Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
Ilustraciones, gráficas, tablas
- Autores:
-
Rodriguez Espinoza, Jeferson
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85667
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
Arroz
Rice
Ecofisiología
Ecophysiology
Modelos vegetales
Plant models
Productividad agrícola
Agricultural productivity
Modelos de simulación
Simulation models
Modelos de Cultivo
Algoritmo genetico
Variabilidad climática
Climate Variability
ORYZA
DSSAT
Aquacrop
agroclimR
Crop Modeling
Genetic Algorithm
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_f77911222f27372d3f913a470f22a2d0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85667 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
dc.title.translated.eng.fl_str_mv |
Intercomparison of ecophysiological models for the analysis of rice crop productivity in Colombia |
title |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
spellingShingle |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia 630 - Agricultura y tecnologías relacionadas Arroz Rice Ecofisiología Ecophysiology Modelos vegetales Plant models Productividad agrícola Agricultural productivity Modelos de simulación Simulation models Modelos de Cultivo Algoritmo genetico Variabilidad climática Climate Variability ORYZA DSSAT Aquacrop agroclimR Crop Modeling Genetic Algorithm |
title_short |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
title_full |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
title_fullStr |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
title_full_unstemmed |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
title_sort |
Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia |
dc.creator.fl_str_mv |
Rodriguez Espinoza, Jeferson |
dc.contributor.advisor.none.fl_str_mv |
Ramirez Villegas, Julian Armando Mejía de Tafur, Maria Sara |
dc.contributor.author.none.fl_str_mv |
Rodriguez Espinoza, Jeferson |
dc.contributor.orcid.spa.fl_str_mv |
0000-0001-5914-6571 |
dc.contributor.scopus.spa.fl_str_mv |
57217764588 |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas |
topic |
630 - Agricultura y tecnologías relacionadas Arroz Rice Ecofisiología Ecophysiology Modelos vegetales Plant models Productividad agrícola Agricultural productivity Modelos de simulación Simulation models Modelos de Cultivo Algoritmo genetico Variabilidad climática Climate Variability ORYZA DSSAT Aquacrop agroclimR Crop Modeling Genetic Algorithm |
dc.subject.agrovoc.none.fl_str_mv |
Arroz Rice Ecofisiología Ecophysiology Modelos vegetales Plant models Productividad agrícola Agricultural productivity Modelos de simulación Simulation models |
dc.subject.proposal.spa.fl_str_mv |
Modelos de Cultivo Algoritmo genetico Variabilidad climática Climate Variability |
dc.subject.proposal.eng.fl_str_mv |
ORYZA DSSAT Aquacrop agroclimR Crop Modeling Genetic Algorithm |
description |
Ilustraciones, gráficas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-08T16:37:41Z |
dc.date.available.none.fl_str_mv |
2024-02-08T16:37:41Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85667 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85667 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1 Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008 Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238 Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750 Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1 Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001 Boote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119 Bouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011 Bouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice. Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.x Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100 Camargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013 Cao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5 Cleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460 Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620 Cortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdf DANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/ Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015 Ewert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003 FAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.x Ge, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446 Gonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059 Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845 Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11. Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712 IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1 Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017 Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., ... & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938. Jing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.). Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7 Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014 Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021 Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019 Kar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57. Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7 Larijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0 Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025 Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758 Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006 Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254 Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022 Maniruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022 Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009 McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222. Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080 Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540 Neto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613. Nissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007 Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004 Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140s Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989 Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011 Saadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATION Sánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389 Sanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdf Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04. Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008. Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-K Singh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA. Sotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., ... & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486 Subash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008 Soundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-z Tan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001 Tan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580 Tan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001 Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5 Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008 XING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-X |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 85 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agropecuarias |
dc.publisher.place.spa.fl_str_mv |
Palmira, Valle del Cauca, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85667/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85667/2/1113635771_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85667/3/1113635771_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 80c225135fd7c1f2d289c48d2a862bb4 981a0fe034d3fa93c77ba9aad084af5e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089406487724032 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramirez Villegas, Julian Armandodcd79e452fbf8c09f54f0e62489e5fdcMejía de Tafur, Maria Sarad57e7439f845febf10125722524deb1aRodriguez Espinoza, Jeferson8493c76c0ba1b0a59050c10666240ae80000-0001-5914-6571572177645882024-02-08T16:37:41Z2024-02-08T16:37:41Z2024https://repositorio.unal.edu.co/handle/unal/85667Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficas, tablasEste estudio aborda la intercomparación de tres modelos ecofisiológicos del cultivo de arroz (ORYZA v3, DSSAT-CERES-Rice y Aquacrop), evaluados en tres ambientes de producción en Colombia: Zona Centro, Llanos Orientales y Bajo Cauca. Se implementó un Algoritmo Genético para la optimización de parámetros y se evaluaron las predicciones de los modelos en variables como fenología, biomasa aérea, área foliar y rendimiento en grano. Además, se analizó la respuesta de los modelos a las condiciones de variabilidad climática ENSO utilizando el conjunto de datos del cultivar Fedearroz 2000, sembrado en todas las regiones. Los resultados mostraron variaciones en las predicciones de los modelos, indicando una interacción significativa entre las variaciones climáticas y el sistema de cultivo. La intercomparación proporcionó conocimientos valiosos sobre las fortalezas y debilidades de cada modelo, esencial para futuras aplicaciones en la planificación agronómica y la adaptación al cambio climático. (Texto tomado de la fuente)This study addresses the intercomparison of three ecophysiological models of rice cultivation (ORYZA v3, DSSAT-CERES-Rice, and Aquacrop), evaluated with three cultivars in three production environments in Colombia: Central Zone, Eastern Plains, and Lower Cauca. A Genetic Algorithm was implemented for parameter optimization, and the models' predictions were evaluated in variables such as phenology, aerial biomass, leaf area, and grain yield. Additionally, the models' response to ENSO climatic variability conditions was analyzed using the dataset of the Fedearroz 2000 cultivar, planted in all regions. The results showed variations in the models' predictions, indicating a significant interaction between climatic variations and the cultivation system. In conclusion, the intercomparison provided valuable insights into the strengths and weaknesses of each model, essential for future applications in agronomic planning and adaptation to climate change.MADRFEDEARROZ-FNAGobernacion del Valle del Cauca-FANMaestríaSe implementó un Algoritmo Genético para la optimización de parámetros y se evaluaron las predicciones de los modelos en variables como fenología, biomasa aérea, área foliar y rendimiento en grano. Además, se analizó la respuesta de los modelos a las condiciones de variabilidad climática ENSO utilizando el conjunto de datos del cultivar Fedearroz 2000, sembrado en todas las regionesFisiologia de CultivosModelacion de CultivosCiencia de DatosLos desarrollos derivados de esta investigación, se encuentran alojados en los repositorios de Github (https://github.com/jrodriguez88/agroclimR, https://jrodriguez88.github.io/agroclimR/), siendo de libre acceso para los investigadores que busquen replicar las metodologías y flujos de datos.Ciencias Agropecuarias.Sede Palmiraxii, 85 páginasapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadasArrozRiceEcofisiologíaEcophysiologyModelos vegetalesPlant modelsProductividad agrícolaAgricultural productivityModelos de simulaciónSimulation modelsModelos de CultivoAlgoritmo geneticoVariabilidad climáticaClimate VariabilityORYZADSSATAquacropagroclimRCrop ModelingGenetic AlgorithmIntercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en ColombiaIntercomparison of ecophysiological models for the analysis of rice crop productivity in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAhmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001Boote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119Bouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011Bouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice.Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.xCai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100Camargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013Cao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5Cleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620Cortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdfDANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015Ewert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003FAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.xGe, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446Gonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11.Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., ... & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.Jing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.).Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019Kar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57.Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7Larijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022Maniruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540Neto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613.Nissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140sRay, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011Saadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATIONSánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389Sanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdfScrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008.Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-KSingh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA.Sotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., ... & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486Subash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008Soundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-zTan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001Tan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580Tan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008XING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-XAllianza CIAT-BioversityInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85667/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1113635771_2023.pdf1113635771_2023.pdfapplication/pdf5349645https://repositorio.unal.edu.co/bitstream/unal/85667/2/1113635771_2023.pdf80c225135fd7c1f2d289c48d2a862bb4MD52THUMBNAIL1113635771_2023.pdf.jpg1113635771_2023.pdf.jpgGenerated Thumbnailimage/jpeg5120https://repositorio.unal.edu.co/bitstream/unal/85667/3/1113635771_2023.pdf.jpg981a0fe034d3fa93c77ba9aad084af5eMD53unal/85667oai:repositorio.unal.edu.co:unal/856672024-02-08 23:03:35.468Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |