Real-time classification of coffee fruits using FPGA

The goal in this work was to design a circuit that could classify objects by color in real-time that can be used for quality improvement. A circuit that performs color analysis of an image and, according to that analysis, classifies the object was designed. A histogram of the Spherical Coordinate Tr...

Full description

Autores:
Montes Castrillón, Nubia Liliana
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/55273
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/55273
http://bdigital.unal.edu.co/50617/
Palabra clave:
0 Generalidades / Computer science, information and general works
51 Matemáticas / Mathematics
62 Ingeniería y operaciones afines / Engineering
Real-time
Image processing - digital techniques
Color analysis
Coffee grain - classification
Tiempo real
Procesamiento digital de imágenes
Análisis de color
Granos de café - clasificación
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f68d0c303f0bc355046cb697d9fa8d18
oai_identifier_str oai:repositorio.unal.edu.co:unal/55273
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Londoño, Gustavo Adolfo (Thesis advisor)d488e8e2-4b81-4262-b857-78b644d9fdf8-1Montes Castrillón, Nubia Lilianac2c76142-6c22-4bb9-9723-9682d8e5cf8a3002019-07-02T11:16:46Z2019-07-02T11:16:46Z2015https://repositorio.unal.edu.co/handle/unal/55273http://bdigital.unal.edu.co/50617/The goal in this work was to design a circuit that could classify objects by color in real-time that can be used for quality improvement. A circuit that performs color analysis of an image and, according to that analysis, classifies the object was designed. A histogram of the Spherical Coordinate Transform of the image is computed and compared to histogram patterns to make a classification decision. The circuit was tested on the classification of coffee fruits in four maturity stages: immature, under-mature, mature and over-mature. The results showed that it is possible to build a system for color object classification that works in real-time and that can be affordable and portable. The designed circuit is implemented on a Field Programmable Gate Array (FPGA), acquires video at 64 frames per second, classifies the coffee fruits at a rate of 25 fruits per second and achieved an average efficacy of 75.7%Abstract : El objetivo de este trabajo fue diseñar un circuito que lograra clasificar objetos basado en su color funcionando en tiempo real y que pueda ser usado en aplicaciones de control de calidad. Se diseñó un circuito que toma una imagen, analiza sus características de color y, de acuerdo a este análisis, asigna el objeto a una categoría. La imagen se transforma del espacio RGB a coordenadas esféricas, se calcula el histograma de la imagen transformada y se compara con los patrones de cada categoría para realizar la asignación. El circuito fue usado para clasificar frutos de café en cuatro estados de maduración: inmaduro, pintón, maduro y sobremaduro. Los resultados mostraron que es posible construir un sistema que clasifique objetos basado en su color, que funcione en tiempo real y que además sea económico y portátil. El circuito diseñado adquiere video a una velocidad de 64 cuadros por segundo, clasifica frutos de café a una tasa de 25 frutos por segundo y obtuvo una eficacia promedio de 75.7%Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y ComputaciónMontes Castrillón, Nubia Liliana (2015) Real-time classification of coffee fruits using FPGA. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.0 Generalidades / Computer science, information and general works51 Matemáticas / Mathematics62 Ingeniería y operaciones afines / EngineeringReal-timeImage processing - digital techniquesColor analysisCoffee grain - classificationTiempo realProcesamiento digital de imágenesAnálisis de colorGranos de café - clasificaciónReal-time classification of coffee fruits using FPGATrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL30401261.2015.pdfapplication/pdf29245788https://repositorio.unal.edu.co/bitstream/unal/55273/1/30401261.2015.pdf35e6a756a5c141e140a861bc118a05e5MD51THUMBNAIL30401261.2015.pdf.jpg30401261.2015.pdf.jpgGenerated Thumbnailimage/jpeg3682https://repositorio.unal.edu.co/bitstream/unal/55273/2/30401261.2015.pdf.jpg84b855848bdfdb43e9a0187ad3e9f67cMD52unal/55273oai:repositorio.unal.edu.co:unal/552732023-03-11 23:10:31.264Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Real-time classification of coffee fruits using FPGA
title Real-time classification of coffee fruits using FPGA
spellingShingle Real-time classification of coffee fruits using FPGA
0 Generalidades / Computer science, information and general works
51 Matemáticas / Mathematics
62 Ingeniería y operaciones afines / Engineering
Real-time
Image processing - digital techniques
Color analysis
Coffee grain - classification
Tiempo real
Procesamiento digital de imágenes
Análisis de color
Granos de café - clasificación
title_short Real-time classification of coffee fruits using FPGA
title_full Real-time classification of coffee fruits using FPGA
title_fullStr Real-time classification of coffee fruits using FPGA
title_full_unstemmed Real-time classification of coffee fruits using FPGA
title_sort Real-time classification of coffee fruits using FPGA
dc.creator.fl_str_mv Montes Castrillón, Nubia Liliana
dc.contributor.advisor.spa.fl_str_mv Osorio Londoño, Gustavo Adolfo (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Montes Castrillón, Nubia Liliana
dc.subject.ddc.spa.fl_str_mv 0 Generalidades / Computer science, information and general works
51 Matemáticas / Mathematics
62 Ingeniería y operaciones afines / Engineering
topic 0 Generalidades / Computer science, information and general works
51 Matemáticas / Mathematics
62 Ingeniería y operaciones afines / Engineering
Real-time
Image processing - digital techniques
Color analysis
Coffee grain - classification
Tiempo real
Procesamiento digital de imágenes
Análisis de color
Granos de café - clasificación
dc.subject.proposal.spa.fl_str_mv Real-time
Image processing - digital techniques
Color analysis
Coffee grain - classification
Tiempo real
Procesamiento digital de imágenes
Análisis de color
Granos de café - clasificación
description The goal in this work was to design a circuit that could classify objects by color in real-time that can be used for quality improvement. A circuit that performs color analysis of an image and, according to that analysis, classifies the object was designed. A histogram of the Spherical Coordinate Transform of the image is computed and compared to histogram patterns to make a classification decision. The circuit was tested on the classification of coffee fruits in four maturity stages: immature, under-mature, mature and over-mature. The results showed that it is possible to build a system for color object classification that works in real-time and that can be affordable and portable. The designed circuit is implemented on a Field Programmable Gate Array (FPGA), acquires video at 64 frames per second, classifies the coffee fruits at a rate of 25 fruits per second and achieved an average efficacy of 75.7%
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015
dc.date.accessioned.spa.fl_str_mv 2019-07-02T11:16:46Z
dc.date.available.spa.fl_str_mv 2019-07-02T11:16:46Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/55273
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/50617/
url https://repositorio.unal.edu.co/handle/unal/55273
http://bdigital.unal.edu.co/50617/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación
Departamento de Ingeniería Eléctrica, Electrónica y Computación
dc.relation.references.spa.fl_str_mv Montes Castrillón, Nubia Liliana (2015) Real-time classification of coffee fruits using FPGA. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/55273/1/30401261.2015.pdf
https://repositorio.unal.edu.co/bitstream/unal/55273/2/30401261.2015.pdf.jpg
bitstream.checksum.fl_str_mv 35e6a756a5c141e140a861bc118a05e5
84b855848bdfdb43e9a0187ad3e9f67c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089381078630400