Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints
Magneto-Electroencephalogram(M/EEG)-based neuroimaging is a widely used technique that allows to non invasively explore brain activity. One of the most prominent advantages of using M/EEG measures to analyze brain activity is its outstanding temporal resolution. However, spatial measurement points (...
- Autores:
-
Martínez Vargas, Juan David
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/58312
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/58312
http://bdigital.unal.edu.co/55047/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
EEG
Problema inverso
Actividad cerebral no-estacionaria
Mapeo cerebral
Conectividad en fuentes
EEG
MEG
Inverse problem
Non-stationary brain activity
Brain mapping
Source connectivity
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_f798a82dac7a5d072196296be4fa5ed8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/58312 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
title |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
spellingShingle |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints 62 Ingeniería y operaciones afines / Engineering EEG Problema inverso Actividad cerebral no-estacionaria Mapeo cerebral Conectividad en fuentes EEG MEG Inverse problem Non-stationary brain activity Brain mapping Source connectivity |
title_short |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
title_full |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
title_fullStr |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
title_full_unstemmed |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
title_sort |
Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints |
dc.creator.fl_str_mv |
Martínez Vargas, Juan David |
dc.contributor.advisor.spa.fl_str_mv |
Castellanos Domínguez, César Germán (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Martínez Vargas, Juan David |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering EEG Problema inverso Actividad cerebral no-estacionaria Mapeo cerebral Conectividad en fuentes EEG MEG Inverse problem Non-stationary brain activity Brain mapping Source connectivity |
dc.subject.proposal.spa.fl_str_mv |
EEG Problema inverso Actividad cerebral no-estacionaria Mapeo cerebral Conectividad en fuentes EEG MEG Inverse problem Non-stationary brain activity Brain mapping Source connectivity |
description |
Magneto-Electroencephalogram(M/EEG)-based neuroimaging is a widely used technique that allows to non invasively explore brain activity. One of the most prominent advantages of using M/EEG measures to analyze brain activity is its outstanding temporal resolution. However, spatial measurement points (electrodes) are relatively low -a couple hundreds in the best case-, while the discretized brain activity generators -termed current dipoles or sources- are several thousands. This leads to a heavily ill-posed mathematical problem commonly known as the M/EEG inverse problem. To solve such problems, additional information must be a-priori assumed in order to obtain an unique and optimal solution. In the present work, several approaches to improve the accuracy and interpretability of the inverse problem solution are proposed, using physiologically motivated assumptions. Firstly, a method that infers neural states from the M/EEG recordings to dynamically constraint the M/EEG inverse problem is proposed, relaxing the brain activity stationarity assumption that is usually made in state-of-art algorithms. This is done by assuming a physiologically motivated time-varying a-priori covariance matrix. Secondly, a realistic time varying autoregressive model is proposed, aiming to explicitly constraining temporal evolution of brain activity. Finally, a novel source connectivity analysis method is proposed by taking advantage of the temporal dynamics provided by the M/EEG recordings. The proposed methods are compared with classic and state-of-art techniques in a simulated environment, and afterwards, are validated using real world data. In general, the contributed approaches are efficient and competitive compared to state-of-art brain mapping and source connectivity methods |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T13:59:27Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T13:59:27Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/58312 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/55047/ |
url |
https://repositorio.unal.edu.co/handle/unal/58312 http://bdigital.unal.edu.co/55047/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Departamento de Ingeniería Eléctrica, Electrónica y Computación |
dc.relation.references.spa.fl_str_mv |
Martínez Vargas, Juan David (2016) Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/58312/1/7911511.2016.pdf https://repositorio.unal.edu.co/bitstream/unal/58312/2/7911511.2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
440cae7b601ba0edfe57eb9b3e978ced 4c4adc21d100283cec6d4e94bac68860 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089239713808384 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Domínguez, César Germán (Thesis advisor)c792a029-43aa-4eb1-ac01-0b8ac24a537e-1Martínez Vargas, Juan David66b18f3c-b6ca-4f90-be95-c8d8b897e29d3002019-07-02T13:59:27Z2019-07-02T13:59:27Z2016https://repositorio.unal.edu.co/handle/unal/58312http://bdigital.unal.edu.co/55047/Magneto-Electroencephalogram(M/EEG)-based neuroimaging is a widely used technique that allows to non invasively explore brain activity. One of the most prominent advantages of using M/EEG measures to analyze brain activity is its outstanding temporal resolution. However, spatial measurement points (electrodes) are relatively low -a couple hundreds in the best case-, while the discretized brain activity generators -termed current dipoles or sources- are several thousands. This leads to a heavily ill-posed mathematical problem commonly known as the M/EEG inverse problem. To solve such problems, additional information must be a-priori assumed in order to obtain an unique and optimal solution. In the present work, several approaches to improve the accuracy and interpretability of the inverse problem solution are proposed, using physiologically motivated assumptions. Firstly, a method that infers neural states from the M/EEG recordings to dynamically constraint the M/EEG inverse problem is proposed, relaxing the brain activity stationarity assumption that is usually made in state-of-art algorithms. This is done by assuming a physiologically motivated time-varying a-priori covariance matrix. Secondly, a realistic time varying autoregressive model is proposed, aiming to explicitly constraining temporal evolution of brain activity. Finally, a novel source connectivity analysis method is proposed by taking advantage of the temporal dynamics provided by the M/EEG recordings. The proposed methods are compared with classic and state-of-art techniques in a simulated environment, and afterwards, are validated using real world data. In general, the contributed approaches are efficient and competitive compared to state-of-art brain mapping and source connectivity methodsResumen : El mapeo cerebral basado en señales de magneto/electroencefalografía (M/EEG), es una técnica muy usada para explorar la actividad cerebral de forma no invasiva. Una de las ventajas que provee la utilización de señales EEG para analizar la actividad cerebral es su bajo costo y su sobresaliente resolución temporal. Sin embargo la cantidad de puntos de medición (electrodos) es extremadamente baja comparada con la cantidad de puntos discretizados dentro del cerebro sobre los cuales se debe realizar la estimación de la actividad. Esto conlleva a un problema mal condicionado comúnmente conocido como el problema inverso de M/EEG. Para resolver este tipo de problemas, información apriori debe ser supuesta para así obtener una solución única y óptima. En el presente trabajo investigativo, se proponen distintas aproximaciones a la solución del problema con el objetivo de mejorar la precisión e interpretabilidad de las estimaciones de actividad cerebral. En primer lugar se propone un método que infiere estados neuronales a partir de los registros M/EEG para restringir dinámicamente el problema inverso de M/EEG relajando la asunción de estacionariedad hecha en los algoritmos del estado del arte. Esto se logra a través de la creación de matrices de covarianza variantes en el tiempo que permiten adaptarse a los cambios espacio temporales de la dinámica cerebral. En segundo lugar, un modelo autorregresivo variante en el tiempo con restricciones espacio-temporales basadas en modelos fisiológicos es propuesto, con el fin de restringir la evolución temporal de la actividad cerebral. Finalmente, un método novedoso de análisis de conectividad en fuentes es propuesto, incluyendo explícitamente las dinámicas temporales de los registros M/EEG. Los métodos propuestos se comparan con técnicas del estado del arte en ambientes de simulación, y también se validan en escenarios reales. En general, los métodos propuestos son eficientes y competitivos comparados con los métodos de comparaciónDoctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y ComputaciónMartínez Vargas, Juan David (2016) Reconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraints. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.62 Ingeniería y operaciones afines / EngineeringEEGProblema inversoActividad cerebral no-estacionariaMapeo cerebralConectividad en fuentesEEGMEGInverse problemNon-stationary brain activityBrain mappingSource connectivityReconstruction of neural activity from M/EEG non-stationary data using time varying spatiotemporal constraintsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL7911511.2016.pdfapplication/pdf10953975https://repositorio.unal.edu.co/bitstream/unal/58312/1/7911511.2016.pdf440cae7b601ba0edfe57eb9b3e978cedMD51THUMBNAIL7911511.2016.pdf.jpg7911511.2016.pdf.jpgGenerated Thumbnailimage/jpeg5067https://repositorio.unal.edu.co/bitstream/unal/58312/2/7911511.2016.pdf.jpg4c4adc21d100283cec6d4e94bac68860MD52unal/58312oai:repositorio.unal.edu.co:unal/583122024-03-31 23:08:50.925Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |