Bayesian network methodology for decision support in forensic geotechnical engineering

ilustraciones, diagramas

Autores:
Garcia Feria, William Mauricio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84789
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84789
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Teoría bayesiana de decisiones estadísticas
Decisiones estadísticas
Bayesian statistical decision theory
Statistical decision
Forensic geotechnical engineering
Bayesian inference
Bayesian Networks
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f70df8e8d8cab8aa69296abfcfdb737f
oai_identifier_str oai:repositorio.unal.edu.co:unal/84789
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Bayesian network methodology for decision support in forensic geotechnical engineering
dc.title.translated.spa.fl_str_mv Metodología de redes bayesianas para apoyar la toma de decisiones en ingeniería geotécnica forense
title Bayesian network methodology for decision support in forensic geotechnical engineering
spellingShingle Bayesian network methodology for decision support in forensic geotechnical engineering
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Teoría bayesiana de decisiones estadísticas
Decisiones estadísticas
Bayesian statistical decision theory
Statistical decision
Forensic geotechnical engineering
Bayesian inference
Bayesian Networks
title_short Bayesian network methodology for decision support in forensic geotechnical engineering
title_full Bayesian network methodology for decision support in forensic geotechnical engineering
title_fullStr Bayesian network methodology for decision support in forensic geotechnical engineering
title_full_unstemmed Bayesian network methodology for decision support in forensic geotechnical engineering
title_sort Bayesian network methodology for decision support in forensic geotechnical engineering
dc.creator.fl_str_mv Garcia Feria, William Mauricio
dc.contributor.advisor.none.fl_str_mv Colmenares Montañez, Julio Esteban
dc.contributor.author.none.fl_str_mv Garcia Feria, William Mauricio
dc.contributor.researchgroup.spa.fl_str_mv GENKI - Geotechnical Engineering Knowledge and Innovation
dc.contributor.orcid.spa.fl_str_mv Garcia-Feria, William Mauricio [0000-0002-4407-5579]
dc.contributor.cvlac.spa.fl_str_mv Garcia, William Mauricio
dc.contributor.researchgate.spa.fl_str_mv Garcia-Feria, Mauricio
dc.contributor.googlescholar.spa.fl_str_mv Garcia-Feria, Mauricio
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Teoría bayesiana de decisiones estadísticas
Decisiones estadísticas
Bayesian statistical decision theory
Statistical decision
Forensic geotechnical engineering
Bayesian inference
Bayesian Networks
dc.subject.lemb.spa.fl_str_mv Teoría bayesiana de decisiones estadísticas
Decisiones estadísticas
dc.subject.lemb.eng.fl_str_mv Bayesian statistical decision theory
Statistical decision
dc.subject.proposal.eng.fl_str_mv Forensic geotechnical engineering
Bayesian inference
Bayesian Networks
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-09T15:41:28Z
dc.date.available.none.fl_str_mv 2023-10-09T15:41:28Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84789
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.repo.none.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84789
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Allenby, G. M. (1990). Hypothesis Testing with Scanner Data: The Advantage of Bayesian Methods. Journal of Marketing Research, 27(4), 379–389. https://doi.org/10.1177/002224379002700401
Alonso, E. E., Pinyol, N. M., & Puzrin, A. M. (2010). Geomechanics of failures. Advanced topics. In Geomechanics of Failures. Advanced Topics. https://doi.org/10.1007/978-90-481- 3538-7
Alonso, E. E., Pinyol, N. P., & Fernández, P. (2016). Caisson Failure Induced by Wave Action BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 45– 93). Springer India. https://doi.org/10.1007/978-81-322-2377-1_4
Antonucci, A. (2018). Reliable Discretisation of Deterministic Equations in Bayesian Networks. The Thirty-Second International Florida Artificial Intelligence Research Society Conference (FLAIRS-32), 453–457.
ASCE. (2018). Guidelines for Failure Investigation. In R. S. Barrow, R. W. Anthony, K. J. Beasley, & S. M. Verhulst (Eds.), Guidelines for Failure Investigation. https://doi.org/10.1061/9780784415122
Babu, G. L. S. (2016). Briefing: Forensic geotechnical engineering. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 1–4.
Babu, G. L., & Singh, V. P. (2016). Back Analyses in Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 113–118). Springer India. https://doi.org/10.1007/978- 81-322-2377-1_7
Babu, G., Raja, J., Munwar Basha, B., & Srivastava, A. (2016). Forensic Analysis of Failure of Retaining Wall. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 451–465). Springer India. https://doi.org/10.1007/978-81-322-2377-1_30
Baecher, G. B. (2017). Bayesian Thinking in Geotechnics. Geo-Risk 2017, June, 1–18. https://doi.org/10.1061/9780784480694.001
Baecher, G. B., & Christian, J. T. (2003). Reliability and statistics in geotechnical engineering (Issue 1). John Wiley & Sons Ltd. https://doi.org/10.1198/tech.2005.s838
Bea, R. (2006). Reliability and Human Factors in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 132. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(631)
Bell, G. R. (2000). Engineering Investigation of Structural Failures. In R. T. Ratay (Ed.), Forensic Structural Engineering Handbook. McGraw-Hill.
Bensi, M., Kiureghian, A. Der, & Straub, D. (2013). Efficient Bayesian network modeling of systems. Reliability Engineering and System Safety, 112, 200–213. https://doi.org/10.1016/j.ress.2012.11.017
Bensi, M. T. (2010). A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support. University of California, Berkeley.
Bentley Systems. (2020). Paxis 2D. Connect Edition (20.04; p. 240). Bentley.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., & Pizziolo, M. (2012). Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2012JF002367
Biedermann, A., & Taroni, F. (2012). Bayesian networks for evaluating forensic DNA profiling evidence: A review and guide to literature. Forensic Science International: Genetics, 6(2), 147–157. https://doi.org/10.1016/j.fsigen.2011.06.009
Biedermann, A., Taroni, F., Delemont, O., Semadeni, C., & Davison, A. C. (2005). The evaluation of evidence in the forensic investigation of fire incidents (Part I): An approach using Bayesian networks. Forensic Science International, 147(1), 49–57. https://doi.org/10.1016/j.forsciint.2004.04.014
Bolstad, W. M. (2010). Understandeing Computational Bayesian Statistics. In P. Giudisi, G. Givens, & B. Mallik (Eds.), Wiley Series in Computational Statistic. John Wiley & Sons, Inc.
Boutang, J., & De Lara, M. (2015). The biased mind: How evolution shaped our psychology including anecdotes and tips for making sound decisions. In The Biased Mind: How Evolution Shaped our Psychology Including Anecdotes and Tips for Making Sound Decisions. https://doi.org/10.1007/978-3-319-16519-6
Bowen, J. (2018). Unfalsifiability. In Bad Arguments (pp. 403–406). https://doi.org/https://doi.org/10.1002/9781119165811.ch99
Brady, S. P. (2012). Role of the forensic process in investigating structural failure. Journal of Performance of Constructed Facilities, 26(1), 2–6. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000274
Burland, J. (2012). Chapter 4 The geotechnical triangle. In ICE manual of geotechnical engineering: Volume I (pp. 17–26). Thomas Telford Ltd. https://doi.org/doi:10.1680/moge.57074.0017
Burland, J. B., Jamiolkowski, M., & Viggiani, C. (1998). Stabilising the leaning tower of Pisa. Bulletin of Engineering Geology and the Environment, 57(1), 91–99. https://doi.org/10.1007/s100640050025
Calvello, M., Cuomo, S., & Ghasemi, P. (2017). The role of observations in the inverse analysis of landslide propagation. Computers and Geotechnics, 92, 11–21.
Campos, L. M. De, Gamez, J. A., & Moral, S. (2001). Simplifying explanations in Bayesian belief networks. International Journal of Uncertainty, Puzziness and Knowledge-Based Systems, 9(4), 461–489.
Caracol Radio. (2012). Nuevo dolor de cabeza generan obras en la Carrera 11 con 98. https://caracol.com.co/radio/2012/01/20/bogota/1327066020_609716.html
Carper, K. L. (2000). Forensic Engineering. Taylor \& Francis. https://books.google.com.bo/books?id=gIu9BwAAQBAJ
Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134–145. https://doi.org/https://doi.org/10.1016/j.envsoft.2012.03.012
Chowdhury, R. N. (1987). Aspects of the Vajont slide. Engineering Geology, 24(1), 533–540. https://doi.org/https://doi.org/10.1016/0013-7952(87)90085-8
Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. Geology, 29(11), 987–990. http://ecee.colorado.edu/ecen5009/Resources/Cleland01.pdf
Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3 PART 2), 7270–7279. https://doi.org/10.1016/j.eswa.2008.09.024
Dahl, F. A., Grotle, M., Šaltyte Benth, J., & Natvig, B. (2008). Data splitting as a countermeasure against hypothesis fishing: With a case study of predictors for low back pain. European Journal of Epidemiology, 23(4), 237–242. https://doi.org/10.1007/s10654-008-9230-x
Day, R. W. (2010). Forensic Geotechnical and Foundation Engineering (p. 528).
Drezner, Z., & Zerom, D. (2016). A Simple and Effective Discretization of a Continuous Random Variable. Communication in Statistics- Simulation and Computation, 45, 3798–3810. https://doi.org/10.1080/03610918.2015.1071389
Druzdzel, M. J., & Gaag, L. C. van der. (2000). Building probabilistic networks: “Where do the numbers come from?” guest editors’ introduction. IEEE Transactions on Knowledge and Data Engineering, 12(4), 481–486. https://doi.org/10.1109/TKDE.2000.868901
Dykes, A. P., & Bromhead, E. N. (2018). The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides, 15(9), 1815–1832. https://doi.org/10.1007/s10346-018-0996-y
Ering, P., & Sivakumar Babu, G. L. (2017). A Bayesian framework for updating model parameters while considering spatial variability. Georisk, 11(4), 285–298. https://doi.org/10.1080/17499518.2016.1255760
Feng, X. (2015). Application of Bayesian approach in geotechnical engineering [Universidad Politécnica de Madrid]. http://oa.upm.es/37270/
Fenton, N., & Neil, M. D. (2019). Risk assessment and decision analysis with bayesian networks (Second Edi). CRC Press. https://doi.org/10.1201/b13102
Friedman, N., & Goldszmidt, M. (1996). Discretizing Continuous Attributes While Learning Bayesian Networks. Icml, 157–165. https://doi.org/10.1001/archinte.159.12.1359
Friedman, N., Goldszmidt, M., Heckerman, D., & Russell, S. (1997). Challenge: What is the impact of Bayesian networks on learning? IJCAI International Joint Conference on Artificial Intelligence, 1, 10–15.
Garbolino, P., & Taroni, F. (2002). Evaluation of scientific evidence using Bayesian networks. Forensic Science International, 125(2–3), 149–155. https://doi.org/10.1016/S0379-0738(01)00642-9
Garcia-Feria, W. M., Colmenares Montañez, J. E., & Hernandez Perez, G. J. (2022). Testing the Causes of a Levee Failure Using Bayesian Networks. Ingeniería, 27(2), e18538. https://doi.org/10.14483/23448393.18538
Gelman, A., Hill, J., & Yajima, M. (2012). Why We (Usually) Don’t Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. https://doi.org/10.1080/19345747.2011.618213
Gelman, A., & Tuerlinckx, F. (2000). Type S error rates classical and Bayesian single and multiple compparison procedures. Computational Statistics, 15(3), 373–390. https://doi.org/10.1007/s001800000040
Gens, A. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique, 60(1), 3–74. https://doi.org/10.1680/geot.9.P.109
Gilbert, R. B. (2016). Important Role of Uncertainty in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 493–503). Springer India. https://doi.org/10.1007/978-81-322-2377-1_32
Greenspan, H. F., O’kon, J. A., Beasley, K. J., & Ward, J. . (1989). Guidelines for Failure Investigation (ASCE (Ed.)).
Grubert, P. (2013). Saaledeich bei Breitenhagen Geotechnische Untersuchungen der Bruchstelle Empfehlungen zur Sanierung.
Griffiths, D., & Fenton, G. A. (2007). Probabilistic methods in geotechnical engineering. CISM International Centre for Mechanical Sciences. https://doi.org/10.1007/978-3-211-73366-0
Guerra, S. Z. (1992). Severe Soil Deformations, Leveling and Protection at the Metropolitan Cathedral in Mexico City. APT Bulletin: The Journal of Preservation Technology, 24(1/2), 28–35. https://doi.org/10.2307/1504308
Hasan, S., & Najjar, S. (2013). Probabilistic Back Analysis of Failed Slopes using Bayesian Techniques. Geo-Congress 2013, 231 GSP, 1013–1022. https://doi.org/10.1061/9780784412787.103
Holický, M., Marková, J., & Sýkora, M. (2013). Forensic assessment of a bridge downfall using Bayesian networks. Engineering Failure Analysis, 30, 1–9. https://doi.org/10.1016/j.engfailanal.2012.12.014
Houck, M. M. (2006). Forensic Science: An Introduction to Scientific and Investigative Techniques. Journal of Forensic Sciences, 51(1), 205. https://doi.org/https://doi.org/10.1111/j.1556-4029.2005.00042.x
Hu, J. L., Tang, X. W., & Qiu, J. N. (2016). Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data. Soil Dynamics and Earthquake Engineering, 89, 49–60. https://doi.org/10.1016/j.soildyn.2016.07.007
Hwang, R. N. (2016). Back Analyses in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 131–143). Springer India. https://doi.org/10.1007/978-81-322-2377-1_9
Iai, S. (2016). Backwards Problem in Geotechnical Earthquake Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 187–196). Springer India. https://doi.org/10.1007/978-81-322-2377-1_13
Iwasaki, Y. (2016). A Case Study of Observational Method for a Failed Geotechnical Excavation in Singapore BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 535–548). Springer India. https://doi.org/10.1007/978-81-322-2377-1_35
Jeffreys, H. (1961). Theory of Probability (Third Edit). Clarendon Press.
Jensen, F. V., & Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs. In Information Science and Statistics. Springer, New York, NY. https://doi.org/https://doi.org/10.1007/978-0-387-68282-2
Jessep, R. A., de Mello, L. G., & Rao, V. V. S. (2016). Technical Shortcomings Causing Geotechnical Failures: Report of Task Force 10, TC 302 BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 267–295). Springer India. https://doi.org/10.1007/978-81-322-2377-1_19
Johnson, D. H. (1999). The Insignificance of Statistical Significance Testing. The Journal of Wildlife Management, 63(3), 763–772. https://doi.org/10.2307/3802789
Kadane, J. B., & Schum, D. A. (1998). A Probabilistic Analysis of the Sacco and Vanzetti Evidence. In Technometrics (Vol. 40, Issue 2). https://doi.org/10.1080/00401706.1998.10485222
Kardon, J. B. (2003). GUIDELINES FOR FORENSIC ENGINEERING PRACTICE (J. B. Kardon (Ed.); Second edi, Vol. 7, Issue 2). ASCE. https://doi.org/10.1080/10903120390936923
Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/http://dx.doi.org/10.1080/01621459.1995.10476572
Kiureghian, A., Bensi, M., & Straub, D. (2009). Bayesian network methodology for post-earthquake infrastructure risk management. In Frontier Technologies for Infrastructures Engineering (pp. 201–214).
Kjærulff, U. B., & Madsen, A. L. (2013). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (M. Jordan, R. Nowak, & B. Scholkopf (Eds.); Second Edi). Springer. https://doi.org/10.1007/978-1-4614-5104-4
Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. In Adaptive Computation and Machine Learning. The MIT Press.
Kool, J. J., Kanning, W., Heyer, T., Jommi, C., & Jonkman, S. N. (2019). Forensic Analysis of Levee Failures : The Breitenhagen Case. International Journal of Geoengineering Case Histories, 5(2), 70–92. https://doi.org/10.4417/IJGCH-05-02-02
Kool, J. J., Kanning, W., Jommi, C., & Jonkman, S. N. (2020). A Bayesian hindcasting method of levee failures applied to the Breitenhagen slope failure. Georisk, 0(0), 1–18. https://doi.org/10.1080/17499518.2020.1815213
Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14(7), 293–300. https://doi.org/https://doi.org/10.1016/j.tics.2010.05.001
Kruschke, J. K. (2015). Doing Bayesian Data Analysis (Second edi). Academic Press is an imprint of Elsevier.
Kwan, M., Chow, K.-P., Frank, L., & Lai, P. (2008). Reasoning About Evidence Using Bayesian Networks. In R. I. & S. S. (Eds.), Advances in Digital Forensics IV. DigitalForensics 2008. IFIP — The International Federation for Information Processing, vol 285 (pp. 275–289). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-84927-0_22
Lacasse, S. (2016). Forensic Geotechnical Engineering Theory and Practice. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 17–37). Springer India. https://doi.org/10.1007/978-81-322-2377-1_2
Leonards, G. A. (1982). Investigation of Failures. 16th Terzaghi Lecture. Journal of the Geotechnical Engineering Division. ASCE, 108(2), 187–246. https://doi.org/10.1061/AJGEB6.0001241
Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research, 36(12), 3063–3074. https://doi.org/10.1139/x06-135
Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5
McGrayne, S. B. (2011). The theory that would not die : how Bayes’ rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press.
Meij, R. van der, & Deltares. (2020). D-Stability. Slope stability software for soft soil engineering (2020.03.3; p. 167). Deltares.
Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction (Third Edit). JohnWiley & Sons Ltd.
Mkrtchyan, L., Podofillini, L., & Dang, V. N. (2016). Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application. Reliability Engineering & System Safety, 151, 93–112. https://doi.org/https://doi.org/10.1016/j.ress.2016.01.004
Mohan, V. K. D., Vardon, P. J., Hicks, M. A., & Gelder, P. H. A. J. M. van. (2019). Uncertainty Tracking and Geotechnical Reliability Updating Using Bayesian Networks Varenya. In J. Ching, D.-Q. Li, & J. Zhang (Eds.), Proceedings ofthe 7th InternationalSymposiumonGeotechnical SafetyandRisk(ISGSR) (Issue December, pp. 978–981). Research Publishing. https://doi.org/10.3850/978-981-11-2725-0
Morales-Nápoles, O., Delgado-Hernández, D. J., De-León-Escobedo, D., & Arteaga-Arcos, J. C. (2014). A continuous Bayesian network for earth dams’ risk assessment: Methodology and quantification. In Structure and Infrastructure Engineering (Vol. 10, Issue 5, pp. 589–603). Taylor & Francis. https://doi.org/10.1080/15732479.2012.757789
Morgan, M. G., & Henrion, M. (1990). Monte Carlo and Other Sampling Methods. In Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Poilcy Analysis.
Müller, L. (1968). New Considerations on the Vaiont Slide. Rock Mechanics & Engineering Geology, 6(1–2), 1–91.
Nadim, F., & Liu, Z. Q. (2013). Quantitative risk assessment for earthquake-triggered landslides using Bayesian network. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3(3), 2221–2224.
Neil, M., Fenton, N., Lagnado, D., & Gill, R. D. (2019). Modelling competing legal arguments using Bayesian model comparison and averaging. Artificial Intelligence and Law, 27(4), 403–430. https://doi.org/10.1007/s10506-019-09250-3
Neil, M., Fenton, N., & Nielsen, L. (2000). Building large-scale Bayesian networks. Knowledge Engineering Review, 15(3), 257–284. https://doi.org/10.1017/S0269888900003039
Neil, M., Tailor, M., & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic discretization. Statistics and Computing, 17(3), 219–233. https://doi.org/10.1007/s11222-007-9018-y
Noon, R. (2001). Forensic engineering investigation. CRC Press.
Noon, R. (2009). Scientific method: applications in failure investigation and forensic science. CRC Press.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc.
Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique, 19(2), 171–187. https://doi.org/10.1680/geot.1969.19.2.171
Phoon, K.-K., & Kulhawy, F. H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038
Phoon, K.-K., & Kulhawy, F. H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639. https://doi.org/10.1139/t99-039
Phoon, K. K., Sivakumar Babu, G. L., & Uzielli, M. (2016). Role of Reliability in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 467–491). Springer India. https://doi.org/10.1007/978-81-322-2377-1_31
Popescu, M. E., & Schaefer, V. R. (2016). Back Analysis of Slope Failures to Design Landslide Stabilizing Piles (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 119–130). Springer India. https://doi.org/10.1007/978-81-322-2377-1_8
Popper, K. (2002). The Logic of Scientific Discovery (2nd Editio). Routledge. https://doi.org/https://doi.org/10.4324/9780203994627
Poulos, H. G. (2016). A Framework for Forensic Foundation Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 1–15). Springer India. https://doi.org/10.1007/978-81-322-2377-1_1
Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Geomechanics of Failures. Springer Science+Business Media B.V.
Radio Santafe. (2012). Distrito anuncia que abrir la carrera 11 con 98 depende de pruebas de carga. https://www.radiosantafe.com/2012/08/14/distrito-anuncia-que-abrir-la-carrera-11-con-98-depende-de-pruebas-de-carga/
Rao, V. V. S. (2016). Guidelines for Forensic Investigation of Geotechnical Failures. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 39–44). Springer India. https://doi.org/10.1007/978-81-322-2377-1_3
Rao, V. V. S., & Babu, G. L. . (2009). Administrative report: TC 40 - Forensic geotechnical engineering. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 5, 3801–3804. https://doi.org/10.3233/978-1-60750-031-5-3801
Rao, V. V. S., & Babu, G. L. S. (2016). Forensic Geotechnical Engineering (First Edit). Springer India 2016. https://doi.org/10.1007/978-81-322-2377-1
Ratay, R. T. (Ed.). (2000). Forensic Structural Engineering Handbook. McGraw-Hill.
Robertson, P. K., & Campanella, R. G. (1985). Liquefaction Potential of Sands Using the CPT. Journal of Geotechnical Engineering, 111(3), 384–403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)
Rocscience Inc. (2006). Slide (5.0).
Rohmer, J. (2020). Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review. Engineering Applications of Artificial Intelligence, 88, 103384. https://doi.org/https://doi.org/10.1016/j.engappai.2019.103384
Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., & Shimizu, N. (2003). Back analysis for tunnel engineering as a modern observational method. Tunnelling and Underground Space Technology, 18(2–3), 185–196. https://doi.org/10.1016/S0886-7798(03)00026-9
Schweiger, H. F. (2006). ERTC7 benchmark exercise. In H. F. Schweiger (Ed.), Numerical Methods in Geotechnical Engineering (pp. 3–8). CRC Press.
Scutari, M., & Denis, J.-B. (2015). Bayesian networks with examples in R. In Texts in Statistical Science. CRC Press.
Smith, M. (2006). Dam Risk Analysis Using Bayesian Networks. 2006 ECI Conference on Geohazards.
Sowers, G. F. (1993). Human factors in civil and geotechnical engineering failures. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(5), 308. https://doi.org/10.1016/0148-9062(93)92542-x
Špačková, O., & Straub, D. (2011). Probabilistic risk assessment of excavation performance in tunnel projects using Bayesian networks: a case study. Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk, 651–660.
Spross, J. (2016). Toward a reliability framework for the observational method (Issue September). https://doi.org/10.1063/1.2719228
Spross, J., & Johansson, F. (2017). When is the observational method in geotechnical engineering favourable? Structural Safety, 66. https://doi.org/10.1016/j.strusafe.2017.01.006
Spross, J., Johansson, F., Uotinen, L. K. T., & Rafi, J. Y. (2016). Using Observational Method to Manage Safety Aspects of Remedial Grouting of Concrete Dam Foundations. Geotechnical and Geological Engineering, 34(5), 1613–1630. https://doi.org/10.1007/s10706-016-0069-8
Stone, J. V. (2013). Bayes’ Rule. A Tutorial Introduction to Bayesian Analysis (First Edit). Sebtel Press. https://doi.org/10.1002/0470055480.ch6
Straub, D. (2005). Natural hazards risk assessment using Bayesian networks. 9th International Conference on Structural Safety and Reliability ICOSSAR 05 Rome Italy, March, 2509–2516.
Straub, D., & Grêt-Regamey, A. (2006). A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Regions Science and Technology, 46(3), 192–203. https://doi.org/10.1016/j.coldregions.2006.08.024
Szucs, D., & Ioannidis, J. P. A. (2017). When null hypothesis significance testing is unsuitable for research: A reassessment. Frontiers in Human Neuroscience, 11(August). https://doi.org/10.3389/fnhum.2017.00390
Taroni, F., Biedermann, A., Bozza, S., Garbolino, P., & Aitken, C. (2014). Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science. In Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science (Second edi). John Wiley & Sons, Ltd Registered. https://doi.org/10.1002/9781118914762
Taroni, F., Biedermann, A., Garbolino, P., & Aitken, C. G. G. (2004). A general approach to Bayesian networks for the interpretation of evidence. Forensic Science International, 139(1), 5–16. https://doi.org/10.1016/j.forsciint.2003.08.004
Tendeiro, J. N., & Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. In Psychological Methods (Vol. 24, pp. 774–795). American Psychological Association. https://doi.org/10.1037/met0000221
Terwel, K., Schuurman, M., & Loeve, A. (2018). Improving reliability in forensic engineering: The Delft approach. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 171(3), 99–106. https://doi.org/10.1680/jfoen.18.00006
Unal. (2012). Estudio Para Determinar Las Posibles Causas Que Afectaron Las Redes De Acueducto Y Alcantarillado En El Sector Comprendido Entre Las Calles 97 Y 100 Y Las Carreras 11 Y 11 A Contrato Interadministrativo Unal-Eaab 1-02-26200-0841-2011.
Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3–4), 312–318. https://doi.org/10.1016/j.ecolmodel.2006.11.033
Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian Evaluation of Informative Hypotheses (pp. 181–207). Springer New York. https://doi.org/10.1007/978-0-387-09612-4_9
Wang, Y., Cao, Z., & Li, D. (2016). Bayesian perspective on geotechnical variability and site characterization. Engineering Geology, 203, 117–125. https://doi.org/10.1016/j.enggeo.2015.08.017
Wu, T. H. (2011). 2008 Peck Lecture: The Observational Method: Case History and Models. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 862–873. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000509
Xu, Y., & Zhang, L. (2016). Diagnosis of Geotechnical Failure Causes Using Bayesian Networks. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 103–112). Springer India. https://doi.org/10.1007/978-81-322-2377-1_6
Yildirim, I. (2012). Bayesian Inference : Gibbs Sampling. 14627, 1–6.
Zhang, L. L., Zhang, J., Zhang, L. M., & Tang, W. H. (2010). Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and Geotechnics, 37(7–8), 905–912
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 210 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84789/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84789/2/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf
https://repositorio.unal.edu.co/bitstream/unal/84789/3/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
08fae190554f773f5cde3deb760db728
2f704809aedeb7fa8313557380185822
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089321081208832
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colmenares Montañez, Julio Estebancc92ffe792a53c34a8258076fac18bbbGarcia Feria, William Mauricio9198fba6b157ebf608ec4709b8f77fefGENKI - Geotechnical Engineering Knowledge and InnovationGarcia-Feria, William Mauricio [0000-0002-4407-5579]Garcia, William MauricioGarcia-Feria, MauricioGarcia-Feria, Mauricio2023-10-09T15:41:28Z2023-10-09T15:41:28Z2023https://repositorio.unal.edu.co/handle/unal/84789Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasRecent advances in engineering have increased the community’s expectation for civil engineering works to operate safely. Occasionally some of these works fail because of human errors or the unpredictable behavior of materials. Forensic engineering is the branch of forensic science in charge of investigating those engineering failures. Scientific methods used in forensic engineering guarantee that conclusions regarding the causes of an engineering failure come from reliable investigation processes. However, in the case of geotechnical failures, the inherent uncertainty of soil/rock materials, difficulties in evidence collection, and multiplicity of failure scenarios (hypotheses) pose a challenge in identifying the actual causes of failure. Therefore, conclusions about the causes of geotechnical failures sometimes seem arbitrary and biased because they are mainly based on expert judgment. Bayesian probabilistic tools can support decision-making about the causes of geotechnical failures. This thesis presents a Bayesian methodology for decision support in forensic geotechnical engineering based on two probabilistic techniques: Bayesian inference via posterior odds ratio and Bayesian Networks. The methodology compares probabilistically the hypotheses formulated as causes of failure and evaluates the influence of the amount of information (evidence) included in the analysis. Two benchmark problems and a case study were used to validate the applicability of the methodology. The results show that the Bayesian methodology identifies the most likely cause of a geotechnical failure, even when the amount of evidence is sparse. The use of the proposed methodology improves decision-making processes related to the causes of geotechnical failures. (Texto tomado de la fuente)Los recientes avances de la ingeniería han aumentado la expectativa de la comunidad de que las obras civiles funcionen con seguridad. Ocasionalmente, algunas de estas obras fallan debido a errores humanos o al comportamiento imprevisible de los materiales. La ingeniería forense es la rama de la ciencia forense encargada de investigar las fallas en ingeniería. Los métodos científicos utilizados por la ingeniería forense garantizan que las conclusiones sobre las causas de una falla provengan de procesos de investigación confiables. Sin embargo, en el caso de fallas geotécnicas, la incertidumbre inherente a los materiales de suelo y roca, las dificultades en la recolección de evidencia y la multiplicidad de escenarios de falla (hipótesis) suponen un reto para identificar las verdaderas causas de falla. En consecuencia, las conclusiones relacionadas con las causas de fallas geotécnicas algunas veces lucen arbitrarias y sesgadas porque se basan principalmente en el juicio de los expertos. Las herramientas probabilísticas bayesianas pueden apoyar la toma de decisiones sobre las causas de fallas geotécnicas. Esta tesis presenta una metodología bayesiana de apoyo a la toma de decisiones en ingeniería geotécnica forense utilizando dos técnicas probabilísticas: Inferencia bayesiana empleando las técnicas posterior odds ratio y Redes Bayesianas. La metodología compara probabilísticamente las hipótesis formuladas como causas de una falla y evalúa la influencia de la cantidad de información (evidencia) incluida en el análisis. Se presentan dos problemas de referencia y un caso de estudio para su validación. La metodología bayesiana identifica la causa más probable de la falla, incluso cuando la cantidad de evidencia es escasa. Además, su aplicación mejora la toma de decisiones relacionadas con las causas de fallas geotécnicas.DoctoradoDoctor en ingenieria civilGeotecnia y Riesgos Geoambientalesxix, 210 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería CivilFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilTeoría bayesiana de decisiones estadísticasDecisiones estadísticasBayesian statistical decision theoryStatistical decisionForensic geotechnical engineeringBayesian inferenceBayesian NetworksBayesian network methodology for decision support in forensic geotechnical engineeringMetodología de redes bayesianas para apoyar la toma de decisiones en ingeniería geotécnica forenseTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAllenby, G. M. (1990). Hypothesis Testing with Scanner Data: The Advantage of Bayesian Methods. Journal of Marketing Research, 27(4), 379–389. https://doi.org/10.1177/002224379002700401Alonso, E. E., Pinyol, N. M., & Puzrin, A. M. (2010). Geomechanics of failures. Advanced topics. In Geomechanics of Failures. Advanced Topics. https://doi.org/10.1007/978-90-481- 3538-7Alonso, E. E., Pinyol, N. P., & Fernández, P. (2016). Caisson Failure Induced by Wave Action BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 45– 93). Springer India. https://doi.org/10.1007/978-81-322-2377-1_4Antonucci, A. (2018). Reliable Discretisation of Deterministic Equations in Bayesian Networks. The Thirty-Second International Florida Artificial Intelligence Research Society Conference (FLAIRS-32), 453–457.ASCE. (2018). Guidelines for Failure Investigation. In R. S. Barrow, R. W. Anthony, K. J. Beasley, & S. M. Verhulst (Eds.), Guidelines for Failure Investigation. https://doi.org/10.1061/9780784415122Babu, G. L. S. (2016). Briefing: Forensic geotechnical engineering. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 1–4.Babu, G. L., & Singh, V. P. (2016). Back Analyses in Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 113–118). Springer India. https://doi.org/10.1007/978- 81-322-2377-1_7Babu, G., Raja, J., Munwar Basha, B., & Srivastava, A. (2016). Forensic Analysis of Failure of Retaining Wall. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 451–465). Springer India. https://doi.org/10.1007/978-81-322-2377-1_30Baecher, G. B. (2017). Bayesian Thinking in Geotechnics. Geo-Risk 2017, June, 1–18. https://doi.org/10.1061/9780784480694.001Baecher, G. B., & Christian, J. T. (2003). Reliability and statistics in geotechnical engineering (Issue 1). John Wiley & Sons Ltd. https://doi.org/10.1198/tech.2005.s838Bea, R. (2006). Reliability and Human Factors in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 132. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(631)Bell, G. R. (2000). Engineering Investigation of Structural Failures. In R. T. Ratay (Ed.), Forensic Structural Engineering Handbook. McGraw-Hill.Bensi, M., Kiureghian, A. Der, & Straub, D. (2013). Efficient Bayesian network modeling of systems. Reliability Engineering and System Safety, 112, 200–213. https://doi.org/10.1016/j.ress.2012.11.017Bensi, M. T. (2010). A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support. University of California, Berkeley.Bentley Systems. (2020). Paxis 2D. Connect Edition (20.04; p. 240). Bentley.Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., & Pizziolo, M. (2012). Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2012JF002367Biedermann, A., & Taroni, F. (2012). Bayesian networks for evaluating forensic DNA profiling evidence: A review and guide to literature. Forensic Science International: Genetics, 6(2), 147–157. https://doi.org/10.1016/j.fsigen.2011.06.009Biedermann, A., Taroni, F., Delemont, O., Semadeni, C., & Davison, A. C. (2005). The evaluation of evidence in the forensic investigation of fire incidents (Part I): An approach using Bayesian networks. Forensic Science International, 147(1), 49–57. https://doi.org/10.1016/j.forsciint.2004.04.014Bolstad, W. M. (2010). Understandeing Computational Bayesian Statistics. In P. Giudisi, G. Givens, & B. Mallik (Eds.), Wiley Series in Computational Statistic. John Wiley & Sons, Inc.Boutang, J., & De Lara, M. (2015). The biased mind: How evolution shaped our psychology including anecdotes and tips for making sound decisions. In The Biased Mind: How Evolution Shaped our Psychology Including Anecdotes and Tips for Making Sound Decisions. https://doi.org/10.1007/978-3-319-16519-6Bowen, J. (2018). Unfalsifiability. In Bad Arguments (pp. 403–406). https://doi.org/https://doi.org/10.1002/9781119165811.ch99Brady, S. P. (2012). Role of the forensic process in investigating structural failure. Journal of Performance of Constructed Facilities, 26(1), 2–6. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000274Burland, J. (2012). Chapter 4 The geotechnical triangle. In ICE manual of geotechnical engineering: Volume I (pp. 17–26). Thomas Telford Ltd. https://doi.org/doi:10.1680/moge.57074.0017Burland, J. B., Jamiolkowski, M., & Viggiani, C. (1998). Stabilising the leaning tower of Pisa. Bulletin of Engineering Geology and the Environment, 57(1), 91–99. https://doi.org/10.1007/s100640050025Calvello, M., Cuomo, S., & Ghasemi, P. (2017). The role of observations in the inverse analysis of landslide propagation. Computers and Geotechnics, 92, 11–21.Campos, L. M. De, Gamez, J. A., & Moral, S. (2001). Simplifying explanations in Bayesian belief networks. International Journal of Uncertainty, Puzziness and Knowledge-Based Systems, 9(4), 461–489.Caracol Radio. (2012). Nuevo dolor de cabeza generan obras en la Carrera 11 con 98. https://caracol.com.co/radio/2012/01/20/bogota/1327066020_609716.htmlCarper, K. L. (2000). Forensic Engineering. Taylor \& Francis. https://books.google.com.bo/books?id=gIu9BwAAQBAJChen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134–145. https://doi.org/https://doi.org/10.1016/j.envsoft.2012.03.012Chowdhury, R. N. (1987). Aspects of the Vajont slide. Engineering Geology, 24(1), 533–540. https://doi.org/https://doi.org/10.1016/0013-7952(87)90085-8Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. Geology, 29(11), 987–990. http://ecee.colorado.edu/ecen5009/Resources/Cleland01.pdfCorrea, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3 PART 2), 7270–7279. https://doi.org/10.1016/j.eswa.2008.09.024Dahl, F. A., Grotle, M., Šaltyte Benth, J., & Natvig, B. (2008). Data splitting as a countermeasure against hypothesis fishing: With a case study of predictors for low back pain. European Journal of Epidemiology, 23(4), 237–242. https://doi.org/10.1007/s10654-008-9230-xDay, R. W. (2010). Forensic Geotechnical and Foundation Engineering (p. 528).Drezner, Z., & Zerom, D. (2016). A Simple and Effective Discretization of a Continuous Random Variable. Communication in Statistics- Simulation and Computation, 45, 3798–3810. https://doi.org/10.1080/03610918.2015.1071389Druzdzel, M. J., & Gaag, L. C. van der. (2000). Building probabilistic networks: “Where do the numbers come from?” guest editors’ introduction. IEEE Transactions on Knowledge and Data Engineering, 12(4), 481–486. https://doi.org/10.1109/TKDE.2000.868901Dykes, A. P., & Bromhead, E. N. (2018). The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides, 15(9), 1815–1832. https://doi.org/10.1007/s10346-018-0996-yEring, P., & Sivakumar Babu, G. L. (2017). A Bayesian framework for updating model parameters while considering spatial variability. Georisk, 11(4), 285–298. https://doi.org/10.1080/17499518.2016.1255760Feng, X. (2015). Application of Bayesian approach in geotechnical engineering [Universidad Politécnica de Madrid]. http://oa.upm.es/37270/Fenton, N., & Neil, M. D. (2019). Risk assessment and decision analysis with bayesian networks (Second Edi). CRC Press. https://doi.org/10.1201/b13102Friedman, N., & Goldszmidt, M. (1996). Discretizing Continuous Attributes While Learning Bayesian Networks. Icml, 157–165. https://doi.org/10.1001/archinte.159.12.1359Friedman, N., Goldszmidt, M., Heckerman, D., & Russell, S. (1997). Challenge: What is the impact of Bayesian networks on learning? IJCAI International Joint Conference on Artificial Intelligence, 1, 10–15.Garbolino, P., & Taroni, F. (2002). Evaluation of scientific evidence using Bayesian networks. Forensic Science International, 125(2–3), 149–155. https://doi.org/10.1016/S0379-0738(01)00642-9Garcia-Feria, W. M., Colmenares Montañez, J. E., & Hernandez Perez, G. J. (2022). Testing the Causes of a Levee Failure Using Bayesian Networks. Ingeniería, 27(2), e18538. https://doi.org/10.14483/23448393.18538Gelman, A., Hill, J., & Yajima, M. (2012). Why We (Usually) Don’t Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. https://doi.org/10.1080/19345747.2011.618213Gelman, A., & Tuerlinckx, F. (2000). Type S error rates classical and Bayesian single and multiple compparison procedures. Computational Statistics, 15(3), 373–390. https://doi.org/10.1007/s001800000040Gens, A. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique, 60(1), 3–74. https://doi.org/10.1680/geot.9.P.109Gilbert, R. B. (2016). Important Role of Uncertainty in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 493–503). Springer India. https://doi.org/10.1007/978-81-322-2377-1_32Greenspan, H. F., O’kon, J. A., Beasley, K. J., & Ward, J. . (1989). Guidelines for Failure Investigation (ASCE (Ed.)).Grubert, P. (2013). Saaledeich bei Breitenhagen Geotechnische Untersuchungen der Bruchstelle Empfehlungen zur Sanierung.Griffiths, D., & Fenton, G. A. (2007). Probabilistic methods in geotechnical engineering. CISM International Centre for Mechanical Sciences. https://doi.org/10.1007/978-3-211-73366-0Guerra, S. Z. (1992). Severe Soil Deformations, Leveling and Protection at the Metropolitan Cathedral in Mexico City. APT Bulletin: The Journal of Preservation Technology, 24(1/2), 28–35. https://doi.org/10.2307/1504308Hasan, S., & Najjar, S. (2013). Probabilistic Back Analysis of Failed Slopes using Bayesian Techniques. Geo-Congress 2013, 231 GSP, 1013–1022. https://doi.org/10.1061/9780784412787.103Holický, M., Marková, J., & Sýkora, M. (2013). Forensic assessment of a bridge downfall using Bayesian networks. Engineering Failure Analysis, 30, 1–9. https://doi.org/10.1016/j.engfailanal.2012.12.014Houck, M. M. (2006). Forensic Science: An Introduction to Scientific and Investigative Techniques. Journal of Forensic Sciences, 51(1), 205. https://doi.org/https://doi.org/10.1111/j.1556-4029.2005.00042.xHu, J. L., Tang, X. W., & Qiu, J. N. (2016). Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data. Soil Dynamics and Earthquake Engineering, 89, 49–60. https://doi.org/10.1016/j.soildyn.2016.07.007Hwang, R. N. (2016). Back Analyses in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 131–143). Springer India. https://doi.org/10.1007/978-81-322-2377-1_9Iai, S. (2016). Backwards Problem in Geotechnical Earthquake Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 187–196). Springer India. https://doi.org/10.1007/978-81-322-2377-1_13Iwasaki, Y. (2016). A Case Study of Observational Method for a Failed Geotechnical Excavation in Singapore BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 535–548). Springer India. https://doi.org/10.1007/978-81-322-2377-1_35Jeffreys, H. (1961). Theory of Probability (Third Edit). Clarendon Press.Jensen, F. V., & Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs. In Information Science and Statistics. Springer, New York, NY. https://doi.org/https://doi.org/10.1007/978-0-387-68282-2Jessep, R. A., de Mello, L. G., & Rao, V. V. S. (2016). Technical Shortcomings Causing Geotechnical Failures: Report of Task Force 10, TC 302 BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 267–295). Springer India. https://doi.org/10.1007/978-81-322-2377-1_19Johnson, D. H. (1999). The Insignificance of Statistical Significance Testing. The Journal of Wildlife Management, 63(3), 763–772. https://doi.org/10.2307/3802789Kadane, J. B., & Schum, D. A. (1998). A Probabilistic Analysis of the Sacco and Vanzetti Evidence. In Technometrics (Vol. 40, Issue 2). https://doi.org/10.1080/00401706.1998.10485222Kardon, J. B. (2003). GUIDELINES FOR FORENSIC ENGINEERING PRACTICE (J. B. Kardon (Ed.); Second edi, Vol. 7, Issue 2). ASCE. https://doi.org/10.1080/10903120390936923Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/http://dx.doi.org/10.1080/01621459.1995.10476572Kiureghian, A., Bensi, M., & Straub, D. (2009). Bayesian network methodology for post-earthquake infrastructure risk management. In Frontier Technologies for Infrastructures Engineering (pp. 201–214).Kjærulff, U. B., & Madsen, A. L. (2013). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (M. Jordan, R. Nowak, & B. Scholkopf (Eds.); Second Edi). Springer. https://doi.org/10.1007/978-1-4614-5104-4Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. In Adaptive Computation and Machine Learning. The MIT Press.Kool, J. J., Kanning, W., Heyer, T., Jommi, C., & Jonkman, S. N. (2019). Forensic Analysis of Levee Failures : The Breitenhagen Case. International Journal of Geoengineering Case Histories, 5(2), 70–92. https://doi.org/10.4417/IJGCH-05-02-02Kool, J. J., Kanning, W., Jommi, C., & Jonkman, S. N. (2020). A Bayesian hindcasting method of levee failures applied to the Breitenhagen slope failure. Georisk, 0(0), 1–18. https://doi.org/10.1080/17499518.2020.1815213Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14(7), 293–300. https://doi.org/https://doi.org/10.1016/j.tics.2010.05.001Kruschke, J. K. (2015). Doing Bayesian Data Analysis (Second edi). Academic Press is an imprint of Elsevier.Kwan, M., Chow, K.-P., Frank, L., & Lai, P. (2008). Reasoning About Evidence Using Bayesian Networks. In R. I. & S. S. (Eds.), Advances in Digital Forensics IV. DigitalForensics 2008. IFIP — The International Federation for Information Processing, vol 285 (pp. 275–289). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-84927-0_22Lacasse, S. (2016). Forensic Geotechnical Engineering Theory and Practice. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 17–37). Springer India. https://doi.org/10.1007/978-81-322-2377-1_2Leonards, G. A. (1982). Investigation of Failures. 16th Terzaghi Lecture. Journal of the Geotechnical Engineering Division. ASCE, 108(2), 187–246. https://doi.org/10.1061/AJGEB6.0001241Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research, 36(12), 3063–3074. https://doi.org/10.1139/x06-135Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5McGrayne, S. B. (2011). The theory that would not die : how Bayes’ rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press.Meij, R. van der, & Deltares. (2020). D-Stability. Slope stability software for soft soil engineering (2020.03.3; p. 167). Deltares.Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction (Third Edit). JohnWiley & Sons Ltd.Mkrtchyan, L., Podofillini, L., & Dang, V. N. (2016). Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application. Reliability Engineering & System Safety, 151, 93–112. https://doi.org/https://doi.org/10.1016/j.ress.2016.01.004Mohan, V. K. D., Vardon, P. J., Hicks, M. A., & Gelder, P. H. A. J. M. van. (2019). Uncertainty Tracking and Geotechnical Reliability Updating Using Bayesian Networks Varenya. In J. Ching, D.-Q. Li, & J. Zhang (Eds.), Proceedings ofthe 7th InternationalSymposiumonGeotechnical SafetyandRisk(ISGSR) (Issue December, pp. 978–981). Research Publishing. https://doi.org/10.3850/978-981-11-2725-0Morales-Nápoles, O., Delgado-Hernández, D. J., De-León-Escobedo, D., & Arteaga-Arcos, J. C. (2014). A continuous Bayesian network for earth dams’ risk assessment: Methodology and quantification. In Structure and Infrastructure Engineering (Vol. 10, Issue 5, pp. 589–603). Taylor & Francis. https://doi.org/10.1080/15732479.2012.757789Morgan, M. G., & Henrion, M. (1990). Monte Carlo and Other Sampling Methods. In Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Poilcy Analysis.Müller, L. (1968). New Considerations on the Vaiont Slide. Rock Mechanics & Engineering Geology, 6(1–2), 1–91.Nadim, F., & Liu, Z. Q. (2013). Quantitative risk assessment for earthquake-triggered landslides using Bayesian network. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3(3), 2221–2224.Neil, M., Fenton, N., Lagnado, D., & Gill, R. D. (2019). Modelling competing legal arguments using Bayesian model comparison and averaging. Artificial Intelligence and Law, 27(4), 403–430. https://doi.org/10.1007/s10506-019-09250-3Neil, M., Fenton, N., & Nielsen, L. (2000). Building large-scale Bayesian networks. Knowledge Engineering Review, 15(3), 257–284. https://doi.org/10.1017/S0269888900003039Neil, M., Tailor, M., & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic discretization. Statistics and Computing, 17(3), 219–233. https://doi.org/10.1007/s11222-007-9018-yNoon, R. (2001). Forensic engineering investigation. CRC Press.Noon, R. (2009). Scientific method: applications in failure investigation and forensic science. CRC Press.Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc.Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique, 19(2), 171–187. https://doi.org/10.1680/geot.1969.19.2.171Phoon, K.-K., & Kulhawy, F. H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038Phoon, K.-K., & Kulhawy, F. H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639. https://doi.org/10.1139/t99-039Phoon, K. K., Sivakumar Babu, G. L., & Uzielli, M. (2016). Role of Reliability in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 467–491). Springer India. https://doi.org/10.1007/978-81-322-2377-1_31Popescu, M. E., & Schaefer, V. R. (2016). Back Analysis of Slope Failures to Design Landslide Stabilizing Piles (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 119–130). Springer India. https://doi.org/10.1007/978-81-322-2377-1_8Popper, K. (2002). The Logic of Scientific Discovery (2nd Editio). Routledge. https://doi.org/https://doi.org/10.4324/9780203994627Poulos, H. G. (2016). A Framework for Forensic Foundation Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 1–15). Springer India. https://doi.org/10.1007/978-81-322-2377-1_1Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Geomechanics of Failures. Springer Science+Business Media B.V.Radio Santafe. (2012). Distrito anuncia que abrir la carrera 11 con 98 depende de pruebas de carga. https://www.radiosantafe.com/2012/08/14/distrito-anuncia-que-abrir-la-carrera-11-con-98-depende-de-pruebas-de-carga/Rao, V. V. S. (2016). Guidelines for Forensic Investigation of Geotechnical Failures. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 39–44). Springer India. https://doi.org/10.1007/978-81-322-2377-1_3Rao, V. V. S., & Babu, G. L. . (2009). Administrative report: TC 40 - Forensic geotechnical engineering. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 5, 3801–3804. https://doi.org/10.3233/978-1-60750-031-5-3801Rao, V. V. S., & Babu, G. L. S. (2016). Forensic Geotechnical Engineering (First Edit). Springer India 2016. https://doi.org/10.1007/978-81-322-2377-1Ratay, R. T. (Ed.). (2000). Forensic Structural Engineering Handbook. McGraw-Hill.Robertson, P. K., & Campanella, R. G. (1985). Liquefaction Potential of Sands Using the CPT. Journal of Geotechnical Engineering, 111(3), 384–403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)Rocscience Inc. (2006). Slide (5.0).Rohmer, J. (2020). Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review. Engineering Applications of Artificial Intelligence, 88, 103384. https://doi.org/https://doi.org/10.1016/j.engappai.2019.103384Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., & Shimizu, N. (2003). Back analysis for tunnel engineering as a modern observational method. Tunnelling and Underground Space Technology, 18(2–3), 185–196. https://doi.org/10.1016/S0886-7798(03)00026-9Schweiger, H. F. (2006). ERTC7 benchmark exercise. In H. F. Schweiger (Ed.), Numerical Methods in Geotechnical Engineering (pp. 3–8). CRC Press.Scutari, M., & Denis, J.-B. (2015). Bayesian networks with examples in R. In Texts in Statistical Science. CRC Press.Smith, M. (2006). Dam Risk Analysis Using Bayesian Networks. 2006 ECI Conference on Geohazards.Sowers, G. F. (1993). Human factors in civil and geotechnical engineering failures. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(5), 308. https://doi.org/10.1016/0148-9062(93)92542-xŠpačková, O., & Straub, D. (2011). Probabilistic risk assessment of excavation performance in tunnel projects using Bayesian networks: a case study. Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk, 651–660.Spross, J. (2016). Toward a reliability framework for the observational method (Issue September). https://doi.org/10.1063/1.2719228Spross, J., & Johansson, F. (2017). When is the observational method in geotechnical engineering favourable? Structural Safety, 66. https://doi.org/10.1016/j.strusafe.2017.01.006Spross, J., Johansson, F., Uotinen, L. K. T., & Rafi, J. Y. (2016). Using Observational Method to Manage Safety Aspects of Remedial Grouting of Concrete Dam Foundations. Geotechnical and Geological Engineering, 34(5), 1613–1630. https://doi.org/10.1007/s10706-016-0069-8Stone, J. V. (2013). Bayes’ Rule. A Tutorial Introduction to Bayesian Analysis (First Edit). Sebtel Press. https://doi.org/10.1002/0470055480.ch6Straub, D. (2005). Natural hazards risk assessment using Bayesian networks. 9th International Conference on Structural Safety and Reliability ICOSSAR 05 Rome Italy, March, 2509–2516.Straub, D., & Grêt-Regamey, A. (2006). A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Regions Science and Technology, 46(3), 192–203. https://doi.org/10.1016/j.coldregions.2006.08.024Szucs, D., & Ioannidis, J. P. A. (2017). When null hypothesis significance testing is unsuitable for research: A reassessment. Frontiers in Human Neuroscience, 11(August). https://doi.org/10.3389/fnhum.2017.00390Taroni, F., Biedermann, A., Bozza, S., Garbolino, P., & Aitken, C. (2014). Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science. In Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science (Second edi). John Wiley & Sons, Ltd Registered. https://doi.org/10.1002/9781118914762Taroni, F., Biedermann, A., Garbolino, P., & Aitken, C. G. G. (2004). A general approach to Bayesian networks for the interpretation of evidence. Forensic Science International, 139(1), 5–16. https://doi.org/10.1016/j.forsciint.2003.08.004Tendeiro, J. N., & Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. In Psychological Methods (Vol. 24, pp. 774–795). American Psychological Association. https://doi.org/10.1037/met0000221Terwel, K., Schuurman, M., & Loeve, A. (2018). Improving reliability in forensic engineering: The Delft approach. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 171(3), 99–106. https://doi.org/10.1680/jfoen.18.00006Unal. (2012). Estudio Para Determinar Las Posibles Causas Que Afectaron Las Redes De Acueducto Y Alcantarillado En El Sector Comprendido Entre Las Calles 97 Y 100 Y Las Carreras 11 Y 11 A Contrato Interadministrativo Unal-Eaab 1-02-26200-0841-2011.Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3–4), 312–318. https://doi.org/10.1016/j.ecolmodel.2006.11.033Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian Evaluation of Informative Hypotheses (pp. 181–207). Springer New York. https://doi.org/10.1007/978-0-387-09612-4_9Wang, Y., Cao, Z., & Li, D. (2016). Bayesian perspective on geotechnical variability and site characterization. Engineering Geology, 203, 117–125. https://doi.org/10.1016/j.enggeo.2015.08.017Wu, T. H. (2011). 2008 Peck Lecture: The Observational Method: Case History and Models. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 862–873. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000509Xu, Y., & Zhang, L. (2016). Diagnosis of Geotechnical Failure Causes Using Bayesian Networks. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 103–112). Springer India. https://doi.org/10.1007/978-81-322-2377-1_6Yildirim, I. (2012). Bayesian Inference : Gibbs Sampling. 14627, 1–6.Zhang, L. L., Zhang, J., Zhang, L. M., & Tang, W. H. (2010). Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and Geotechnics, 37(7–8), 905–912Estudiante doctoral colombiano. Convocatoria 757MINCIENCIASInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84789/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdfGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdfTesis de Doctorado en Ingeniería - Ingeniería Civilapplication/pdf9356255https://repositorio.unal.edu.co/bitstream/unal/84789/2/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf08fae190554f773f5cde3deb760db728MD52THUMBNAILGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpgGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpgGenerated Thumbnailimage/jpeg4808https://repositorio.unal.edu.co/bitstream/unal/84789/3/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpg2f704809aedeb7fa8313557380185822MD53unal/84789oai:repositorio.unal.edu.co:unal/847892024-08-18 23:13:28.933Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=