Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia

Ilustraciones, gráficas, tablas

Autores:
Rodriguez Espinoza, Jeferson
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85667
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85667
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Arroz
Rice
Ecofisiología
Ecophysiology
Modelos vegetales
Plant models
Productividad agrícola
Agricultural productivity
Modelos de simulación
Simulation models
Modelos de Cultivo
Algoritmo genetico
Variabilidad climática
Climate Variability
ORYZA
DSSAT
Aquacrop
agroclimR
Crop Modeling
Genetic Algorithm
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f77911222f27372d3f913a470f22a2d0
oai_identifier_str oai:repositorio.unal.edu.co:unal/85667
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
dc.title.translated.eng.fl_str_mv Intercomparison of ecophysiological models for the analysis of rice crop productivity in Colombia
title Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
spellingShingle Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
630 - Agricultura y tecnologías relacionadas
Arroz
Rice
Ecofisiología
Ecophysiology
Modelos vegetales
Plant models
Productividad agrícola
Agricultural productivity
Modelos de simulación
Simulation models
Modelos de Cultivo
Algoritmo genetico
Variabilidad climática
Climate Variability
ORYZA
DSSAT
Aquacrop
agroclimR
Crop Modeling
Genetic Algorithm
title_short Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
title_full Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
title_fullStr Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
title_full_unstemmed Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
title_sort Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia
dc.creator.fl_str_mv Rodriguez Espinoza, Jeferson
dc.contributor.advisor.none.fl_str_mv Ramirez Villegas, Julian Armando
Mejía de Tafur, Maria Sara
dc.contributor.author.none.fl_str_mv Rodriguez Espinoza, Jeferson
dc.contributor.orcid.spa.fl_str_mv 0000-0001-5914-6571
dc.contributor.scopus.spa.fl_str_mv 57217764588
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Arroz
Rice
Ecofisiología
Ecophysiology
Modelos vegetales
Plant models
Productividad agrícola
Agricultural productivity
Modelos de simulación
Simulation models
Modelos de Cultivo
Algoritmo genetico
Variabilidad climática
Climate Variability
ORYZA
DSSAT
Aquacrop
agroclimR
Crop Modeling
Genetic Algorithm
dc.subject.agrovoc.none.fl_str_mv Arroz
Rice
Ecofisiología
Ecophysiology
Modelos vegetales
Plant models
Productividad agrícola
Agricultural productivity
Modelos de simulación
Simulation models
dc.subject.proposal.spa.fl_str_mv Modelos de Cultivo
Algoritmo genetico
Variabilidad climática
Climate Variability
dc.subject.proposal.eng.fl_str_mv ORYZA
DSSAT
Aquacrop
agroclimR
Crop Modeling
Genetic Algorithm
description Ilustraciones, gráficas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-08T16:37:41Z
dc.date.available.none.fl_str_mv 2024-02-08T16:37:41Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85667
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85667
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1
Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008
Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238
Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750
Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1
Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001
Boote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119
Bouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011
Bouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice.
Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.x
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100
Camargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013
Cao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5
Cleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460
Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620
Cortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdf
DANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/
Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015
Ewert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003
FAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.x
Ge, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446
Gonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059
Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845
Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11.
Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712
IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1
Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017
Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., ... & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.
Jing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.).
Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7
Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014
Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021
Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019
Kar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57.
Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7
Larijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0
Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758
Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006
Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254
Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022
Maniruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022
Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009
McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.
Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080
Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540
Neto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613.
Nissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007
Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140s
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011
Saadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATION
Sánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389
Sanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdf
Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.
Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008.
Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-K
Singh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA.
Sotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., ... & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486
Subash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008
Soundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-z
Tan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001
Tan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580
Tan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001
Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5
Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008
XING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-X
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 85 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira, Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85667/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85667/2/1113635771_2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85667/3/1113635771_2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
80c225135fd7c1f2d289c48d2a862bb4
981a0fe034d3fa93c77ba9aad084af5e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089406487724032
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramirez Villegas, Julian Armandodcd79e452fbf8c09f54f0e62489e5fdcMejía de Tafur, Maria Sarad57e7439f845febf10125722524deb1aRodriguez Espinoza, Jeferson8493c76c0ba1b0a59050c10666240ae80000-0001-5914-6571572177645882024-02-08T16:37:41Z2024-02-08T16:37:41Z2024https://repositorio.unal.edu.co/handle/unal/85667Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficas, tablasEste estudio aborda la intercomparación de tres modelos ecofisiológicos del cultivo de arroz (ORYZA v3, DSSAT-CERES-Rice y Aquacrop), evaluados en tres ambientes de producción en Colombia: Zona Centro, Llanos Orientales y Bajo Cauca. Se implementó un Algoritmo Genético para la optimización de parámetros y se evaluaron las predicciones de los modelos en variables como fenología, biomasa aérea, área foliar y rendimiento en grano. Además, se analizó la respuesta de los modelos a las condiciones de variabilidad climática ENSO utilizando el conjunto de datos del cultivar Fedearroz 2000, sembrado en todas las regiones. Los resultados mostraron variaciones en las predicciones de los modelos, indicando una interacción significativa entre las variaciones climáticas y el sistema de cultivo. La intercomparación proporcionó conocimientos valiosos sobre las fortalezas y debilidades de cada modelo, esencial para futuras aplicaciones en la planificación agronómica y la adaptación al cambio climático. (Texto tomado de la fuente)This study addresses the intercomparison of three ecophysiological models of rice cultivation (ORYZA v3, DSSAT-CERES-Rice, and Aquacrop), evaluated with three cultivars in three production environments in Colombia: Central Zone, Eastern Plains, and Lower Cauca. A Genetic Algorithm was implemented for parameter optimization, and the models' predictions were evaluated in variables such as phenology, aerial biomass, leaf area, and grain yield. Additionally, the models' response to ENSO climatic variability conditions was analyzed using the dataset of the Fedearroz 2000 cultivar, planted in all regions. The results showed variations in the models' predictions, indicating a significant interaction between climatic variations and the cultivation system. In conclusion, the intercomparison provided valuable insights into the strengths and weaknesses of each model, essential for future applications in agronomic planning and adaptation to climate change.MADRFEDEARROZ-FNAGobernacion del Valle del Cauca-FANMaestríaSe implementó un Algoritmo Genético para la optimización de parámetros y se evaluaron las predicciones de los modelos en variables como fenología, biomasa aérea, área foliar y rendimiento en grano. Además, se analizó la respuesta de los modelos a las condiciones de variabilidad climática ENSO utilizando el conjunto de datos del cultivar Fedearroz 2000, sembrado en todas las regionesFisiologia de CultivosModelacion de CultivosCiencia de DatosLos desarrollos derivados de esta investigación, se encuentran alojados en los repositorios de Github (https://github.com/jrodriguez88/agroclimR, https://jrodriguez88.github.io/agroclimR/), siendo de libre acceso para los investigadores que busquen replicar las metodologías y flujos de datos.Ciencias Agropecuarias.Sede Palmiraxii, 85 páginasapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadasArrozRiceEcofisiologíaEcophysiologyModelos vegetalesPlant modelsProductividad agrícolaAgricultural productivityModelos de simulaciónSimulation modelsModelos de CultivoAlgoritmo geneticoVariabilidad climáticaClimate VariabilityORYZADSSATAquacropagroclimRCrop ModelingGenetic AlgorithmIntercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en ColombiaIntercomparison of ecophysiological models for the analysis of rice crop productivity in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAhmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001Boote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119Bouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011Bouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice.Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.xCai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100Camargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013Cao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5Cleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620Cortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdfDANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015Ewert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003FAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.xGe, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446Gonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11.Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., ... & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.Jing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.).Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019Kar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57.Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7Larijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022Maniruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540Neto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613.Nissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140sRay, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011Saadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATIONSánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389Sanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdfScrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008.Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-KSingh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA.Sotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., ... & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486Subash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008Soundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-zTan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001Tan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580Tan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008XING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-XAllianza CIAT-BioversityInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85667/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1113635771_2023.pdf1113635771_2023.pdfapplication/pdf5349645https://repositorio.unal.edu.co/bitstream/unal/85667/2/1113635771_2023.pdf80c225135fd7c1f2d289c48d2a862bb4MD52THUMBNAIL1113635771_2023.pdf.jpg1113635771_2023.pdf.jpgGenerated Thumbnailimage/jpeg5120https://repositorio.unal.edu.co/bitstream/unal/85667/3/1113635771_2023.pdf.jpg981a0fe034d3fa93c77ba9aad084af5eMD53unal/85667oai:repositorio.unal.edu.co:unal/856672024-02-08 23:03:35.468Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=