Bayesian network methodology for decision support in forensic geotechnical engineering
ilustraciones, diagramas
- Autores:
-
Garcia Feria, William Mauricio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84789
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Teoría bayesiana de decisiones estadísticas
Decisiones estadísticas
Bayesian statistical decision theory
Statistical decision
Forensic geotechnical engineering
Bayesian inference
Bayesian Networks
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_f70df8e8d8cab8aa69296abfcfdb737f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84789 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Bayesian network methodology for decision support in forensic geotechnical engineering |
dc.title.translated.spa.fl_str_mv |
Metodología de redes bayesianas para apoyar la toma de decisiones en ingeniería geotécnica forense |
title |
Bayesian network methodology for decision support in forensic geotechnical engineering |
spellingShingle |
Bayesian network methodology for decision support in forensic geotechnical engineering 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Teoría bayesiana de decisiones estadísticas Decisiones estadísticas Bayesian statistical decision theory Statistical decision Forensic geotechnical engineering Bayesian inference Bayesian Networks |
title_short |
Bayesian network methodology for decision support in forensic geotechnical engineering |
title_full |
Bayesian network methodology for decision support in forensic geotechnical engineering |
title_fullStr |
Bayesian network methodology for decision support in forensic geotechnical engineering |
title_full_unstemmed |
Bayesian network methodology for decision support in forensic geotechnical engineering |
title_sort |
Bayesian network methodology for decision support in forensic geotechnical engineering |
dc.creator.fl_str_mv |
Garcia Feria, William Mauricio |
dc.contributor.advisor.none.fl_str_mv |
Colmenares Montañez, Julio Esteban |
dc.contributor.author.none.fl_str_mv |
Garcia Feria, William Mauricio |
dc.contributor.researchgroup.spa.fl_str_mv |
GENKI - Geotechnical Engineering Knowledge and Innovation |
dc.contributor.orcid.spa.fl_str_mv |
Garcia-Feria, William Mauricio [0000-0002-4407-5579] |
dc.contributor.cvlac.spa.fl_str_mv |
Garcia, William Mauricio |
dc.contributor.researchgate.spa.fl_str_mv |
Garcia-Feria, Mauricio |
dc.contributor.googlescholar.spa.fl_str_mv |
Garcia-Feria, Mauricio |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil Teoría bayesiana de decisiones estadísticas Decisiones estadísticas Bayesian statistical decision theory Statistical decision Forensic geotechnical engineering Bayesian inference Bayesian Networks |
dc.subject.lemb.spa.fl_str_mv |
Teoría bayesiana de decisiones estadísticas Decisiones estadísticas |
dc.subject.lemb.eng.fl_str_mv |
Bayesian statistical decision theory Statistical decision |
dc.subject.proposal.eng.fl_str_mv |
Forensic geotechnical engineering Bayesian inference Bayesian Networks |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-09T15:41:28Z |
dc.date.available.none.fl_str_mv |
2023-10-09T15:41:28Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84789 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.repo.none.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84789 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Allenby, G. M. (1990). Hypothesis Testing with Scanner Data: The Advantage of Bayesian Methods. Journal of Marketing Research, 27(4), 379–389. https://doi.org/10.1177/002224379002700401 Alonso, E. E., Pinyol, N. M., & Puzrin, A. M. (2010). Geomechanics of failures. Advanced topics. In Geomechanics of Failures. Advanced Topics. https://doi.org/10.1007/978-90-481- 3538-7 Alonso, E. E., Pinyol, N. P., & Fernández, P. (2016). Caisson Failure Induced by Wave Action BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 45– 93). Springer India. https://doi.org/10.1007/978-81-322-2377-1_4 Antonucci, A. (2018). Reliable Discretisation of Deterministic Equations in Bayesian Networks. The Thirty-Second International Florida Artificial Intelligence Research Society Conference (FLAIRS-32), 453–457. ASCE. (2018). Guidelines for Failure Investigation. In R. S. Barrow, R. W. Anthony, K. J. Beasley, & S. M. Verhulst (Eds.), Guidelines for Failure Investigation. https://doi.org/10.1061/9780784415122 Babu, G. L. S. (2016). Briefing: Forensic geotechnical engineering. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 1–4. Babu, G. L., & Singh, V. P. (2016). Back Analyses in Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 113–118). Springer India. https://doi.org/10.1007/978- 81-322-2377-1_7 Babu, G., Raja, J., Munwar Basha, B., & Srivastava, A. (2016). Forensic Analysis of Failure of Retaining Wall. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 451–465). Springer India. https://doi.org/10.1007/978-81-322-2377-1_30 Baecher, G. B. (2017). Bayesian Thinking in Geotechnics. Geo-Risk 2017, June, 1–18. https://doi.org/10.1061/9780784480694.001 Baecher, G. B., & Christian, J. T. (2003). Reliability and statistics in geotechnical engineering (Issue 1). John Wiley & Sons Ltd. https://doi.org/10.1198/tech.2005.s838 Bea, R. (2006). Reliability and Human Factors in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 132. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(631) Bell, G. R. (2000). Engineering Investigation of Structural Failures. In R. T. Ratay (Ed.), Forensic Structural Engineering Handbook. McGraw-Hill. Bensi, M., Kiureghian, A. Der, & Straub, D. (2013). Efficient Bayesian network modeling of systems. Reliability Engineering and System Safety, 112, 200–213. https://doi.org/10.1016/j.ress.2012.11.017 Bensi, M. T. (2010). A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support. University of California, Berkeley. Bentley Systems. (2020). Paxis 2D. Connect Edition (20.04; p. 240). Bentley. Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., & Pizziolo, M. (2012). Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2012JF002367 Biedermann, A., & Taroni, F. (2012). Bayesian networks for evaluating forensic DNA profiling evidence: A review and guide to literature. Forensic Science International: Genetics, 6(2), 147–157. https://doi.org/10.1016/j.fsigen.2011.06.009 Biedermann, A., Taroni, F., Delemont, O., Semadeni, C., & Davison, A. C. (2005). The evaluation of evidence in the forensic investigation of fire incidents (Part I): An approach using Bayesian networks. Forensic Science International, 147(1), 49–57. https://doi.org/10.1016/j.forsciint.2004.04.014 Bolstad, W. M. (2010). Understandeing Computational Bayesian Statistics. In P. Giudisi, G. Givens, & B. Mallik (Eds.), Wiley Series in Computational Statistic. John Wiley & Sons, Inc. Boutang, J., & De Lara, M. (2015). The biased mind: How evolution shaped our psychology including anecdotes and tips for making sound decisions. In The Biased Mind: How Evolution Shaped our Psychology Including Anecdotes and Tips for Making Sound Decisions. https://doi.org/10.1007/978-3-319-16519-6 Bowen, J. (2018). Unfalsifiability. In Bad Arguments (pp. 403–406). https://doi.org/https://doi.org/10.1002/9781119165811.ch99 Brady, S. P. (2012). Role of the forensic process in investigating structural failure. Journal of Performance of Constructed Facilities, 26(1), 2–6. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000274 Burland, J. (2012). Chapter 4 The geotechnical triangle. In ICE manual of geotechnical engineering: Volume I (pp. 17–26). Thomas Telford Ltd. https://doi.org/doi:10.1680/moge.57074.0017 Burland, J. B., Jamiolkowski, M., & Viggiani, C. (1998). Stabilising the leaning tower of Pisa. Bulletin of Engineering Geology and the Environment, 57(1), 91–99. https://doi.org/10.1007/s100640050025 Calvello, M., Cuomo, S., & Ghasemi, P. (2017). The role of observations in the inverse analysis of landslide propagation. Computers and Geotechnics, 92, 11–21. Campos, L. M. De, Gamez, J. A., & Moral, S. (2001). Simplifying explanations in Bayesian belief networks. International Journal of Uncertainty, Puzziness and Knowledge-Based Systems, 9(4), 461–489. Caracol Radio. (2012). Nuevo dolor de cabeza generan obras en la Carrera 11 con 98. https://caracol.com.co/radio/2012/01/20/bogota/1327066020_609716.html Carper, K. L. (2000). Forensic Engineering. Taylor \& Francis. https://books.google.com.bo/books?id=gIu9BwAAQBAJ Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134–145. https://doi.org/https://doi.org/10.1016/j.envsoft.2012.03.012 Chowdhury, R. N. (1987). Aspects of the Vajont slide. Engineering Geology, 24(1), 533–540. https://doi.org/https://doi.org/10.1016/0013-7952(87)90085-8 Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. Geology, 29(11), 987–990. http://ecee.colorado.edu/ecen5009/Resources/Cleland01.pdf Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3 PART 2), 7270–7279. https://doi.org/10.1016/j.eswa.2008.09.024 Dahl, F. A., Grotle, M., Šaltyte Benth, J., & Natvig, B. (2008). Data splitting as a countermeasure against hypothesis fishing: With a case study of predictors for low back pain. European Journal of Epidemiology, 23(4), 237–242. https://doi.org/10.1007/s10654-008-9230-x Day, R. W. (2010). Forensic Geotechnical and Foundation Engineering (p. 528). Drezner, Z., & Zerom, D. (2016). A Simple and Effective Discretization of a Continuous Random Variable. Communication in Statistics- Simulation and Computation, 45, 3798–3810. https://doi.org/10.1080/03610918.2015.1071389 Druzdzel, M. J., & Gaag, L. C. van der. (2000). Building probabilistic networks: “Where do the numbers come from?” guest editors’ introduction. IEEE Transactions on Knowledge and Data Engineering, 12(4), 481–486. https://doi.org/10.1109/TKDE.2000.868901 Dykes, A. P., & Bromhead, E. N. (2018). The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides, 15(9), 1815–1832. https://doi.org/10.1007/s10346-018-0996-y Ering, P., & Sivakumar Babu, G. L. (2017). A Bayesian framework for updating model parameters while considering spatial variability. Georisk, 11(4), 285–298. https://doi.org/10.1080/17499518.2016.1255760 Feng, X. (2015). Application of Bayesian approach in geotechnical engineering [Universidad Politécnica de Madrid]. http://oa.upm.es/37270/ Fenton, N., & Neil, M. D. (2019). Risk assessment and decision analysis with bayesian networks (Second Edi). CRC Press. https://doi.org/10.1201/b13102 Friedman, N., & Goldszmidt, M. (1996). Discretizing Continuous Attributes While Learning Bayesian Networks. Icml, 157–165. https://doi.org/10.1001/archinte.159.12.1359 Friedman, N., Goldszmidt, M., Heckerman, D., & Russell, S. (1997). Challenge: What is the impact of Bayesian networks on learning? IJCAI International Joint Conference on Artificial Intelligence, 1, 10–15. Garbolino, P., & Taroni, F. (2002). Evaluation of scientific evidence using Bayesian networks. Forensic Science International, 125(2–3), 149–155. https://doi.org/10.1016/S0379-0738(01)00642-9 Garcia-Feria, W. M., Colmenares Montañez, J. E., & Hernandez Perez, G. J. (2022). Testing the Causes of a Levee Failure Using Bayesian Networks. Ingeniería, 27(2), e18538. https://doi.org/10.14483/23448393.18538 Gelman, A., Hill, J., & Yajima, M. (2012). Why We (Usually) Don’t Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. https://doi.org/10.1080/19345747.2011.618213 Gelman, A., & Tuerlinckx, F. (2000). Type S error rates classical and Bayesian single and multiple compparison procedures. Computational Statistics, 15(3), 373–390. https://doi.org/10.1007/s001800000040 Gens, A. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique, 60(1), 3–74. https://doi.org/10.1680/geot.9.P.109 Gilbert, R. B. (2016). Important Role of Uncertainty in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 493–503). Springer India. https://doi.org/10.1007/978-81-322-2377-1_32 Greenspan, H. F., O’kon, J. A., Beasley, K. J., & Ward, J. . (1989). Guidelines for Failure Investigation (ASCE (Ed.)). Grubert, P. (2013). Saaledeich bei Breitenhagen Geotechnische Untersuchungen der Bruchstelle Empfehlungen zur Sanierung. Griffiths, D., & Fenton, G. A. (2007). Probabilistic methods in geotechnical engineering. CISM International Centre for Mechanical Sciences. https://doi.org/10.1007/978-3-211-73366-0 Guerra, S. Z. (1992). Severe Soil Deformations, Leveling and Protection at the Metropolitan Cathedral in Mexico City. APT Bulletin: The Journal of Preservation Technology, 24(1/2), 28–35. https://doi.org/10.2307/1504308 Hasan, S., & Najjar, S. (2013). Probabilistic Back Analysis of Failed Slopes using Bayesian Techniques. Geo-Congress 2013, 231 GSP, 1013–1022. https://doi.org/10.1061/9780784412787.103 Holický, M., Marková, J., & Sýkora, M. (2013). Forensic assessment of a bridge downfall using Bayesian networks. Engineering Failure Analysis, 30, 1–9. https://doi.org/10.1016/j.engfailanal.2012.12.014 Houck, M. M. (2006). Forensic Science: An Introduction to Scientific and Investigative Techniques. Journal of Forensic Sciences, 51(1), 205. https://doi.org/https://doi.org/10.1111/j.1556-4029.2005.00042.x Hu, J. L., Tang, X. W., & Qiu, J. N. (2016). Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data. Soil Dynamics and Earthquake Engineering, 89, 49–60. https://doi.org/10.1016/j.soildyn.2016.07.007 Hwang, R. N. (2016). Back Analyses in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 131–143). Springer India. https://doi.org/10.1007/978-81-322-2377-1_9 Iai, S. (2016). Backwards Problem in Geotechnical Earthquake Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 187–196). Springer India. https://doi.org/10.1007/978-81-322-2377-1_13 Iwasaki, Y. (2016). A Case Study of Observational Method for a Failed Geotechnical Excavation in Singapore BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 535–548). Springer India. https://doi.org/10.1007/978-81-322-2377-1_35 Jeffreys, H. (1961). Theory of Probability (Third Edit). Clarendon Press. Jensen, F. V., & Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs. In Information Science and Statistics. Springer, New York, NY. https://doi.org/https://doi.org/10.1007/978-0-387-68282-2 Jessep, R. A., de Mello, L. G., & Rao, V. V. S. (2016). Technical Shortcomings Causing Geotechnical Failures: Report of Task Force 10, TC 302 BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 267–295). Springer India. https://doi.org/10.1007/978-81-322-2377-1_19 Johnson, D. H. (1999). The Insignificance of Statistical Significance Testing. The Journal of Wildlife Management, 63(3), 763–772. https://doi.org/10.2307/3802789 Kadane, J. B., & Schum, D. A. (1998). A Probabilistic Analysis of the Sacco and Vanzetti Evidence. In Technometrics (Vol. 40, Issue 2). https://doi.org/10.1080/00401706.1998.10485222 Kardon, J. B. (2003). GUIDELINES FOR FORENSIC ENGINEERING PRACTICE (J. B. Kardon (Ed.); Second edi, Vol. 7, Issue 2). ASCE. https://doi.org/10.1080/10903120390936923 Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/http://dx.doi.org/10.1080/01621459.1995.10476572 Kiureghian, A., Bensi, M., & Straub, D. (2009). Bayesian network methodology for post-earthquake infrastructure risk management. In Frontier Technologies for Infrastructures Engineering (pp. 201–214). Kjærulff, U. B., & Madsen, A. L. (2013). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (M. Jordan, R. Nowak, & B. Scholkopf (Eds.); Second Edi). Springer. https://doi.org/10.1007/978-1-4614-5104-4 Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. In Adaptive Computation and Machine Learning. The MIT Press. Kool, J. J., Kanning, W., Heyer, T., Jommi, C., & Jonkman, S. N. (2019). Forensic Analysis of Levee Failures : The Breitenhagen Case. International Journal of Geoengineering Case Histories, 5(2), 70–92. https://doi.org/10.4417/IJGCH-05-02-02 Kool, J. J., Kanning, W., Jommi, C., & Jonkman, S. N. (2020). A Bayesian hindcasting method of levee failures applied to the Breitenhagen slope failure. Georisk, 0(0), 1–18. https://doi.org/10.1080/17499518.2020.1815213 Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14(7), 293–300. https://doi.org/https://doi.org/10.1016/j.tics.2010.05.001 Kruschke, J. K. (2015). Doing Bayesian Data Analysis (Second edi). Academic Press is an imprint of Elsevier. Kwan, M., Chow, K.-P., Frank, L., & Lai, P. (2008). Reasoning About Evidence Using Bayesian Networks. In R. I. & S. S. (Eds.), Advances in Digital Forensics IV. DigitalForensics 2008. IFIP — The International Federation for Information Processing, vol 285 (pp. 275–289). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-84927-0_22 Lacasse, S. (2016). Forensic Geotechnical Engineering Theory and Practice. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 17–37). Springer India. https://doi.org/10.1007/978-81-322-2377-1_2 Leonards, G. A. (1982). Investigation of Failures. 16th Terzaghi Lecture. Journal of the Geotechnical Engineering Division. ASCE, 108(2), 187–246. https://doi.org/10.1061/AJGEB6.0001241 Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research, 36(12), 3063–3074. https://doi.org/10.1139/x06-135 Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5 McGrayne, S. B. (2011). The theory that would not die : how Bayes’ rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press. Meij, R. van der, & Deltares. (2020). D-Stability. Slope stability software for soft soil engineering (2020.03.3; p. 167). Deltares. Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction (Third Edit). JohnWiley & Sons Ltd. Mkrtchyan, L., Podofillini, L., & Dang, V. N. (2016). Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application. Reliability Engineering & System Safety, 151, 93–112. https://doi.org/https://doi.org/10.1016/j.ress.2016.01.004 Mohan, V. K. D., Vardon, P. J., Hicks, M. A., & Gelder, P. H. A. J. M. van. (2019). Uncertainty Tracking and Geotechnical Reliability Updating Using Bayesian Networks Varenya. In J. Ching, D.-Q. Li, & J. Zhang (Eds.), Proceedings ofthe 7th InternationalSymposiumonGeotechnical SafetyandRisk(ISGSR) (Issue December, pp. 978–981). Research Publishing. https://doi.org/10.3850/978-981-11-2725-0 Morales-Nápoles, O., Delgado-Hernández, D. J., De-León-Escobedo, D., & Arteaga-Arcos, J. C. (2014). A continuous Bayesian network for earth dams’ risk assessment: Methodology and quantification. In Structure and Infrastructure Engineering (Vol. 10, Issue 5, pp. 589–603). Taylor & Francis. https://doi.org/10.1080/15732479.2012.757789 Morgan, M. G., & Henrion, M. (1990). Monte Carlo and Other Sampling Methods. In Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Poilcy Analysis. Müller, L. (1968). New Considerations on the Vaiont Slide. Rock Mechanics & Engineering Geology, 6(1–2), 1–91. Nadim, F., & Liu, Z. Q. (2013). Quantitative risk assessment for earthquake-triggered landslides using Bayesian network. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3(3), 2221–2224. Neil, M., Fenton, N., Lagnado, D., & Gill, R. D. (2019). Modelling competing legal arguments using Bayesian model comparison and averaging. Artificial Intelligence and Law, 27(4), 403–430. https://doi.org/10.1007/s10506-019-09250-3 Neil, M., Fenton, N., & Nielsen, L. (2000). Building large-scale Bayesian networks. Knowledge Engineering Review, 15(3), 257–284. https://doi.org/10.1017/S0269888900003039 Neil, M., Tailor, M., & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic discretization. Statistics and Computing, 17(3), 219–233. https://doi.org/10.1007/s11222-007-9018-y Noon, R. (2001). Forensic engineering investigation. CRC Press. Noon, R. (2009). Scientific method: applications in failure investigation and forensic science. CRC Press. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique, 19(2), 171–187. https://doi.org/10.1680/geot.1969.19.2.171 Phoon, K.-K., & Kulhawy, F. H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038 Phoon, K.-K., & Kulhawy, F. H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639. https://doi.org/10.1139/t99-039 Phoon, K. K., Sivakumar Babu, G. L., & Uzielli, M. (2016). Role of Reliability in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 467–491). Springer India. https://doi.org/10.1007/978-81-322-2377-1_31 Popescu, M. E., & Schaefer, V. R. (2016). Back Analysis of Slope Failures to Design Landslide Stabilizing Piles (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 119–130). Springer India. https://doi.org/10.1007/978-81-322-2377-1_8 Popper, K. (2002). The Logic of Scientific Discovery (2nd Editio). Routledge. https://doi.org/https://doi.org/10.4324/9780203994627 Poulos, H. G. (2016). A Framework for Forensic Foundation Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 1–15). Springer India. https://doi.org/10.1007/978-81-322-2377-1_1 Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Geomechanics of Failures. Springer Science+Business Media B.V. Radio Santafe. (2012). Distrito anuncia que abrir la carrera 11 con 98 depende de pruebas de carga. https://www.radiosantafe.com/2012/08/14/distrito-anuncia-que-abrir-la-carrera-11-con-98-depende-de-pruebas-de-carga/ Rao, V. V. S. (2016). Guidelines for Forensic Investigation of Geotechnical Failures. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 39–44). Springer India. https://doi.org/10.1007/978-81-322-2377-1_3 Rao, V. V. S., & Babu, G. L. . (2009). Administrative report: TC 40 - Forensic geotechnical engineering. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 5, 3801–3804. https://doi.org/10.3233/978-1-60750-031-5-3801 Rao, V. V. S., & Babu, G. L. S. (2016). Forensic Geotechnical Engineering (First Edit). Springer India 2016. https://doi.org/10.1007/978-81-322-2377-1 Ratay, R. T. (Ed.). (2000). Forensic Structural Engineering Handbook. McGraw-Hill. Robertson, P. K., & Campanella, R. G. (1985). Liquefaction Potential of Sands Using the CPT. Journal of Geotechnical Engineering, 111(3), 384–403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384) Rocscience Inc. (2006). Slide (5.0). Rohmer, J. (2020). Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review. Engineering Applications of Artificial Intelligence, 88, 103384. https://doi.org/https://doi.org/10.1016/j.engappai.2019.103384 Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., & Shimizu, N. (2003). Back analysis for tunnel engineering as a modern observational method. Tunnelling and Underground Space Technology, 18(2–3), 185–196. https://doi.org/10.1016/S0886-7798(03)00026-9 Schweiger, H. F. (2006). ERTC7 benchmark exercise. In H. F. Schweiger (Ed.), Numerical Methods in Geotechnical Engineering (pp. 3–8). CRC Press. Scutari, M., & Denis, J.-B. (2015). Bayesian networks with examples in R. In Texts in Statistical Science. CRC Press. Smith, M. (2006). Dam Risk Analysis Using Bayesian Networks. 2006 ECI Conference on Geohazards. Sowers, G. F. (1993). Human factors in civil and geotechnical engineering failures. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(5), 308. https://doi.org/10.1016/0148-9062(93)92542-x Špačková, O., & Straub, D. (2011). Probabilistic risk assessment of excavation performance in tunnel projects using Bayesian networks: a case study. Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk, 651–660. Spross, J. (2016). Toward a reliability framework for the observational method (Issue September). https://doi.org/10.1063/1.2719228 Spross, J., & Johansson, F. (2017). When is the observational method in geotechnical engineering favourable? Structural Safety, 66. https://doi.org/10.1016/j.strusafe.2017.01.006 Spross, J., Johansson, F., Uotinen, L. K. T., & Rafi, J. Y. (2016). Using Observational Method to Manage Safety Aspects of Remedial Grouting of Concrete Dam Foundations. Geotechnical and Geological Engineering, 34(5), 1613–1630. https://doi.org/10.1007/s10706-016-0069-8 Stone, J. V. (2013). Bayes’ Rule. A Tutorial Introduction to Bayesian Analysis (First Edit). Sebtel Press. https://doi.org/10.1002/0470055480.ch6 Straub, D. (2005). Natural hazards risk assessment using Bayesian networks. 9th International Conference on Structural Safety and Reliability ICOSSAR 05 Rome Italy, March, 2509–2516. Straub, D., & Grêt-Regamey, A. (2006). A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Regions Science and Technology, 46(3), 192–203. https://doi.org/10.1016/j.coldregions.2006.08.024 Szucs, D., & Ioannidis, J. P. A. (2017). When null hypothesis significance testing is unsuitable for research: A reassessment. Frontiers in Human Neuroscience, 11(August). https://doi.org/10.3389/fnhum.2017.00390 Taroni, F., Biedermann, A., Bozza, S., Garbolino, P., & Aitken, C. (2014). Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science. In Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science (Second edi). John Wiley & Sons, Ltd Registered. https://doi.org/10.1002/9781118914762 Taroni, F., Biedermann, A., Garbolino, P., & Aitken, C. G. G. (2004). A general approach to Bayesian networks for the interpretation of evidence. Forensic Science International, 139(1), 5–16. https://doi.org/10.1016/j.forsciint.2003.08.004 Tendeiro, J. N., & Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. In Psychological Methods (Vol. 24, pp. 774–795). American Psychological Association. https://doi.org/10.1037/met0000221 Terwel, K., Schuurman, M., & Loeve, A. (2018). Improving reliability in forensic engineering: The Delft approach. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 171(3), 99–106. https://doi.org/10.1680/jfoen.18.00006 Unal. (2012). Estudio Para Determinar Las Posibles Causas Que Afectaron Las Redes De Acueducto Y Alcantarillado En El Sector Comprendido Entre Las Calles 97 Y 100 Y Las Carreras 11 Y 11 A Contrato Interadministrativo Unal-Eaab 1-02-26200-0841-2011. Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3–4), 312–318. https://doi.org/10.1016/j.ecolmodel.2006.11.033 Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian Evaluation of Informative Hypotheses (pp. 181–207). Springer New York. https://doi.org/10.1007/978-0-387-09612-4_9 Wang, Y., Cao, Z., & Li, D. (2016). Bayesian perspective on geotechnical variability and site characterization. Engineering Geology, 203, 117–125. https://doi.org/10.1016/j.enggeo.2015.08.017 Wu, T. H. (2011). 2008 Peck Lecture: The Observational Method: Case History and Models. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 862–873. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000509 Xu, Y., & Zhang, L. (2016). Diagnosis of Geotechnical Failure Causes Using Bayesian Networks. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 103–112). Springer India. https://doi.org/10.1007/978-81-322-2377-1_6 Yildirim, I. (2012). Bayesian Inference : Gibbs Sampling. 14627, 1–6. Zhang, L. L., Zhang, J., Zhang, L. M., & Tang, W. H. (2010). Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and Geotechnics, 37(7–8), 905–912 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 210 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84789/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84789/2/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf https://repositorio.unal.edu.co/bitstream/unal/84789/3/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 08fae190554f773f5cde3deb760db728 2f704809aedeb7fa8313557380185822 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089321081208832 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colmenares Montañez, Julio Estebancc92ffe792a53c34a8258076fac18bbbGarcia Feria, William Mauricio9198fba6b157ebf608ec4709b8f77fefGENKI - Geotechnical Engineering Knowledge and InnovationGarcia-Feria, William Mauricio [0000-0002-4407-5579]Garcia, William MauricioGarcia-Feria, MauricioGarcia-Feria, Mauricio2023-10-09T15:41:28Z2023-10-09T15:41:28Z2023https://repositorio.unal.edu.co/handle/unal/84789Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasRecent advances in engineering have increased the community’s expectation for civil engineering works to operate safely. Occasionally some of these works fail because of human errors or the unpredictable behavior of materials. Forensic engineering is the branch of forensic science in charge of investigating those engineering failures. Scientific methods used in forensic engineering guarantee that conclusions regarding the causes of an engineering failure come from reliable investigation processes. However, in the case of geotechnical failures, the inherent uncertainty of soil/rock materials, difficulties in evidence collection, and multiplicity of failure scenarios (hypotheses) pose a challenge in identifying the actual causes of failure. Therefore, conclusions about the causes of geotechnical failures sometimes seem arbitrary and biased because they are mainly based on expert judgment. Bayesian probabilistic tools can support decision-making about the causes of geotechnical failures. This thesis presents a Bayesian methodology for decision support in forensic geotechnical engineering based on two probabilistic techniques: Bayesian inference via posterior odds ratio and Bayesian Networks. The methodology compares probabilistically the hypotheses formulated as causes of failure and evaluates the influence of the amount of information (evidence) included in the analysis. Two benchmark problems and a case study were used to validate the applicability of the methodology. The results show that the Bayesian methodology identifies the most likely cause of a geotechnical failure, even when the amount of evidence is sparse. The use of the proposed methodology improves decision-making processes related to the causes of geotechnical failures. (Texto tomado de la fuente)Los recientes avances de la ingeniería han aumentado la expectativa de la comunidad de que las obras civiles funcionen con seguridad. Ocasionalmente, algunas de estas obras fallan debido a errores humanos o al comportamiento imprevisible de los materiales. La ingeniería forense es la rama de la ciencia forense encargada de investigar las fallas en ingeniería. Los métodos científicos utilizados por la ingeniería forense garantizan que las conclusiones sobre las causas de una falla provengan de procesos de investigación confiables. Sin embargo, en el caso de fallas geotécnicas, la incertidumbre inherente a los materiales de suelo y roca, las dificultades en la recolección de evidencia y la multiplicidad de escenarios de falla (hipótesis) suponen un reto para identificar las verdaderas causas de falla. En consecuencia, las conclusiones relacionadas con las causas de fallas geotécnicas algunas veces lucen arbitrarias y sesgadas porque se basan principalmente en el juicio de los expertos. Las herramientas probabilísticas bayesianas pueden apoyar la toma de decisiones sobre las causas de fallas geotécnicas. Esta tesis presenta una metodología bayesiana de apoyo a la toma de decisiones en ingeniería geotécnica forense utilizando dos técnicas probabilísticas: Inferencia bayesiana empleando las técnicas posterior odds ratio y Redes Bayesianas. La metodología compara probabilísticamente las hipótesis formuladas como causas de una falla y evalúa la influencia de la cantidad de información (evidencia) incluida en el análisis. Se presentan dos problemas de referencia y un caso de estudio para su validación. La metodología bayesiana identifica la causa más probable de la falla, incluso cuando la cantidad de evidencia es escasa. Además, su aplicación mejora la toma de decisiones relacionadas con las causas de fallas geotécnicas.DoctoradoDoctor en ingenieria civilGeotecnia y Riesgos Geoambientalesxix, 210 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería CivilFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilTeoría bayesiana de decisiones estadísticasDecisiones estadísticasBayesian statistical decision theoryStatistical decisionForensic geotechnical engineeringBayesian inferenceBayesian NetworksBayesian network methodology for decision support in forensic geotechnical engineeringMetodología de redes bayesianas para apoyar la toma de decisiones en ingeniería geotécnica forenseTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAllenby, G. M. (1990). Hypothesis Testing with Scanner Data: The Advantage of Bayesian Methods. Journal of Marketing Research, 27(4), 379–389. https://doi.org/10.1177/002224379002700401Alonso, E. E., Pinyol, N. M., & Puzrin, A. M. (2010). Geomechanics of failures. Advanced topics. In Geomechanics of Failures. Advanced Topics. https://doi.org/10.1007/978-90-481- 3538-7Alonso, E. E., Pinyol, N. P., & Fernández, P. (2016). Caisson Failure Induced by Wave Action BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 45– 93). Springer India. https://doi.org/10.1007/978-81-322-2377-1_4Antonucci, A. (2018). Reliable Discretisation of Deterministic Equations in Bayesian Networks. The Thirty-Second International Florida Artificial Intelligence Research Society Conference (FLAIRS-32), 453–457.ASCE. (2018). Guidelines for Failure Investigation. In R. S. Barrow, R. W. Anthony, K. J. Beasley, & S. M. Verhulst (Eds.), Guidelines for Failure Investigation. https://doi.org/10.1061/9780784415122Babu, G. L. S. (2016). Briefing: Forensic geotechnical engineering. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 1–4.Babu, G. L., & Singh, V. P. (2016). Back Analyses in Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 113–118). Springer India. https://doi.org/10.1007/978- 81-322-2377-1_7Babu, G., Raja, J., Munwar Basha, B., & Srivastava, A. (2016). Forensic Analysis of Failure of Retaining Wall. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 451–465). Springer India. https://doi.org/10.1007/978-81-322-2377-1_30Baecher, G. B. (2017). Bayesian Thinking in Geotechnics. Geo-Risk 2017, June, 1–18. https://doi.org/10.1061/9780784480694.001Baecher, G. B., & Christian, J. T. (2003). Reliability and statistics in geotechnical engineering (Issue 1). John Wiley & Sons Ltd. https://doi.org/10.1198/tech.2005.s838Bea, R. (2006). Reliability and Human Factors in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 132. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(631)Bell, G. R. (2000). Engineering Investigation of Structural Failures. In R. T. Ratay (Ed.), Forensic Structural Engineering Handbook. McGraw-Hill.Bensi, M., Kiureghian, A. Der, & Straub, D. (2013). Efficient Bayesian network modeling of systems. Reliability Engineering and System Safety, 112, 200–213. https://doi.org/10.1016/j.ress.2012.11.017Bensi, M. T. (2010). A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support. University of California, Berkeley.Bentley Systems. (2020). Paxis 2D. Connect Edition (20.04; p. 240). Bentley.Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., & Pizziolo, M. (2012). Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2012JF002367Biedermann, A., & Taroni, F. (2012). Bayesian networks for evaluating forensic DNA profiling evidence: A review and guide to literature. Forensic Science International: Genetics, 6(2), 147–157. https://doi.org/10.1016/j.fsigen.2011.06.009Biedermann, A., Taroni, F., Delemont, O., Semadeni, C., & Davison, A. C. (2005). The evaluation of evidence in the forensic investigation of fire incidents (Part I): An approach using Bayesian networks. Forensic Science International, 147(1), 49–57. https://doi.org/10.1016/j.forsciint.2004.04.014Bolstad, W. M. (2010). Understandeing Computational Bayesian Statistics. In P. Giudisi, G. Givens, & B. Mallik (Eds.), Wiley Series in Computational Statistic. John Wiley & Sons, Inc.Boutang, J., & De Lara, M. (2015). The biased mind: How evolution shaped our psychology including anecdotes and tips for making sound decisions. In The Biased Mind: How Evolution Shaped our Psychology Including Anecdotes and Tips for Making Sound Decisions. https://doi.org/10.1007/978-3-319-16519-6Bowen, J. (2018). Unfalsifiability. In Bad Arguments (pp. 403–406). https://doi.org/https://doi.org/10.1002/9781119165811.ch99Brady, S. P. (2012). Role of the forensic process in investigating structural failure. Journal of Performance of Constructed Facilities, 26(1), 2–6. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000274Burland, J. (2012). Chapter 4 The geotechnical triangle. In ICE manual of geotechnical engineering: Volume I (pp. 17–26). Thomas Telford Ltd. https://doi.org/doi:10.1680/moge.57074.0017Burland, J. B., Jamiolkowski, M., & Viggiani, C. (1998). Stabilising the leaning tower of Pisa. Bulletin of Engineering Geology and the Environment, 57(1), 91–99. https://doi.org/10.1007/s100640050025Calvello, M., Cuomo, S., & Ghasemi, P. (2017). The role of observations in the inverse analysis of landslide propagation. Computers and Geotechnics, 92, 11–21.Campos, L. M. De, Gamez, J. A., & Moral, S. (2001). Simplifying explanations in Bayesian belief networks. International Journal of Uncertainty, Puzziness and Knowledge-Based Systems, 9(4), 461–489.Caracol Radio. (2012). Nuevo dolor de cabeza generan obras en la Carrera 11 con 98. https://caracol.com.co/radio/2012/01/20/bogota/1327066020_609716.htmlCarper, K. L. (2000). Forensic Engineering. Taylor \& Francis. https://books.google.com.bo/books?id=gIu9BwAAQBAJChen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134–145. https://doi.org/https://doi.org/10.1016/j.envsoft.2012.03.012Chowdhury, R. N. (1987). Aspects of the Vajont slide. Engineering Geology, 24(1), 533–540. https://doi.org/https://doi.org/10.1016/0013-7952(87)90085-8Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. Geology, 29(11), 987–990. http://ecee.colorado.edu/ecen5009/Resources/Cleland01.pdfCorrea, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3 PART 2), 7270–7279. https://doi.org/10.1016/j.eswa.2008.09.024Dahl, F. A., Grotle, M., Šaltyte Benth, J., & Natvig, B. (2008). Data splitting as a countermeasure against hypothesis fishing: With a case study of predictors for low back pain. European Journal of Epidemiology, 23(4), 237–242. https://doi.org/10.1007/s10654-008-9230-xDay, R. W. (2010). Forensic Geotechnical and Foundation Engineering (p. 528).Drezner, Z., & Zerom, D. (2016). A Simple and Effective Discretization of a Continuous Random Variable. Communication in Statistics- Simulation and Computation, 45, 3798–3810. https://doi.org/10.1080/03610918.2015.1071389Druzdzel, M. J., & Gaag, L. C. van der. (2000). Building probabilistic networks: “Where do the numbers come from?” guest editors’ introduction. IEEE Transactions on Knowledge and Data Engineering, 12(4), 481–486. https://doi.org/10.1109/TKDE.2000.868901Dykes, A. P., & Bromhead, E. N. (2018). The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides, 15(9), 1815–1832. https://doi.org/10.1007/s10346-018-0996-yEring, P., & Sivakumar Babu, G. L. (2017). A Bayesian framework for updating model parameters while considering spatial variability. Georisk, 11(4), 285–298. https://doi.org/10.1080/17499518.2016.1255760Feng, X. (2015). Application of Bayesian approach in geotechnical engineering [Universidad Politécnica de Madrid]. http://oa.upm.es/37270/Fenton, N., & Neil, M. D. (2019). Risk assessment and decision analysis with bayesian networks (Second Edi). CRC Press. https://doi.org/10.1201/b13102Friedman, N., & Goldszmidt, M. (1996). Discretizing Continuous Attributes While Learning Bayesian Networks. Icml, 157–165. https://doi.org/10.1001/archinte.159.12.1359Friedman, N., Goldszmidt, M., Heckerman, D., & Russell, S. (1997). Challenge: What is the impact of Bayesian networks on learning? IJCAI International Joint Conference on Artificial Intelligence, 1, 10–15.Garbolino, P., & Taroni, F. (2002). Evaluation of scientific evidence using Bayesian networks. Forensic Science International, 125(2–3), 149–155. https://doi.org/10.1016/S0379-0738(01)00642-9Garcia-Feria, W. M., Colmenares Montañez, J. E., & Hernandez Perez, G. J. (2022). Testing the Causes of a Levee Failure Using Bayesian Networks. Ingeniería, 27(2), e18538. https://doi.org/10.14483/23448393.18538Gelman, A., Hill, J., & Yajima, M. (2012). Why We (Usually) Don’t Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. https://doi.org/10.1080/19345747.2011.618213Gelman, A., & Tuerlinckx, F. (2000). Type S error rates classical and Bayesian single and multiple compparison procedures. Computational Statistics, 15(3), 373–390. https://doi.org/10.1007/s001800000040Gens, A. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique, 60(1), 3–74. https://doi.org/10.1680/geot.9.P.109Gilbert, R. B. (2016). Important Role of Uncertainty in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 493–503). Springer India. https://doi.org/10.1007/978-81-322-2377-1_32Greenspan, H. F., O’kon, J. A., Beasley, K. J., & Ward, J. . (1989). Guidelines for Failure Investigation (ASCE (Ed.)).Grubert, P. (2013). Saaledeich bei Breitenhagen Geotechnische Untersuchungen der Bruchstelle Empfehlungen zur Sanierung.Griffiths, D., & Fenton, G. A. (2007). Probabilistic methods in geotechnical engineering. CISM International Centre for Mechanical Sciences. https://doi.org/10.1007/978-3-211-73366-0Guerra, S. Z. (1992). Severe Soil Deformations, Leveling and Protection at the Metropolitan Cathedral in Mexico City. APT Bulletin: The Journal of Preservation Technology, 24(1/2), 28–35. https://doi.org/10.2307/1504308Hasan, S., & Najjar, S. (2013). Probabilistic Back Analysis of Failed Slopes using Bayesian Techniques. Geo-Congress 2013, 231 GSP, 1013–1022. https://doi.org/10.1061/9780784412787.103Holický, M., Marková, J., & Sýkora, M. (2013). Forensic assessment of a bridge downfall using Bayesian networks. Engineering Failure Analysis, 30, 1–9. https://doi.org/10.1016/j.engfailanal.2012.12.014Houck, M. M. (2006). Forensic Science: An Introduction to Scientific and Investigative Techniques. Journal of Forensic Sciences, 51(1), 205. https://doi.org/https://doi.org/10.1111/j.1556-4029.2005.00042.xHu, J. L., Tang, X. W., & Qiu, J. N. (2016). Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data. Soil Dynamics and Earthquake Engineering, 89, 49–60. https://doi.org/10.1016/j.soildyn.2016.07.007Hwang, R. N. (2016). Back Analyses in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 131–143). Springer India. https://doi.org/10.1007/978-81-322-2377-1_9Iai, S. (2016). Backwards Problem in Geotechnical Earthquake Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 187–196). Springer India. https://doi.org/10.1007/978-81-322-2377-1_13Iwasaki, Y. (2016). A Case Study of Observational Method for a Failed Geotechnical Excavation in Singapore BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 535–548). Springer India. https://doi.org/10.1007/978-81-322-2377-1_35Jeffreys, H. (1961). Theory of Probability (Third Edit). Clarendon Press.Jensen, F. V., & Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs. In Information Science and Statistics. Springer, New York, NY. https://doi.org/https://doi.org/10.1007/978-0-387-68282-2Jessep, R. A., de Mello, L. G., & Rao, V. V. S. (2016). Technical Shortcomings Causing Geotechnical Failures: Report of Task Force 10, TC 302 BT - Forensic Geotechnical Engineering (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 267–295). Springer India. https://doi.org/10.1007/978-81-322-2377-1_19Johnson, D. H. (1999). The Insignificance of Statistical Significance Testing. The Journal of Wildlife Management, 63(3), 763–772. https://doi.org/10.2307/3802789Kadane, J. B., & Schum, D. A. (1998). A Probabilistic Analysis of the Sacco and Vanzetti Evidence. In Technometrics (Vol. 40, Issue 2). https://doi.org/10.1080/00401706.1998.10485222Kardon, J. B. (2003). GUIDELINES FOR FORENSIC ENGINEERING PRACTICE (J. B. Kardon (Ed.); Second edi, Vol. 7, Issue 2). ASCE. https://doi.org/10.1080/10903120390936923Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/http://dx.doi.org/10.1080/01621459.1995.10476572Kiureghian, A., Bensi, M., & Straub, D. (2009). Bayesian network methodology for post-earthquake infrastructure risk management. In Frontier Technologies for Infrastructures Engineering (pp. 201–214).Kjærulff, U. B., & Madsen, A. L. (2013). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (M. Jordan, R. Nowak, & B. Scholkopf (Eds.); Second Edi). Springer. https://doi.org/10.1007/978-1-4614-5104-4Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. In Adaptive Computation and Machine Learning. The MIT Press.Kool, J. J., Kanning, W., Heyer, T., Jommi, C., & Jonkman, S. N. (2019). Forensic Analysis of Levee Failures : The Breitenhagen Case. International Journal of Geoengineering Case Histories, 5(2), 70–92. https://doi.org/10.4417/IJGCH-05-02-02Kool, J. J., Kanning, W., Jommi, C., & Jonkman, S. N. (2020). A Bayesian hindcasting method of levee failures applied to the Breitenhagen slope failure. Georisk, 0(0), 1–18. https://doi.org/10.1080/17499518.2020.1815213Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14(7), 293–300. https://doi.org/https://doi.org/10.1016/j.tics.2010.05.001Kruschke, J. K. (2015). Doing Bayesian Data Analysis (Second edi). Academic Press is an imprint of Elsevier.Kwan, M., Chow, K.-P., Frank, L., & Lai, P. (2008). Reasoning About Evidence Using Bayesian Networks. In R. I. & S. S. (Eds.), Advances in Digital Forensics IV. DigitalForensics 2008. IFIP — The International Federation for Information Processing, vol 285 (pp. 275–289). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-84927-0_22Lacasse, S. (2016). Forensic Geotechnical Engineering Theory and Practice. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 17–37). Springer India. https://doi.org/10.1007/978-81-322-2377-1_2Leonards, G. A. (1982). Investigation of Failures. 16th Terzaghi Lecture. Journal of the Geotechnical Engineering Division. ASCE, 108(2), 187–246. https://doi.org/10.1061/AJGEB6.0001241Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research, 36(12), 3063–3074. https://doi.org/10.1139/x06-135Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5McGrayne, S. B. (2011). The theory that would not die : how Bayes’ rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press.Meij, R. van der, & Deltares. (2020). D-Stability. Slope stability software for soft soil engineering (2020.03.3; p. 167). Deltares.Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction (Third Edit). JohnWiley & Sons Ltd.Mkrtchyan, L., Podofillini, L., & Dang, V. N. (2016). Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application. Reliability Engineering & System Safety, 151, 93–112. https://doi.org/https://doi.org/10.1016/j.ress.2016.01.004Mohan, V. K. D., Vardon, P. J., Hicks, M. A., & Gelder, P. H. A. J. M. van. (2019). Uncertainty Tracking and Geotechnical Reliability Updating Using Bayesian Networks Varenya. In J. Ching, D.-Q. Li, & J. Zhang (Eds.), Proceedings ofthe 7th InternationalSymposiumonGeotechnical SafetyandRisk(ISGSR) (Issue December, pp. 978–981). Research Publishing. https://doi.org/10.3850/978-981-11-2725-0Morales-Nápoles, O., Delgado-Hernández, D. J., De-León-Escobedo, D., & Arteaga-Arcos, J. C. (2014). A continuous Bayesian network for earth dams’ risk assessment: Methodology and quantification. In Structure and Infrastructure Engineering (Vol. 10, Issue 5, pp. 589–603). Taylor & Francis. https://doi.org/10.1080/15732479.2012.757789Morgan, M. G., & Henrion, M. (1990). Monte Carlo and Other Sampling Methods. In Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Poilcy Analysis.Müller, L. (1968). New Considerations on the Vaiont Slide. Rock Mechanics & Engineering Geology, 6(1–2), 1–91.Nadim, F., & Liu, Z. Q. (2013). Quantitative risk assessment for earthquake-triggered landslides using Bayesian network. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3(3), 2221–2224.Neil, M., Fenton, N., Lagnado, D., & Gill, R. D. (2019). Modelling competing legal arguments using Bayesian model comparison and averaging. Artificial Intelligence and Law, 27(4), 403–430. https://doi.org/10.1007/s10506-019-09250-3Neil, M., Fenton, N., & Nielsen, L. (2000). Building large-scale Bayesian networks. Knowledge Engineering Review, 15(3), 257–284. https://doi.org/10.1017/S0269888900003039Neil, M., Tailor, M., & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic discretization. Statistics and Computing, 17(3), 219–233. https://doi.org/10.1007/s11222-007-9018-yNoon, R. (2001). Forensic engineering investigation. CRC Press.Noon, R. (2009). Scientific method: applications in failure investigation and forensic science. CRC Press.Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc.Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique, 19(2), 171–187. https://doi.org/10.1680/geot.1969.19.2.171Phoon, K.-K., & Kulhawy, F. H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038Phoon, K.-K., & Kulhawy, F. H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639. https://doi.org/10.1139/t99-039Phoon, K. K., Sivakumar Babu, G. L., & Uzielli, M. (2016). Role of Reliability in Forensic Geotechnical Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 467–491). Springer India. https://doi.org/10.1007/978-81-322-2377-1_31Popescu, M. E., & Schaefer, V. R. (2016). Back Analysis of Slope Failures to Design Landslide Stabilizing Piles (V. V. S. Rao & G. L. Sivakumar Babu (Eds.); pp. 119–130). Springer India. https://doi.org/10.1007/978-81-322-2377-1_8Popper, K. (2002). The Logic of Scientific Discovery (2nd Editio). Routledge. https://doi.org/https://doi.org/10.4324/9780203994627Poulos, H. G. (2016). A Framework for Forensic Foundation Engineering. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 1–15). Springer India. https://doi.org/10.1007/978-81-322-2377-1_1Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Geomechanics of Failures. Springer Science+Business Media B.V.Radio Santafe. (2012). Distrito anuncia que abrir la carrera 11 con 98 depende de pruebas de carga. https://www.radiosantafe.com/2012/08/14/distrito-anuncia-que-abrir-la-carrera-11-con-98-depende-de-pruebas-de-carga/Rao, V. V. S. (2016). Guidelines for Forensic Investigation of Geotechnical Failures. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 39–44). Springer India. https://doi.org/10.1007/978-81-322-2377-1_3Rao, V. V. S., & Babu, G. L. . (2009). Administrative report: TC 40 - Forensic geotechnical engineering. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 5, 3801–3804. https://doi.org/10.3233/978-1-60750-031-5-3801Rao, V. V. S., & Babu, G. L. S. (2016). Forensic Geotechnical Engineering (First Edit). Springer India 2016. https://doi.org/10.1007/978-81-322-2377-1Ratay, R. T. (Ed.). (2000). Forensic Structural Engineering Handbook. McGraw-Hill.Robertson, P. K., & Campanella, R. G. (1985). Liquefaction Potential of Sands Using the CPT. Journal of Geotechnical Engineering, 111(3), 384–403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)Rocscience Inc. (2006). Slide (5.0).Rohmer, J. (2020). Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review. Engineering Applications of Artificial Intelligence, 88, 103384. https://doi.org/https://doi.org/10.1016/j.engappai.2019.103384Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., & Shimizu, N. (2003). Back analysis for tunnel engineering as a modern observational method. Tunnelling and Underground Space Technology, 18(2–3), 185–196. https://doi.org/10.1016/S0886-7798(03)00026-9Schweiger, H. F. (2006). ERTC7 benchmark exercise. In H. F. Schweiger (Ed.), Numerical Methods in Geotechnical Engineering (pp. 3–8). CRC Press.Scutari, M., & Denis, J.-B. (2015). Bayesian networks with examples in R. In Texts in Statistical Science. CRC Press.Smith, M. (2006). Dam Risk Analysis Using Bayesian Networks. 2006 ECI Conference on Geohazards.Sowers, G. F. (1993). Human factors in civil and geotechnical engineering failures. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(5), 308. https://doi.org/10.1016/0148-9062(93)92542-xŠpačková, O., & Straub, D. (2011). Probabilistic risk assessment of excavation performance in tunnel projects using Bayesian networks: a case study. Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk, 651–660.Spross, J. (2016). Toward a reliability framework for the observational method (Issue September). https://doi.org/10.1063/1.2719228Spross, J., & Johansson, F. (2017). When is the observational method in geotechnical engineering favourable? Structural Safety, 66. https://doi.org/10.1016/j.strusafe.2017.01.006Spross, J., Johansson, F., Uotinen, L. K. T., & Rafi, J. Y. (2016). Using Observational Method to Manage Safety Aspects of Remedial Grouting of Concrete Dam Foundations. Geotechnical and Geological Engineering, 34(5), 1613–1630. https://doi.org/10.1007/s10706-016-0069-8Stone, J. V. (2013). Bayes’ Rule. A Tutorial Introduction to Bayesian Analysis (First Edit). Sebtel Press. https://doi.org/10.1002/0470055480.ch6Straub, D. (2005). Natural hazards risk assessment using Bayesian networks. 9th International Conference on Structural Safety and Reliability ICOSSAR 05 Rome Italy, March, 2509–2516.Straub, D., & Grêt-Regamey, A. (2006). A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Regions Science and Technology, 46(3), 192–203. https://doi.org/10.1016/j.coldregions.2006.08.024Szucs, D., & Ioannidis, J. P. A. (2017). When null hypothesis significance testing is unsuitable for research: A reassessment. Frontiers in Human Neuroscience, 11(August). https://doi.org/10.3389/fnhum.2017.00390Taroni, F., Biedermann, A., Bozza, S., Garbolino, P., & Aitken, C. (2014). Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science. In Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science (Second edi). John Wiley & Sons, Ltd Registered. https://doi.org/10.1002/9781118914762Taroni, F., Biedermann, A., Garbolino, P., & Aitken, C. G. G. (2004). A general approach to Bayesian networks for the interpretation of evidence. Forensic Science International, 139(1), 5–16. https://doi.org/10.1016/j.forsciint.2003.08.004Tendeiro, J. N., & Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. In Psychological Methods (Vol. 24, pp. 774–795). American Psychological Association. https://doi.org/10.1037/met0000221Terwel, K., Schuurman, M., & Loeve, A. (2018). Improving reliability in forensic engineering: The Delft approach. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 171(3), 99–106. https://doi.org/10.1680/jfoen.18.00006Unal. (2012). Estudio Para Determinar Las Posibles Causas Que Afectaron Las Redes De Acueducto Y Alcantarillado En El Sector Comprendido Entre Las Calles 97 Y 100 Y Las Carreras 11 Y 11 A Contrato Interadministrativo Unal-Eaab 1-02-26200-0841-2011.Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3–4), 312–318. https://doi.org/10.1016/j.ecolmodel.2006.11.033Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian Evaluation of Informative Hypotheses (pp. 181–207). Springer New York. https://doi.org/10.1007/978-0-387-09612-4_9Wang, Y., Cao, Z., & Li, D. (2016). Bayesian perspective on geotechnical variability and site characterization. Engineering Geology, 203, 117–125. https://doi.org/10.1016/j.enggeo.2015.08.017Wu, T. H. (2011). 2008 Peck Lecture: The Observational Method: Case History and Models. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 862–873. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000509Xu, Y., & Zhang, L. (2016). Diagnosis of Geotechnical Failure Causes Using Bayesian Networks. In V. V. S. Rao & G. L. Sivakumar Babu (Eds.), Forensic Geotechnical Engineering (pp. 103–112). Springer India. https://doi.org/10.1007/978-81-322-2377-1_6Yildirim, I. (2012). Bayesian Inference : Gibbs Sampling. 14627, 1–6.Zhang, L. L., Zhang, J., Zhang, L. M., & Tang, W. H. (2010). Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and Geotechnics, 37(7–8), 905–912Estudiante doctoral colombiano. Convocatoria 757MINCIENCIASInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84789/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdfGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdfTesis de Doctorado en Ingeniería - Ingeniería Civilapplication/pdf9356255https://repositorio.unal.edu.co/bitstream/unal/84789/2/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf08fae190554f773f5cde3deb760db728MD52THUMBNAILGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpgGarcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpgGenerated Thumbnailimage/jpeg4808https://repositorio.unal.edu.co/bitstream/unal/84789/3/Garcia-Feria_Bayesian_Network_Forensic_Geotechnical_Engineering.pdf.jpg2f704809aedeb7fa8313557380185822MD53unal/84789oai:repositorio.unal.edu.co:unal/847892024-08-18 23:13:28.933Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |