilación reactiva
660 - Ingeniería química::664 - Tecnología de alimentos
660 - Ingeniería química
fusel oil
isoamyl acetate
ethyl acetate
reactive distillation
aceite de fusel
acetato de isoamilo
acetato de etilo
destilación reactiva
title_short Producción de acetato de fusel por destilación reactiva
title_full Producción de acetato de fusel por destilación reactiva
title_fullStr Producción de acetato de fusel por destilación reactiva
title_full_unstemmed Producción de acetato de fusel por destilación reactiva
title_sort Producción de acetato de fusel por destilación reactiva
dc.creator.fl_str_mv Sánchez Correa, César Augusto
dc.contributor.advisor.spa.fl_str_mv Rodríguez Niño, Gerardo
Gil Chaves, Iván Darío
dc.contributor.author.spa.fl_str_mv Sánchez Correa, César Augusto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
660 - Ingeniería química
topic 660 - Ingeniería química::664 - Tecnología de alimentos
660 - Ingeniería química
fusel oil
isoamyl acetate
ethyl acetate
reactive distillation
aceite de fusel
acetato de isoamilo
acetato de etilo
destilación reactiva
dc.subject.proposal.eng.fl_str_mv fusel oil
isoamyl acetate
ethyl acetate
reactive distillation
dc.subject.proposal.spa.fl_str_mv aceite de fusel
acetato de isoamilo
acetato de etilo
destilación reactiva
description En este trabajo se investigan las trayectorias directas de procesos de destilación reactiva (DR) para la síntesis de acetatos a partir de la esterificación de ácido acético con aceite de fusel (AF). El problema se encuentra limitado a una descripción aproximada donde el AF se considera como una mezcla de alcohol isoamílico + agua + etanol. Esta versión simplificada del problema puede ocurrir aproximadamente en la práctica. En este contexto el objetivo principal del trabajo consistió en diseñar un proceso de DR para la producción de acetato de fusel. Los objetivos específicos son: a) desarrollar un modelo termodinámico adecuado para predecir los equilibrios de fases líquido – vapor y líquido – líquido – vapor del sistema multicomponente a partir de la información experimental (generada y recopilada en la literatura) de los subsistemas binarios y ternarios; b) desarrollar un modelo cinético apropiado para describir la esterificación directa del ácido acético con aceite de fusel en fase líquida; c) sintetizar a nivel conceptual alternativas de proceso para la tecnología de DR; y d) calcular los tamaños de los equipos y el costo total anualizado para alternativas de proceso técnicamente factibles. Desde el punto de vista experimental, se generó información nueva en dos casos: a) para el equilibrio líquido – vapor de las mezclas binarias de acetatos; y b) datos de velocidad de reacción para la esterificación de ácido acético con alcohol isoamílico (y con mezclas de alcohol isoamílico y etanol) utilizando la resina Amberlyst 70 como catalizador. La información experimental se utilizó para correlacionar y validar los modelos termodinámico y cinético. Desde el punto de vista teórico se desarrolló la caracterización termodinámica completa del sistema multicomponente reactivo, y se usaron los planos de fases reactivos para sintetizar estructuras de proceso que se caracterizaron utilizando los estados estacionarios de máxima conversión. Se encontró que es posible implementar un proceso de DR con alimentos en la proporción estequiométrica, altas conversiones (~99%) y alta recuperación de los acetatos (≥99%).
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-07-06T15:55:04Z
dc.date.available.spa.fl_str_mv 2020-07-06T15:55:04Z
dc.date.issued.spa.fl_str_mv 2020-07-02
dc.type.spa.fl_str_mv Libro
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/LIB
format http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77741
url https://repositorio.unal.edu.co/handle/unal/77741
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbott, M.M., Smith, J.M.M., Van Ness, H.C., Ness, H. Van, Abbott, M.M., 2005. Introduction to chemical engineering thermodynamics. McGraw-Hill.
Ali, S.H., 2009. Kinetics of catalytic esterification of propionic acid with different alcohols over Amberlyst 15. Int. J. Chem. Kinet. 41, 432–448. https://doi.org/10.1002/kin.20416
Ali, S.H., Merchant, S.Q., 2006. Kinetics of the esterification of acetic acid with 2-propanol: Impact of different acidic cation exchange resins on reaction mechanism. Int. J. Chem. Kinet. 38, 593–612. https://doi.org/10.1002/kin.20193
Andreeva, N.G., Komarova, L.F., Garber, Y.N., 1978. Investigation of constituents of the system water - butyl alcohol - butyl acetate - isoamyl acetate. Zh. Prikl. Khim 51, 2031–2036.
Arce, A., Blanco, A., Martínez-Ageitos, J., Vidal, I., 1994. Optimization of UNIQUAC structural parameters for individual mixtures; application to new experimental liquid-liquid equilibrium data for aqueous solutions of methanol and ethanol with isoamyl acetate. Fluid Phase Equilib. 93, 285–295. https://doi.org/10.1016/0378-3812(94)87014-4
Arnikar, H.J., Rao, T.S., Bodhe, A.A., 1970. A gas chromatographic study of the kinetics of the uncatalysed esterification of acetic acid by ethanol. J. Chromatogr. A 47, 265–268. https://doi.org/10.1016/0021-9673(70)80037-1
Asocaña, 2019. Aspectos generales del sector agroindustrial de la caña 2018-2019. Informe anual. [WWW Document]. Asocaña. URL https://www.asocana.org/ (accessed 2.14.20).
Bastidas, P., 2015. Diseño y montaje de un sistema piloto de destilación-reacción para la producción de acetato de isoamilo. Tesis de Maestría. Universidad Nacional de Colombia.
Bastidas, P., Parra, J., Gil, I., Rodríguez, G., 2012. Alcohol Distillation Plant Simulation: Thermal and Hydraulic Studies. Procedia Eng. 42, 80–89. https://doi.org/10.1016/j.proeng.2012.07.397
Berg, L., Yeh, A.-I., Ratanapupech, P., 1985. The recovery of ethyl acetate by extractive distillation. Chem. Eng. Commun. 39, 193–199. https://doi.org/10.1080/00986448508911670
Bi, F., Ali, A., Iqbal, S., Arman, M., Ul-Hassan, M., 2008. Chemical Esterification of Fusel Oil Alcohol for the Production of Flavor and Fragrance Esters. J. Chem. Soc. Pak. 30, 919–923.
Bird, R.B., Stewart, W.E., Lightfoot, E.N., 2006. Transport Phenomena, Revised 2nd Edition, John Wiley & Sons, Inc. https://doi.org/10.1002/aic.690070245
Brau, H.M., 1957. Review on the origin and composition of fusel oil. Univ. Puerto Rico. Agric. Exp. Station. Tech. Pap. no. 17. 1–30.
Bravo, J.L., Rocha, J.A., Fair, J.R., 1985. Mass transfer in gauze packings. Hydrocarb. Process. (International ed.) 64, 91–95.
Bringué, R., Ramírez, E., Fité, C., Iborra, M., Tejero, J., 2011. Kinetics of 1-Pentanol Etherification without Water Removal. Ind. Eng. Chem. Res. 50, 7911–7919. https://doi.org/10.1021/ie1025776
Bringué, R., Tejero, J., Iborra, M., Izquierdo, J., 2007. Water effect on the kinetics of 1-pentanol dehydration to di-n-pentyl ether (DNPE) on Amberlyst 70. Top. Catal. 45, 181–186.
Carlson, E.C., 1996. Don’t Gamble With Physical Properties For Simulations. Chem. Eng. Prog. 36–46.
Cepeda, E.A., 2010. Isobaric Vapor−Liquid Equilibrium for Binary Mixtures of 3-Methyl-1-butanol + 3-Methyl-1-butyl Ethanoate and 1-Pentanol + Pentyl Ethanoate at 101.3 kPa. J. Chem. Eng. Data 55, 2349–2354. https://doi.org/10.1021/je900812v
Cho, T.H., Ochi, K., Kojima, K., 1984. Isobaric Vapor-liquid-equilibria for binary S-systems with limited miscibility, water-normal-amyl alcohol and water-isoamyl alcohol. Kagaku Kogaku Ronbunshu 10, 181–183.
Deming, W.E., 1964. Statistical adjustment of data. Dover Publications.
Dimian, A.., Bildea, C.., Kiss, A.., 2019. Applications in Design and Simulation of Sustainable Chemical Processes. Elsevier.
Doherty, M.F., 1990. A Topological Theory of Phase Diagrams for Multiphase Reacting Mixtures. Proc. R. Soc. A Math. Phys. Eng. Sci. 430, 669–678. https://doi.org/10.1098/rspa.1990.0112
du Toit, E., Nicol, W., 2004. The rate inhibiting effect of water as a product on reactions catalysed by cation exchange resins: Formation of mesityl oxide from acetone as case study. Appl. Catal. A Gen. 277, 219–225. https://doi.org/10.1016/j.apcata.2004.09.015
Duque-Bernal, M., Quintero-Arias, J.D., Osorio-Viana, W., Dobrosz-Gómez, I., Fontalvo, J., Gómez-García, M.Á., 2013. Kinetic study on the homogeneous esterification of acetic acid with isoamyl alcohol. Int. J. Chem. Kinet. 45, 10–18. https://doi.org/10.1002/kin.20737
Durán, J., 2013. Esterificación Del Alcohol Isoamílico Con Ácido N-Butírico: Estudio Del Equilibrio Químico Y De Fases. Tesis de Maestría. Universidad Nacional de Colombia.
Durán, J., Córdoba, F., Gil, I., Rodríguez, G., Orjuela, A., 2013. Vapor–liquid equilibrium of the ethanol+3-methyl-1-butanol system at 50.66, 101.33 and 151.99 kPa. Fluid Phase Equilib. 338, 128–134.
Fedebiocombustibles, 2020. Estadísticas Fedebiocombustibles [WWW Document]. Fedebiocombustibles. URL https://www.fedebiocombustibles.com/ (accessed 1.1.16).
Ferreira, M.C., Meirelles, A.J.A., Batista, E.A.C., 2013. Study of the Fusel Oil Distillation Process. Ind. Eng. Chem. Res. 52, 2336–2351. https://doi.org/10.1021/ie300665z
Finlayson, B.A., 2003. Nonlinear analysis in chemical engineering. Ravenna Park Pub.
Golikova, A., Samarov, A., Trofimova, M., Rabdano, S., Toikka, M., Pervukhin, O., Toikka, A., 2017. Chemical Equilibrium for the Reacting System Acetic Acid–Ethanol–Ethyl Acetate–Water at 303.15 K, 313.15 K and 323.15 K. J. Solution Chem. 46, 374–387. https://doi.org/10.1007/s10953-017-0583-1
Golikova, A., Tsvetov, N., Samarov, A., Toikka, M., Zvereva, I., Trofimova, M., Toikka, A., 2019. Excess enthalpies and heat of esterification reaction in ethanol + acetic acid + ethyl acetate + water system at 313.15 K. J. Therm. Anal. Calorim. 1–7. https://doi.org/10.1007/s10973-019-08488-y
González, D.R., Bastidas, P., Rodríguez, G., Gil, I., 2017. Design alternatives and control performance in the pilot scale production of isoamyl acetate via reactive distillation. Chem. Eng. Res. Des. 123, 347–359. https://doi.org/10.1016/J.CHERD.2017.05.028
Guilera, J., Bringué, R., Ramírez, E., Fité, C., Tejero, J., 2014. Kinetic study of ethyl octyl ether formation from ethanol and 1-octanol on Amberlyst 70. AIChE J. 60, 2918–2928. https://doi.org/10.1002/aic.14497
Guilera, J., Ramírez, E., Fité, C., Iborra, M., Tejero, J., 2013. Thermal stability and water effect on ion-exchange resins in ethyl octyl ether production at high temperature. Appl. Catal. A Gen. 467, 301–309. https://doi.org/10.1016/j.apcata.2013.07.024
Güttinger, T.E., Morari, M., 1998. Predicting Multiple Steady States in Equilibrium Reactive Distillation. IFAC Proc. Vol. 31, 137–142. https://doi.org/10.1016/S1474-6670(17)44919-6
Güttinger, T.E., Morari, M., 1997. Predicting multiple steady states in distillation: Singularity analysis and reactive systems. Comput. Chem. Eng. 21, S995–S1000. https://doi.org/10.1016/S0098-1354(97)87632-6
Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö., Mehmetoğlu, Ü., 2007. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785. https://doi.org/10.1016/j.enzmictec.2006.06.010
Harmsen, G.J., 2007. Reactive distillation: The front-runner of industrial process intensification. Chem. Eng. Process. Process Intensif. 46, 774–780. https://doi.org/10.1016/j.cep.2007.06.005
Hayden, J.G., O’Connell, J.P., 1975. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 14, 209–216. https://doi.org/10.1021/i260055a003
Horsley, L., 1973. Azeotropic Data-III. Advances in Chemistry; American Chemical Society, Washington, DC.
Hyatt Jr Campbell, C., 1939. Process of concentrating aqueous aliphatic acid solutions by means of seven carbon atom aliphatic esters and five carbon atom aliphatic alcohol entrainers. Patent No 2,176,500.
Jaime-Leal, J.E., Bonilla-Petriciolet, A., Segovia-Hernández, J.G., Hernández, S., Hernández-Escoto, H., 2013. On the multiple solutions of the reactive distillation column for production of fuel ethers. Chem. Eng. Process. Process Intensif. 72, 31–41. https://doi.org/10.1016/J.CEP.2013.06.001
Kenig, E.Y., Bäder, H., Górak, A., Beßling, B., Adrian, T., Schoenmakers, H., 2001. Investigation of ethyl acetate reactive distillation process. Chem. Eng. Sci. 56, 6185–6193. https://doi.org/10.1016/S0009-2509(01)00206-8
Kiss, A.A., 2018. Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry. Top. Catal. 1–17. https://doi.org/10.1007/s11244-018-1052-9
Kiva, V.N., Hilmen, E.K., Skogestad, S., 2003. Azeotropic phase equilibrium diagrams: a survey. Chem. Eng. Sci. 58, 1903–1953. https://doi.org/10.1016/S0009-2509(03)00018-6
Kooijman, H.A., Taylor, R., 1991. Estimation of diffusion coefficients in multicomponent liquid systems. Ind. Eng. Chem. Res. 30, 1217–1222. https://doi.org/10.1021/ie00054a023
Krishna, R., 2002. Reactive separations: more ways to skin a cat. Chem. Eng. Sci. 57, 1491–1504. https://doi.org/10.1016/S0009-2509(02)00020-9
Krokhin, N.G., 1969. Liquid-Vapour Equilibrium in the System Acetic Acid – Isopentyl Alcohol – Isopentyl Acetate. III. The Ternary System. Russ. J. Phys. Chem. 43, 235–238.
Krokhin, N.G., 1967. Liquid-Vapour Equilibrium in the System Acetic Acid – Isopentyl Alcohol – Isopentyl Acetate. I. The Binary Systems Acetic Acid –Isopentyl Alcohol. Russ. J. Phys. Chem. 41, 804–805.
Küçücük, Z., Ceylan, K., 2009. Potential utilization of fusel oil: A kinetic approach for production of fusel oil esters through chemical reaction. Turkish J. Chem. 22, 289–300.
Kudryavtseva, L., Toome, M., 1984. Method for predicting ternary azeotropes. Chem. Eng. Commun. 26, 373–383. https://doi.org/10.1080/00986448408940223
Lee, H.Y., Yen, L.T., Chien, I.L., Huang, H.P., 2009. Reactive distillation for esterification of an alcohol mixture containing n-butanol and n-amyl alcohol. Ind. Eng. Chem. Res. 48, 7186–7204. https://doi.org/10.1021/ie801891q
Lee, L., Lin, R., 1999. Reaction and phase equilibria of esterification of isoamyl alcohol and acetic acid at 760 mm Hg. Fluid Phase Equilib. 165, 261–278. https://doi.org/10.1016/S0378-3812(99)00288-5
Leyva, F., 2014. Isoamyl propionate production by the integration of reaction/distillation operations. Tesis Doctoral. Universidad Nacional de Colombia.
Leyva, F., Orjuela, A., Kolah, A., Lira, C., Miller, D., Rodríguez, G., 2015. Isoamyl propionate production by reactive distillation. Sep. Purif. Technol. 146, 199–212. https://doi.org/10.1016/j.seppur.2015.03.039
Leyva, F., Orjuela, A., Miller, D., Gil, I., Vargas, J., Rodríguez, G., 2013. Kinetics of Propionic Acid and Isoamyl Alcohol Liquid Esterification with Amberlyst 70 as Catalyst. Ind. Eng. Chem. Res. 52, 18153–18161.
Luyben, W.L., Yu, C.-C., 2008. Reactive Distillation Design and Control. John Wiley & Sons, Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9780470377741
Malinen, I., Tanskanen, J., 2010. Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies. Comput. Chem. Eng. 34, 1761–1774. https://doi.org/10.1016/J.COMPCHEMENG.2010.03.013
Mazzotti, M., Kruglov, A., Neri, B., Gelosa, D., Morbidelli, M., 1996. A continuous chromatographic reactor: SMBR. Chem. Eng. Sci. 51, 1827–1836. https://doi.org/10.1016/0009-2509(96)00041-3
Mazzotti, M., Neri, B., Gelosa, D., Kruglov, A., Morbidelli, M., 1997. Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins. Ind. Eng. Chem. Res. 36, 3–10. https://doi.org/10.1021/ie960450t
Medina, E., Bringué, R., Tejero, J., Iborra, M., Fité, C., Izquierdo, J.F., Cunill, F., 2007. Dehydrocondensation of 1-hexanol to di-n-hexyl ether (DNHE) on Amberlyst 70.
Michelsen, M.L., 1982. The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9, 1–19. https://doi.org/10.1016/0378-3812(82)85001-2
Michelsen, M.L., Mollerup, J.M., 2004. Thermodynamic models : fundamentals & computational aspects. Tie-Line Publications.
Montoya, N., Durán, J., Córdoba, F., Gil, I.D., Trujillo, C.A., Rodríguez, G., Rodríguez, G., 2016. Colombian fusel oil. Ing. e Investig. 36, 21–27. https://doi.org/10.15446/ing.investig.v36n2.52369
Okasinski, M.J., Doherty, M.F., 1997. Thermodynamic behavior of reactive azeotropes. AIChE J. 43, 2227–2238. https://doi.org/10.1002/aic.690430909
Onda, K., Takeuchi, H., Okumoto, Y., 1968. Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Japan 1, 56–62. https://doi.org/10.1252/jcej.1.56
Orjuela, A., Kolah, A., Hong, X., Lira, C., Miller, D., 2012a. Diethyl succinate synthesis by reactive distillation. Sep. Purif. Technol. 88, 151–162. https://doi.org/10.1016/j.seppur.2011.11.033
Orjuela, A., Kolah, A., Lira, C., Miller, D., 2011. Mixed Succinic Acid/Acetic Acid Esterification with Ethanol by Reactive Distillation. Ind. Eng. Chem. Res. 50, 9209–9220. https://doi.org/10.1021/ie200133w
Orjuela, A., Santaella, M.A., Molano, P.A., 2016. Process Intensification by Reactive Distillation, in: Process Intensification in Chemical Engineering. Springer International Publishing, Cham, pp. 131–181. https://doi.org/10.1007/978-3-319-28392-0_6
Orjuela, A., Yanez, A., Santhanakrishnan, A., Lira, C., Miller, D., 2012b. Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst. Chem. Eng. J. 188, 98–107. https://doi.org/10.1016/j.cej.2012.01.103
Orjuela, A., Yanez, A.J., Santhanakrishnan, A., Lira, C.T., Miller, D.J., 2013. Corrigendum to “Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst” [Chem. Eng. J. 188 (2012) 98–107]. Chem. Eng. J. 231, 561. https://doi.org/10.1016/j.cej.2013.06.001
Orjuela Londoño, Á., Leiva Lenis, F., Boyacá Mendivelso, L.A., Rodríguez Niño, G., Luis María, S.C., 2005. Analysing chemical equilibrium conditions when studying butyl acetate synthesis. Ing. E Investig. 25, 13–21.
Osorio-Pascuas, O.M., Santaella, M.A., Rodriguez, G., Orjuela, A., 2015. Esterification Kinetics of Tributyl Citrate Production Using Homogeneous and Heterogeneous Catalysts. Ind. Eng. Chem. Res. 54, 12534–12542.
Osorio-Viana, W., Duque-Bernal, M., Fontalvo, J., Dobrosz-Gómez, I., Gómez-García, M.Á., 2013a. Kinetic study on the catalytic esterification of acetic acid with isoamyl alcohol over Amberlite IR-120. Chem. Eng. Sci. 101, 755–763. https://doi.org/10.1016/j.ces.2013.07.009
Osorio-Viana, W., Duque-Bernal, M., Quintero-Arias, J.D., Dobrosz-Gómez, I., Fontalvo, J., Gómez-García, M. ángel, 2013b. Activity model and consistent thermodynamic features for acetic acid-isoamyl alcohol-isoamyl acetate-water reactive system. Fluid Phase Equilib. 345, 68–80. https://doi.org/10.1016/j.fluid.2013.02.006
Osorio-Viana, W., Ibarra-Taquez, H.N., Dobrosz-Gómez, I., Gómez-García, M.Á., 2014. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. Process Intensif. 76, 70–82. https://doi.org/10.1016/j.cep.2013.12.005
Osorio, W., 2014. Desarrollo de un proceso intensificado para la producción de acetato de isoamilo mediante tecnología de membranas. Tesis de doctorado. Universidad Nacional de Colombia.
Othmer, D.F., 1943. Composition of Vapors from Boiling Binary Solutions. Ind. Eng. Chem. 35, 614–620. https://doi.org/10.1021/ie50401a018
Özgülsün, A., Karaosmanôglu, F., Tüter, M., 2000. Esterification reaction of oleic acid with a fusel oil fraction for production of lubricating oil. J. Am. Oil Chem. Soc. 77, 105–109. https://doi.org/10.1007/s11746-000-0017-5
Pääkkönen, P.K., Krause, A.O.I., 2003. Diffusion and chemical reaction in isoamylene etherification within a cation-exchange resin. Appl. Catal. A Gen. 245, 289–301. https://doi.org/10.1016/S0926-860X(02)00650-6
Patidar, P., Mahajani, S.M., 2013. Esterification of Fusel Oil Using Reactive Distillation. Part II: Process Alternatives. Ind. Eng. Chem. Res. 52, 16637–16647.
Patidar, P., Mahajani, S.M., 2012. Esterification of fusel oil using reactive distillation – Part I: Reaction kinetics. Chem. Eng. J. 207–208, 377–387.
Patil, A.G., Koolwal, S.M., Butala, H.D., 2002. Fusel oil: Composition, removal and potential utilization. Int.Sugar J. 104, 51–58.
Perelygin, V.M., Volkov, A.G., 1971. Liquid-vapor equilibrium in the ethanol + isoamyl acetate and ethanol + water + isoamyl acetate systems. Fermentn. Spirt. Prom-st 37, 15–7.
Pérez, M.A., Bringué, R., Iborra, M., Tejero, J., Cunill, F., 2014. Ion exchange resins as catalysts for the liquid-phase dehydration of 1-butanol to di-n-butyl ether. Appl. Catal. A Gen. 482, 38–48. https://doi.org/10.1016/j.apcata.2014.05.017
Piha, P., Peltonen, R.J., Kitunen, M., 2007. System amyl alcohol (from fusel oil)-acetic acid-water at 20°. J. Appl. Chem. 8, 576–580. https://doi.org/10.1002/jctb.5010080907
Pisarenko, Y.A., Shalunova, S.Y., Glushachenkova, E.A., Toikka, A.M., 2008. Analysis of possible forms of the azeotropic relationship for two-dimensional diagrams of equilibrium distillation. Theor. Found. Chem. Eng. 42, 291–298. https://doi.org/10.1134/S0040579508030093
Pöpken, T., Götze, L., Gmehling, J., 2000. Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis. Ind. Eng. Chem. Res. 39, 2601–2611. https://doi.org/10.1021/ie000063q
Prausnitz, J.M.J., Anderson, T.F., Grens, E.A.E., Eckert, C.A., Hsieh, R., O’Connell, J.P., Anderson, F., Grens, E.A.E., Eckert, C.A., Hsieh, R., O’Connell, J., 1980. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria. Prentice Hall, New Jersey.
Raeva, V.M., Frolkova, A. V, Serafimov, L.A., 2009. Determination of concentration regions of existence of ternary azeotropes: Systems showing mixed deviations from ideal behavior. Theor. Found. Chem. Eng. 43, 676. https://doi.org/10.1134/S0040579509050091
Raeva, V.M., Serafimov, L.A., Frolkova, A. V, 2006. Determination of concentration regions of existence of ternary azeotropes: II. Systems showing unlike deviations from ideal behavior. Theor. Found. Chem. Eng. 40, 38–46. https://doi.org/10.1134/S0040579506010064
Reid, R., Prausnitz, J., Poling, B., 1987. The properties of gases and liquids, 4a. ed. McGraw-Hill.
Renon, H., Prausnitz, J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144.
Rodríguez, G., 2012. Estudio técnico-económico de alternativas para la valorización del aceite de Fusel generado en la producción de bioetanol en Colombia. Proyecto de investigación financiado por COLCIENCIAS/ECOPETROL. Ejecutado por la Universidad Nacional de Colombia .
Rohm, Haas, 2005. Amberlyst 70 product data sheet. Rohm Haas Philadelphia, PA, USA 1–2.
Rojas, O., Salazar, A., Gil, I., Rodríguez, G., 2016. Effect of Pressure on the Azeotrope of the Mixture Isoamyl Acetate–Isoamyl Alcohol at 50.00, 101.32, 250.00, and 350.00 kPa. J. Chem. Eng. Data 61, 3109–3115. https://doi.org/10.1021/acs.jced.6b00197
Saha, B., Alqahtani, A., Teo, H., 2005a. Production of iso-amyl acetate: Heterogeneous kinetics and techno-feasibility evaluation for catalytic distillation. Int. J. Chem. React. Eng. 3, 1–14. https://doi.org/10.2202/1542-6580.1231
Saha, B., Teo, H., Alqahtani, A., 2005b. iso-Amyl acetate synthesis by catalytic distillation. Int. J. Chem. React. Eng. 3, 1–14. https://doi.org/10.2202/1542-6580.1250
Sánchez, C.A., Sánchez, O.A., Orjuela, A., Gil, I.D., Rodríguez, G., 2017. Vapor–Liquid Equilibrium for Binary Mixtures of Acetates in the Direct Esterification of Fusel Oil. J. Chem. Eng. Data 62, 11–19. https://doi.org/10.1021/acs.jced.6b00221
Sánchez, C.A.C.A., Herrera, A.A.A., Vargas, J.C.J.C., Gil, I.D.I.D., Rodríguez, G., 2019. Isobaric Vapor Liquid Equilibria for Binary Mixtures of Isoamyl Acetate + Ethyl Acetate at 50 and 100 kPa. J. Chem. \& Eng. Data 64, 2110–2115. https://doi.org/10.1021/acs.jced.8b01053
Sands, D.E., 1974. Weighting factors in least squares. J. Chem. Educ. 51, 473. https://doi.org/10.1021/ed051p473
Santaella, M.A., Orjuela, A., Narváez, P.C., 2015. Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chem. Eng. Process. Process Intensif. 96, 1–13. https://doi.org/10.1016/J.CEP.2015.07.027
Savescu, V., Ionescu, I., Mehedinteanu, L., 1997. Isobaric vapor-liquid equilibria for ethyl acetate+ isoamyl alcohol and ethyl acetate+ isoamyl acetate mixtures. Rev. Roum. Chim. 42, 51–54.
Schmidt-Traub, H., Górak, A., 2006. Integrated Reaction and Separation Operations. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30304-9
Serafimov, L.A., 2009. State of the art in the thermodynamic and topological analysis of phase diagrams. Theor. Found. Chem. Eng. 43, 268–278. https://doi.org/10.1134/S0040579509030051
Shah, M., Kiss, A.A., Zondervan, E., de Haan, A.B., 2012. A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chem. Eng. Process. Process Intensif. 60, 55–64. https://doi.org/10.1016/j.cep.2012.05.007
Sharifzadeh, M., 2013. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem. Eng. Sci. 92, 21–39. https://doi.org/10.1016/j.ces.2013.01.026
Shigarov, A.B., Fadeev, S.I., Mikhailova, I.A., Kullkov, A. V., Korolev, V.K., Kuzin, N.A., Kirillov, V.A., 2002. Simplified Treatment of Mass Transfer for Gas-Phase Hydrogenation/Dehydrogenation of Heavy Compounds. Korean J. Chem. Eng. 19, 252–260. https://doi.org/10.1007/BF02698410
Smith, J.M. (Joseph M., 1981. Chemical engineering kinetics. McGraw-Hill.
Sneesby, M.G., Tadé, M.O., Smith, T.N., 2008. Reaction Hysteresis: A New Cause of Output Multiplicity in Reactive Distillation. Dev. Chem. Eng. Miner. Process. 7, 41–56. https://doi.org/10.1002/apj.5500070106
Stephenson, R., Stuart, J., 1986. Mutual binary solubilities: water-alcohols and water-esters. J. Chem. Eng. Data 31, 56–70. https://doi.org/10.1021/je00043a019
Tang, Y.T., Chen, Y.W., Huang, H.P., Yu, C.C., Hung, S.B., Lee, M.J., 2005. Design of reactive distillations for acetic acid esterification. AIChE J. 51, 1683–1699. https://doi.org/10.1002/aic.10519
Tang, Y.T., Huang, H.-P., Chien, I.-L., 2003. Design of a Complete Ethyl Acetate Reactive Distillation System. J. Chem. Eng. JAPAN 36, 1352–1363. https://doi.org/10.1252/jcej.36.1352
Taylor, R., Krishna, R., 1993. Multicomponent mass transfer. Wiley.
Teo, H., Saha, B., 2004. Heterogeneous catalysed esterification of acetic acid with isoamyl alcohol: kinetic studies. J. Catal. 228, 174–182.
Toikka, A.M., Toikka, M.A., Pisarenko, Y.A., Serafimov, L.A., 2009. Vapor-liquid equilibria in systems with esterification reaction. Theor. Found. Chem. Eng. 43, 129–142. https://doi.org/10.1134/S004057950902002X
Toit, E. Du, Schwarzer, R., Nicol, W., 2004. Acetone condensation on a cation exchange resin catalyst: The pseudo equilibrium phenomenon, in: Chemical Engineering Science. pp. 5545–5550. https://doi.org/10.1016/j.ces.2004.07.034
Tyn, M.T., Calus, W.F., 1975. Diffusion coefficients in dilute binary liquid mixtures. J. Chem. Eng. Data 20, 106–109. https://doi.org/10.1021/je60064a006
Ung, S., Doherty, M., 1995a. Calculation of residue curve maps for mixtures with multiple equilibrium chemical reactions. Ind. Eng. Chem. Res. 1, 3195–3202.
Ung, S., Doherty, M.F., 1995b. Vapor-liquid phase equilibrium in systems with multiple chemical reactions. Chem. Eng. Sci. 50, 23–48. https://doi.org/10.1016/0009-2509(94)00180-Y
Ung, S., Doherty, M.F., 1995c. Theory of phase equilibria in multireaction systems. Chem. Eng. Sci. 50, 3201–3216. https://doi.org/10.1016/0009-2509(95)00159-3
Ung, S., Doherty, M.F., 1995d. Synthesis of Reactive Distillation Systems with Multiple Equilibrium Chemical Reactions. Ind. Eng. Chem. Res. 34, 2555–2565.
Wasylkiewicz, S.K., Ung, S., 2000. Global phase stability analysis for heterogeneous reactive mixtures and calculation of reactive liquid–liquid and vapor–liquid–liquid equilibria. Fluid Phase Equilib. 175, 253–272. https://doi.org/10.1016/S0378-3812(00)00451-9
Weisz, P.B., Prater, C.D., 1954. Interpretation of Measurements in Experimental Catalysis. Adv. Catal. 6, 143–196. https://doi.org/10.1016/S0360-0564(08)60390-9
Wu, Y.C., Lee, H.Y., Lee, C.H., Huang, H.P., Chien, I.L., 2013a. Design and control of thermally-coupled reactive distillation system for esterification of an alcohol mixture containing n -amyl alcohol and n -hexanol. Ind. Eng. Chem. Res. 52, 17184–17197.
Wu, Y.C., Lee, H.Y., Tsai, C.Y., Huang, H.P., Chien, I.L., 2013b. Design and control of a reactive-distillation process for esterification of an alcohol mixture containing ethanol and n-butanol. Comput. Chem. Eng. 57, 67–77.
Wyczesany, A., 2009. Chemical equilibrium constants in esterification of acetic acid with C1–C5 alcohols in the liquid phase. Chem. Process Eng. 30, 243–265.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 167
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77741/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77741/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77741/1/75091916.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77741/4/75091916.2020.pdf.jpg
bitstream.checksum.fl_str_mv 6f3f13b02594d02ad110b3ad534cd5df
dab767be7a093b539031785b3bf95490
f9d6ca133c38e8fe528bdbb988a59094
51675de87c3f889f9ade93e103538515
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089363440533504
spelling Atribución-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Niño, Gerardo09d02f57-df4f-4dd5-84b3-3c831e908fb7-1Gil Chaves, Iván Darío02f16ab2-3973-47c5-bfd2-f8e8d3feafd5-1Sánchez Correa, César Augustofaa65425-ca11-438d-a88b-b0a419f254acGrupo de Investigación en Procesos Químicos y Bioquímicos2020-07-06T15:55:04Z2020-07-06T15:55:04Z2020-07-02https://repositorio.unal.edu.co/handle/unal/77741En este trabajo se investigan las trayectorias directas de procesos de destilación reactiva (DR) para la síntesis de acetatos a partir de la esterificación de ácido acético con aceite de fusel (AF). El problema se encuentra limitado a una descripción aproximada donde el AF se considera como una mezcla de alcohol isoamílico + agua + etanol. Esta versión simplificada del problema puede ocurrir aproximadamente en la práctica. En este contexto el objetivo principal del trabajo consistió en diseñar un proceso de DR para la producción de acetato de fusel. Los objetivos específicos son: a) desarrollar un modelo termodinámico adecuado para predecir los equilibrios de fases líquido – vapor y líquido – líquido – vapor del sistema multicomponente a partir de la información experimental (generada y recopilada en la literatura) de los subsistemas binarios y ternarios; b) desarrollar un modelo cinético apropiado para describir la esterificación directa del ácido acético con aceite de fusel en fase líquida; c) sintetizar a nivel conceptual alternativas de proceso para la tecnología de DR; y d) calcular los tamaños de los equipos y el costo total anualizado para alternativas de proceso técnicamente factibles. Desde el punto de vista experimental, se generó información nueva en dos casos: a) para el equilibrio líquido – vapor de las mezclas binarias de acetatos; y b) datos de velocidad de reacción para la esterificación de ácido acético con alcohol isoamílico (y con mezclas de alcohol isoamílico y etanol) utilizando la resina Amberlyst 70 como catalizador. La información experimental se utilizó para correlacionar y validar los modelos termodinámico y cinético. Desde el punto de vista teórico se desarrolló la caracterización termodinámica completa del sistema multicomponente reactivo, y se usaron los planos de fases reactivos para sintetizar estructuras de proceso que se caracterizaron utilizando los estados estacionarios de máxima conversión. Se encontró que es posible implementar un proceso de DR con alimentos en la proporción estequiométrica, altas conversiones (~99%) y alta recuperación de los acetatos (≥99%).This work is a research on the direct trajectories of a reactive distillation process to synthetize acetates by the acetic acid esterification with fusel oil. The problem is bounding into the approximated description where the fusel oil is modeled as a mixture of isoamyl alcohol + ethanol + water. This simplified version of the problem can occur in the real world. In this context, the main objective of this work was to design a reactive distillation process for the fusel acetate production. The specific objectives are: a) to develop a thermodynamic model suitable for the prediction of the multicomponent phase equilibria (vapor – liquid and vapor – liquid – liquid) from experimental information (generated and extracted from literature) related with the associated binary and ternary subsystems; b) to develop a kinetic model suitable to describe the acetic acid esterification with fusel oil in the liquid phase; c) to synthetize, in the conceptual level, process alternatives for the reactive distillation technology; and d) to calculate the dimensions for the process units and the total annualized cost for the technically feasible process alternatives. From the experimental view, new information was generated in two subjects: a) vapor – liquid equilibrium for binary mixtures of acetates; and b) kinetic data for the liquid phase acetic acid esterification with isoamyl alcohol (or with binary mixtures of isoamyl alcohol and ethanol) using the Amberlyst 70 resin as catalyst. The experimental information was used to correlate and validate the thermodynamic and kinetic models. From a theoretical view, a complete thermodynamic characterization for the multicomponent reactive system was calculated, and the reactive phase diagrams were used to synthesize process structures that were characterized using the stationary states with maximum conversion. It was found that is possible to implement a reactive distillation process with the feeds in the stoichiometric proportion, high conversions for the reactants (~ 99 %) and high recoveries for the acetates (≥ 99 %)Doctorado167application/pdfspa660 - Ingeniería química::664 - Tecnología de alimentos660 - Ingeniería químicafusel oilisoamyl acetateethyl acetatereactive distillationaceite de fuselacetato de isoamiloacetato de etilodestilación reactivaProducción de acetato de fusel por destilación reactivaFusel acetate production by reactive distillationLibroinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/LIBBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaUniversidad Nacional de Colombia - Sede BogotáAbbott, M.M., Smith, J.M.M., Van Ness, H.C., Ness, H. Van, Abbott, M.M., 2005. Introduction to chemical engineering thermodynamics. McGraw-Hill.Ali, S.H., 2009. Kinetics of catalytic esterification of propionic acid with different alcohols over Amberlyst 15. Int. J. Chem. Kinet. 41, 432–448. https://doi.org/10.1002/kin.20416Ali, S.H., Merchant, S.Q., 2006. Kinetics of the esterification of acetic acid with 2-propanol: Impact of different acidic cation exchange resins on reaction mechanism. Int. J. Chem. Kinet. 38, 593–612. https://doi.org/10.1002/kin.20193Andreeva, N.G., Komarova, L.F., Garber, Y.N., 1978. Investigation of constituents of the system water - butyl alcohol - butyl acetate - isoamyl acetate. Zh. Prikl. Khim 51, 2031–2036.Arce, A., Blanco, A., Martínez-Ageitos, J., Vidal, I., 1994. Optimization of UNIQUAC structural parameters for individual mixtures; application to new experimental liquid-liquid equilibrium data for aqueous solutions of methanol and ethanol with isoamyl acetate. Fluid Phase Equilib. 93, 285–295. https://doi.org/10.1016/0378-3812(94)87014-4Arnikar, H.J., Rao, T.S., Bodhe, A.A., 1970. A gas chromatographic study of the kinetics of the uncatalysed esterification of acetic acid by ethanol. J. Chromatogr. A 47, 265–268. https://doi.org/10.1016/0021-9673(70)80037-1Asocaña, 2019. Aspectos generales del sector agroindustrial de la caña 2018-2019. Informe anual. [WWW Document]. Asocaña. URL https://www.asocana.org/ (accessed 2.14.20).Bastidas, P., 2015. Diseño y montaje de un sistema piloto de destilación-reacción para la producción de acetato de isoamilo. Tesis de Maestría. Universidad Nacional de Colombia.Bastidas, P., Parra, J., Gil, I., Rodríguez, G., 2012. Alcohol Distillation Plant Simulation: Thermal and Hydraulic Studies. Procedia Eng. 42, 80–89. https://doi.org/10.1016/j.proeng.2012.07.397Berg, L., Yeh, A.-I., Ratanapupech, P., 1985. The recovery of ethyl acetate by extractive distillation. Chem. Eng. Commun. 39, 193–199. https://doi.org/10.1080/00986448508911670Bi, F., Ali, A., Iqbal, S., Arman, M., Ul-Hassan, M., 2008. Chemical Esterification of Fusel Oil Alcohol for the Production of Flavor and Fragrance Esters. J. Chem. Soc. Pak. 30, 919–923.Bird, R.B., Stewart, W.E., Lightfoot, E.N., 2006. Transport Phenomena, Revised 2nd Edition, John Wiley & Sons, Inc. https://doi.org/10.1002/aic.690070245Brau, H.M., 1957. Review on the origin and composition of fusel oil. Univ. Puerto Rico. Agric. Exp. Station. Tech. Pap. no. 17. 1–30.Bravo, J.L., Rocha, J.A., Fair, J.R., 1985. Mass transfer in gauze packings. Hydrocarb. Process. (International ed.) 64, 91–95.Bringué, R., Ramírez, E., Fité, C., Iborra, M., Tejero, J., 2011. Kinetics of 1-Pentanol Etherification without Water Removal. Ind. Eng. Chem. Res. 50, 7911–7919. https://doi.org/10.1021/ie1025776Bringué, R., Tejero, J., Iborra, M., Izquierdo, J., 2007. Water effect on the kinetics of 1-pentanol dehydration to di-n-pentyl ether (DNPE) on Amberlyst 70. Top. Catal. 45, 181–186.Carlson, E.C., 1996. Don’t Gamble With Physical Properties For Simulations. Chem. Eng. Prog. 36–46.Cepeda, E.A., 2010. Isobaric Vapor−Liquid Equilibrium for Binary Mixtures of 3-Methyl-1-butanol + 3-Methyl-1-butyl Ethanoate and 1-Pentanol + Pentyl Ethanoate at 101.3 kPa. J. Chem. Eng. Data 55, 2349–2354. https://doi.org/10.1021/je900812vCho, T.H., Ochi, K., Kojima, K., 1984. Isobaric Vapor-liquid-equilibria for binary S-systems with limited miscibility, water-normal-amyl alcohol and water-isoamyl alcohol. Kagaku Kogaku Ronbunshu 10, 181–183.Deming, W.E., 1964. Statistical adjustment of data. Dover Publications.Dimian, A.., Bildea, C.., Kiss, A.., 2019. Applications in Design and Simulation of Sustainable Chemical Processes. Elsevier.Doherty, M.F., 1990. A Topological Theory of Phase Diagrams for Multiphase Reacting Mixtures. Proc. R. Soc. A Math. Phys. Eng. Sci. 430, 669–678. https://doi.org/10.1098/rspa.1990.0112du Toit, E., Nicol, W., 2004. The rate inhibiting effect of water as a product on reactions catalysed by cation exchange resins: Formation of mesityl oxide from acetone as case study. Appl. Catal. A Gen. 277, 219–225. https://doi.org/10.1016/j.apcata.2004.09.015Duque-Bernal, M., Quintero-Arias, J.D., Osorio-Viana, W., Dobrosz-Gómez, I., Fontalvo, J., Gómez-García, M.Á., 2013. Kinetic study on the homogeneous esterification of acetic acid with isoamyl alcohol. Int. J. Chem. Kinet. 45, 10–18. https://doi.org/10.1002/kin.20737Durán, J., 2013. Esterificación Del Alcohol Isoamílico Con Ácido N-Butírico: Estudio Del Equilibrio Químico Y De Fases. Tesis de Maestría. Universidad Nacional de Colombia.Durán, J., Córdoba, F., Gil, I., Rodríguez, G., Orjuela, A., 2013. Vapor–liquid equilibrium of the ethanol+3-methyl-1-butanol system at 50.66, 101.33 and 151.99 kPa. Fluid Phase Equilib. 338, 128–134.Fedebiocombustibles, 2020. Estadísticas Fedebiocombustibles [WWW Document]. Fedebiocombustibles. URL https://www.fedebiocombustibles.com/ (accessed 1.1.16).Ferreira, M.C., Meirelles, A.J.A., Batista, E.A.C., 2013. Study of the Fusel Oil Distillation Process. Ind. Eng. Chem. Res. 52, 2336–2351. https://doi.org/10.1021/ie300665zFinlayson, B.A., 2003. Nonlinear analysis in chemical engineering. Ravenna Park Pub.Golikova, A., Samarov, A., Trofimova, M., Rabdano, S., Toikka, M., Pervukhin, O., Toikka, A., 2017. Chemical Equilibrium for the Reacting System Acetic Acid–Ethanol–Ethyl Acetate–Water at 303.15 K, 313.15 K and 323.15 K. J. Solution Chem. 46, 374–387. https://doi.org/10.1007/s10953-017-0583-1Golikova, A., Tsvetov, N., Samarov, A., Toikka, M., Zvereva, I., Trofimova, M., Toikka, A., 2019. Excess enthalpies and heat of esterification reaction in ethanol + acetic acid + ethyl acetate + water system at 313.15 K. J. Therm. Anal. Calorim. 1–7. https://doi.org/10.1007/s10973-019-08488-yGonzález, D.R., Bastidas, P., Rodríguez, G., Gil, I., 2017. Design alternatives and control performance in the pilot scale production of isoamyl acetate via reactive distillation. Chem. Eng. Res. Des. 123, 347–359. https://doi.org/10.1016/J.CHERD.2017.05.028Guilera, J., Bringué, R., Ramírez, E., Fité, C., Tejero, J., 2014. Kinetic study of ethyl octyl ether formation from ethanol and 1-octanol on Amberlyst 70. AIChE J. 60, 2918–2928. https://doi.org/10.1002/aic.14497Guilera, J., Ramírez, E., Fité, C., Iborra, M., Tejero, J., 2013. Thermal stability and water effect on ion-exchange resins in ethyl octyl ether production at high temperature. Appl. Catal. A Gen. 467, 301–309. https://doi.org/10.1016/j.apcata.2013.07.024Güttinger, T.E., Morari, M., 1998. Predicting Multiple Steady States in Equilibrium Reactive Distillation. IFAC Proc. Vol. 31, 137–142. https://doi.org/10.1016/S1474-6670(17)44919-6Güttinger, T.E., Morari, M., 1997. Predicting multiple steady states in distillation: Singularity analysis and reactive systems. Comput. Chem. Eng. 21, S995–S1000. https://doi.org/10.1016/S0098-1354(97)87632-6Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö., Mehmetoğlu, Ü., 2007. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785. https://doi.org/10.1016/j.enzmictec.2006.06.010Harmsen, G.J., 2007. Reactive distillation: The front-runner of industrial process intensification. Chem. Eng. Process. Process Intensif. 46, 774–780. https://doi.org/10.1016/j.cep.2007.06.005Hayden, J.G., O’Connell, J.P., 1975. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 14, 209–216. https://doi.org/10.1021/i260055a003Horsley, L., 1973. Azeotropic Data-III. Advances in Chemistry; American Chemical Society, Washington, DC.Hyatt Jr Campbell, C., 1939. Process of concentrating aqueous aliphatic acid solutions by means of seven carbon atom aliphatic esters and five carbon atom aliphatic alcohol entrainers. Patent No 2,176,500.Jaime-Leal, J.E., Bonilla-Petriciolet, A., Segovia-Hernández, J.G., Hernández, S., Hernández-Escoto, H., 2013. On the multiple solutions of the reactive distillation column for production of fuel ethers. Chem. Eng. Process. Process Intensif. 72, 31–41. https://doi.org/10.1016/J.CEP.2013.06.001Kenig, E.Y., Bäder, H., Górak, A., Beßling, B., Adrian, T., Schoenmakers, H., 2001. Investigation of ethyl acetate reactive distillation process. Chem. Eng. Sci. 56, 6185–6193. https://doi.org/10.1016/S0009-2509(01)00206-8Kiss, A.A., 2018. Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry. Top. Catal. 1–17. https://doi.org/10.1007/s11244-018-1052-9Kiva, V.N., Hilmen, E.K., Skogestad, S., 2003. Azeotropic phase equilibrium diagrams: a survey. Chem. Eng. Sci. 58, 1903–1953. https://doi.org/10.1016/S0009-2509(03)00018-6Kooijman, H.A., Taylor, R., 1991. Estimation of diffusion coefficients in multicomponent liquid systems. Ind. Eng. Chem. Res. 30, 1217–1222. https://doi.org/10.1021/ie00054a023Krishna, R., 2002. Reactive separations: more ways to skin a cat. Chem. Eng. Sci. 57, 1491–1504. https://doi.org/10.1016/S0009-2509(02)00020-9Krokhin, N.G., 1969. Liquid-Vapour Equilibrium in the System Acetic Acid – Isopentyl Alcohol – Isopentyl Acetate. III. The Ternary System. Russ. J. Phys. Chem. 43, 235–238.Krokhin, N.G., 1967. Liquid-Vapour Equilibrium in the System Acetic Acid – Isopentyl Alcohol – Isopentyl Acetate. I. The Binary Systems Acetic Acid –Isopentyl Alcohol. Russ. J. Phys. Chem. 41, 804–805.Küçücük, Z., Ceylan, K., 2009. Potential utilization of fusel oil: A kinetic approach for production of fusel oil esters through chemical reaction. Turkish J. Chem. 22, 289–300.Kudryavtseva, L., Toome, M., 1984. Method for predicting ternary azeotropes. Chem. Eng. Commun. 26, 373–383. https://doi.org/10.1080/00986448408940223Lee, H.Y., Yen, L.T., Chien, I.L., Huang, H.P., 2009. Reactive distillation for esterification of an alcohol mixture containing n-butanol and n-amyl alcohol. Ind. Eng. Chem. Res. 48, 7186–7204. https://doi.org/10.1021/ie801891qLee, L., Lin, R., 1999. Reaction and phase equilibria of esterification of isoamyl alcohol and acetic acid at 760 mm Hg. Fluid Phase Equilib. 165, 261–278. https://doi.org/10.1016/S0378-3812(99)00288-5Leyva, F., 2014. Isoamyl propionate production by the integration of reaction/distillation operations. Tesis Doctoral. Universidad Nacional de Colombia.Leyva, F., Orjuela, A., Kolah, A., Lira, C., Miller, D., Rodríguez, G., 2015. Isoamyl propionate production by reactive distillation. Sep. Purif. Technol. 146, 199–212. https://doi.org/10.1016/j.seppur.2015.03.039Leyva, F., Orjuela, A., Miller, D., Gil, I., Vargas, J., Rodríguez, G., 2013. Kinetics of Propionic Acid and Isoamyl Alcohol Liquid Esterification with Amberlyst 70 as Catalyst. Ind. Eng. Chem. Res. 52, 18153–18161.Luyben, W.L., Yu, C.-C., 2008. Reactive Distillation Design and Control. John Wiley & Sons, Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9780470377741Malinen, I., Tanskanen, J., 2010. Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies. Comput. Chem. Eng. 34, 1761–1774. https://doi.org/10.1016/J.COMPCHEMENG.2010.03.013Mazzotti, M., Kruglov, A., Neri, B., Gelosa, D., Morbidelli, M., 1996. A continuous chromatographic reactor: SMBR. Chem. Eng. Sci. 51, 1827–1836. https://doi.org/10.1016/0009-2509(96)00041-3Mazzotti, M., Neri, B., Gelosa, D., Kruglov, A., Morbidelli, M., 1997. Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins. Ind. Eng. Chem. Res. 36, 3–10. https://doi.org/10.1021/ie960450tMedina, E., Bringué, R., Tejero, J., Iborra, M., Fité, C., Izquierdo, J.F., Cunill, F., 2007. Dehydrocondensation of 1-hexanol to di-n-hexyl ether (DNHE) on Amberlyst 70.Michelsen, M.L., 1982. The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9, 1–19. https://doi.org/10.1016/0378-3812(82)85001-2Michelsen, M.L., Mollerup, J.M., 2004. Thermodynamic models : fundamentals & computational aspects. Tie-Line Publications.Montoya, N., Durán, J., Córdoba, F., Gil, I.D., Trujillo, C.A., Rodríguez, G., Rodríguez, G., 2016. Colombian fusel oil. Ing. e Investig. 36, 21–27. https://doi.org/10.15446/ing.investig.v36n2.52369Okasinski, M.J., Doherty, M.F., 1997. Thermodynamic behavior of reactive azeotropes. AIChE J. 43, 2227–2238. https://doi.org/10.1002/aic.690430909Onda, K., Takeuchi, H., Okumoto, Y., 1968. Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Japan 1, 56–62. https://doi.org/10.1252/jcej.1.56Orjuela, A., Kolah, A., Hong, X., Lira, C., Miller, D., 2012a. Diethyl succinate synthesis by reactive distillation. Sep. Purif. Technol. 88, 151–162. https://doi.org/10.1016/j.seppur.2011.11.033Orjuela, A., Kolah, A., Lira, C., Miller, D., 2011. Mixed Succinic Acid/Acetic Acid Esterification with Ethanol by Reactive Distillation. Ind. Eng. Chem. Res. 50, 9209–9220. https://doi.org/10.1021/ie200133wOrjuela, A., Santaella, M.A., Molano, P.A., 2016. Process Intensification by Reactive Distillation, in: Process Intensification in Chemical Engineering. Springer International Publishing, Cham, pp. 131–181. https://doi.org/10.1007/978-3-319-28392-0_6Orjuela, A., Yanez, A., Santhanakrishnan, A., Lira, C., Miller, D., 2012b. Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst. Chem. Eng. J. 188, 98–107. https://doi.org/10.1016/j.cej.2012.01.103Orjuela, A., Yanez, A.J., Santhanakrishnan, A., Lira, C.T., Miller, D.J., 2013. Corrigendum to “Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst” [Chem. Eng. J. 188 (2012) 98–107]. Chem. Eng. J. 231, 561. https://doi.org/10.1016/j.cej.2013.06.001Orjuela Londoño, Á., Leiva Lenis, F., Boyacá Mendivelso, L.A., Rodríguez Niño, G., Luis María, S.C., 2005. Analysing chemical equilibrium conditions when studying butyl acetate synthesis. Ing. E Investig. 25, 13–21.Osorio-Pascuas, O.M., Santaella, M.A., Rodriguez, G., Orjuela, A., 2015. Esterification Kinetics of Tributyl Citrate Production Using Homogeneous and Heterogeneous Catalysts. Ind. Eng. Chem. Res. 54, 12534–12542.Osorio-Viana, W., Duque-Bernal, M., Fontalvo, J., Dobrosz-Gómez, I., Gómez-García, M.Á., 2013a. Kinetic study on the catalytic esterification of acetic acid with isoamyl alcohol over Amberlite IR-120. Chem. Eng. Sci. 101, 755–763. https://doi.org/10.1016/j.ces.2013.07.009Osorio-Viana, W., Duque-Bernal, M., Quintero-Arias, J.D., Dobrosz-Gómez, I., Fontalvo, J., Gómez-García, M. ángel, 2013b. Activity model and consistent thermodynamic features for acetic acid-isoamyl alcohol-isoamyl acetate-water reactive system. Fluid Phase Equilib. 345, 68–80. https://doi.org/10.1016/j.fluid.2013.02.006Osorio-Viana, W., Ibarra-Taquez, H.N., Dobrosz-Gómez, I., Gómez-García, M.Á., 2014. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. Process Intensif. 76, 70–82. https://doi.org/10.1016/j.cep.2013.12.005Osorio, W., 2014. Desarrollo de un proceso intensificado para la producción de acetato de isoamilo mediante tecnología de membranas. Tesis de doctorado. Universidad Nacional de Colombia.Othmer, D.F., 1943. Composition of Vapors from Boiling Binary Solutions. Ind. Eng. Chem. 35, 614–620. https://doi.org/10.1021/ie50401a018Özgülsün, A., Karaosmanôglu, F., Tüter, M., 2000. Esterification reaction of oleic acid with a fusel oil fraction for production of lubricating oil. J. Am. Oil Chem. Soc. 77, 105–109. https://doi.org/10.1007/s11746-000-0017-5Pääkkönen, P.K., Krause, A.O.I., 2003. Diffusion and chemical reaction in isoamylene etherification within a cation-exchange resin. Appl. Catal. A Gen. 245, 289–301. https://doi.org/10.1016/S0926-860X(02)00650-6Patidar, P., Mahajani, S.M., 2013. Esterification of Fusel Oil Using Reactive Distillation. Part II: Process Alternatives. Ind. Eng. Chem. Res. 52, 16637–16647.Patidar, P., Mahajani, S.M., 2012. Esterification of fusel oil using reactive distillation – Part I: Reaction kinetics. Chem. Eng. J. 207–208, 377–387.Patil, A.G., Koolwal, S.M., Butala, H.D., 2002. Fusel oil: Composition, removal and potential utilization. Int.Sugar J. 104, 51–58.Perelygin, V.M., Volkov, A.G., 1971. Liquid-vapor equilibrium in the ethanol + isoamyl acetate and ethanol + water + isoamyl acetate systems. Fermentn. Spirt. Prom-st 37, 15–7.Pérez, M.A., Bringué, R., Iborra, M., Tejero, J., Cunill, F., 2014. Ion exchange resins as catalysts for the liquid-phase dehydration of 1-butanol to di-n-butyl ether. Appl. Catal. A Gen. 482, 38–48. https://doi.org/10.1016/j.apcata.2014.05.017Piha, P., Peltonen, R.J., Kitunen, M., 2007. System amyl alcohol (from fusel oil)-acetic acid-water at 20°. J. Appl. Chem. 8, 576–580. https://doi.org/10.1002/jctb.5010080907Pisarenko, Y.A., Shalunova, S.Y., Glushachenkova, E.A., Toikka, A.M., 2008. Analysis of possible forms of the azeotropic relationship for two-dimensional diagrams of equilibrium distillation. Theor. Found. Chem. Eng. 42, 291–298. https://doi.org/10.1134/S0040579508030093Pöpken, T., Götze, L., Gmehling, J., 2000. Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis. Ind. Eng. Chem. Res. 39, 2601–2611. https://doi.org/10.1021/ie000063qPrausnitz, J.M.J., Anderson, T.F., Grens, E.A.E., Eckert, C.A., Hsieh, R., O’Connell, J.P., Anderson, F., Grens, E.A.E., Eckert, C.A., Hsieh, R., O’Connell, J., 1980. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria. Prentice Hall, New Jersey.Raeva, V.M., Frolkova, A. V, Serafimov, L.A., 2009. Determination of concentration regions of existence of ternary azeotropes: Systems showing mixed deviations from ideal behavior. Theor. Found. Chem. Eng. 43, 676. https://doi.org/10.1134/S0040579509050091Raeva, V.M., Serafimov, L.A., Frolkova, A. V, 2006. Determination of concentration regions of existence of ternary azeotropes: II. Systems showing unlike deviations from ideal behavior. Theor. Found. Chem. Eng. 40, 38–46. https://doi.org/10.1134/S0040579506010064Reid, R., Prausnitz, J., Poling, B., 1987. The properties of gases and liquids, 4a. ed. McGraw-Hill.Renon, H., Prausnitz, J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144.Rodríguez, G., 2012. Estudio técnico-económico de alternativas para la valorización del aceite de Fusel generado en la producción de bioetanol en Colombia. Proyecto de investigación financiado por COLCIENCIAS/ECOPETROL. Ejecutado por la Universidad Nacional de Colombia .Rohm, Haas, 2005. Amberlyst 70 product data sheet. Rohm Haas Philadelphia, PA, USA 1–2.Rojas, O., Salazar, A., Gil, I., Rodríguez, G., 2016. Effect of Pressure on the Azeotrope of the Mixture Isoamyl Acetate–Isoamyl Alcohol at 50.00, 101.32, 250.00, and 350.00 kPa. J. Chem. Eng. Data 61, 3109–3115. https://doi.org/10.1021/acs.jced.6b00197Saha, B., Alqahtani, A., Teo, H., 2005a. Production of iso-amyl acetate: Heterogeneous kinetics and techno-feasibility evaluation for catalytic distillation. Int. J. Chem. React. Eng. 3, 1–14. https://doi.org/10.2202/1542-6580.1231Saha, B., Teo, H., Alqahtani, A., 2005b. iso-Amyl acetate synthesis by catalytic distillation. Int. J. Chem. React. Eng. 3, 1–14. https://doi.org/10.2202/1542-6580.1250Sánchez, C.A., Sánchez, O.A., Orjuela, A., Gil, I.D., Rodríguez, G., 2017. Vapor–Liquid Equilibrium for Binary Mixtures of Acetates in the Direct Esterification of Fusel Oil. J. Chem. Eng. Data 62, 11–19. https://doi.org/10.1021/acs.jced.6b00221Sánchez, C.A.C.A., Herrera, A.A.A., Vargas, J.C.J.C., Gil, I.D.I.D., Rodríguez, G., 2019. Isobaric Vapor Liquid Equilibria for Binary Mixtures of Isoamyl Acetate + Ethyl Acetate at 50 and 100 kPa. J. Chem. \& Eng. Data 64, 2110–2115. https://doi.org/10.1021/acs.jced.8b01053Sands, D.E., 1974. Weighting factors in least squares. J. Chem. Educ. 51, 473. https://doi.org/10.1021/ed051p473Santaella, M.A., Orjuela, A., Narváez, P.C., 2015. Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chem. Eng. Process. Process Intensif. 96, 1–13. https://doi.org/10.1016/J.CEP.2015.07.027Savescu, V., Ionescu, I., Mehedinteanu, L., 1997. Isobaric vapor-liquid equilibria for ethyl acetate+ isoamyl alcohol and ethyl acetate+ isoamyl acetate mixtures. Rev. Roum. Chim. 42, 51–54.Schmidt-Traub, H., Górak, A., 2006. Integrated Reaction and Separation Operations. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30304-9Serafimov, L.A., 2009. State of the art in the thermodynamic and topological analysis of phase diagrams. Theor. Found. Chem. Eng. 43, 268–278. https://doi.org/10.1134/S0040579509030051Shah, M., Kiss, A.A., Zondervan, E., de Haan, A.B., 2012. A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chem. Eng. Process. Process Intensif. 60, 55–64. https://doi.org/10.1016/j.cep.2012.05.007Sharifzadeh, M., 2013. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem. Eng. Sci. 92, 21–39. https://doi.org/10.1016/j.ces.2013.01.026Shigarov, A.B., Fadeev, S.I., Mikhailova, I.A., Kullkov, A. V., Korolev, V.K., Kuzin, N.A., Kirillov, V.A., 2002. Simplified Treatment of Mass Transfer for Gas-Phase Hydrogenation/Dehydrogenation of Heavy Compounds. Korean J. Chem. Eng. 19, 252–260. https://doi.org/10.1007/BF02698410Smith, J.M. (Joseph M., 1981. Chemical engineering kinetics. McGraw-Hill.Sneesby, M.G., Tadé, M.O., Smith, T.N., 2008. Reaction Hysteresis: A New Cause of Output Multiplicity in Reactive Distillation. Dev. Chem. Eng. Miner. Process. 7, 41–56. https://doi.org/10.1002/apj.5500070106Stephenson, R., Stuart, J., 1986. Mutual binary solubilities: water-alcohols and water-esters. J. Chem. Eng. Data 31, 56–70. https://doi.org/10.1021/je00043a019Tang, Y.T., Chen, Y.W., Huang, H.P., Yu, C.C., Hung, S.B., Lee, M.J., 2005. Design of reactive distillations for acetic acid esterification. AIChE J. 51, 1683–1699. https://doi.org/10.1002/aic.10519Tang, Y.T., Huang, H.-P., Chien, I.-L., 2003. Design of a Complete Ethyl Acetate Reactive Distillation System. J. Chem. Eng. JAPAN 36, 1352–1363. https://doi.org/10.1252/jcej.36.1352Taylor, R., Krishna, R., 1993. Multicomponent mass transfer. Wiley.Teo, H., Saha, B., 2004. Heterogeneous catalysed esterification of acetic acid with isoamyl alcohol: kinetic studies. J. Catal. 228, 174–182.Toikka, A.M., Toikka, M.A., Pisarenko, Y.A., Serafimov, L.A., 2009. Vapor-liquid equilibria in systems with esterification reaction. Theor. Found. Chem. Eng. 43, 129–142. https://doi.org/10.1134/S004057950902002XToit, E. Du, Schwarzer, R., Nicol, W., 2004. Acetone condensation on a cation exchange resin catalyst: The pseudo equilibrium phenomenon, in: Chemical Engineering Science. pp. 5545–5550. https://doi.org/10.1016/j.ces.2004.07.034Tyn, M.T., Calus, W.F., 1975. Diffusion coefficients in dilute binary liquid mixtures. J. Chem. Eng. Data 20, 106–109. https://doi.org/10.1021/je60064a006Ung, S., Doherty, M., 1995a. Calculation of residue curve maps for mixtures with multiple equilibrium chemical reactions. Ind. Eng. Chem. Res. 1, 3195–3202.Ung, S., Doherty, M.F., 1995b. Vapor-liquid phase equilibrium in systems with multiple chemical reactions. Chem. Eng. Sci. 50, 23–48. https://doi.org/10.1016/0009-2509(94)00180-YUng, S., Doherty, M.F., 1995c. Theory of phase equilibria in multireaction systems. Chem. Eng. Sci. 50, 3201–3216. https://doi.org/10.1016/0009-2509(95)00159-3Ung, S., Doherty, M.F., 1995d. Synthesis of Reactive Distillation Systems with Multiple Equilibrium Chemical Reactions. Ind. Eng. Chem. Res. 34, 2555–2565.Wasylkiewicz, S.K., Ung, S., 2000. Global phase stability analysis for heterogeneous reactive mixtures and calculation of reactive liquid–liquid and vapor–liquid–liquid equilibria. Fluid Phase Equilib. 175, 253–272. https://doi.org/10.1016/S0378-3812(00)00451-9Weisz, P.B., Prater, C.D., 1954. Interpretation of Measurements in Experimental Catalysis. Adv. Catal. 6, 143–196. https://doi.org/10.1016/S0360-0564(08)60390-9Wu, Y.C., Lee, H.Y., Lee, C.H., Huang, H.P., Chien, I.L., 2013a. Design and control of thermally-coupled reactive distillation system for esterification of an alcohol mixture containing n -amyl alcohol and n -hexanol. Ind. Eng. Chem. Res. 52, 17184–17197.Wu, Y.C., Lee, H.Y., Tsai, C.Y., Huang, H.P., Chien, I.L., 2013b. Design and control of a reactive-distillation process for esterification of an alcohol mixture containing ethanol and n-butanol. Comput. Chem. Eng. 57, 67–77.Wyczesany, A., 2009. Chemical equilibrium constants in esterification of acetic acid with C1–C5 alcohols in the liquid phase. Chem. Process Eng. 30, 243–265.LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77741/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/77741/3/license_rdfdab767be7a093b539031785b3bf95490MD53ORIGINAL75091916.2020.pdf75091916.2020.pdfapplication/pdf4139127https://repositorio.unal.edu.co/bitstream/unal/77741/1/75091916.2020.pdff9d6ca133c38e8fe528bdbb988a59094MD51THUMBNAIL75091916.2020.pdf.jpg75091916.2020.pdf.jpgGenerated Thumbnailimage/jpeg4412https://repositorio.unal.edu.co/bitstream/unal/77741/4/75091916.2020.pdf.jpg51675de87c3f889f9ade93e103538515MD54unal/77741oai:repositorio.unal.edu.co:unal/777412023-07-21 23:03:28.965Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==