Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido
imágenes, gráficas, tablas
- Autores:
-
Pabón Ardila, María Laura
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80299
- Palabra clave:
- 610 - Medicina y salud
540 - Química y ciencias afines
Vacunas
Vaccines
Microencapsulación
PLGA
Hidrofobicidad
Doble emulsión-evaporación del disolvente
Péptidos sintéticos
SPPS
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f61e68da43e6b9f60d16911d73a2c27c |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80299 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
dc.title.translated.eng.fl_str_mv |
Microencapsulation of synthetic peptides in poly (lactic-co-glycolic) copolymers (PLGA): Effect of peptide hydrophobicity |
title |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
spellingShingle |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido 610 - Medicina y salud 540 - Química y ciencias afines Vacunas Vaccines Microencapsulación PLGA Hidrofobicidad Doble emulsión-evaporación del disolvente Péptidos sintéticos SPPS |
title_short |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
title_full |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
title_fullStr |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
title_full_unstemmed |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
title_sort |
Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido |
dc.creator.fl_str_mv |
Pabón Ardila, María Laura |
dc.contributor.advisor.none.fl_str_mv |
Vanegas Murcia, Magnolia Rosas Pérez, Jaiver Eduardo |
dc.contributor.author.none.fl_str_mv |
Pabón Ardila, María Laura |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo Funcional de Síntesis Química – Fundación Instituto de Inmunología de Colombia –FIDIC |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud 540 - Química y ciencias afines |
topic |
610 - Medicina y salud 540 - Química y ciencias afines Vacunas Vaccines Microencapsulación PLGA Hidrofobicidad Doble emulsión-evaporación del disolvente Péptidos sintéticos SPPS |
dc.subject.lemb.spa.fl_str_mv |
Vacunas |
dc.subject.lemb.eng.fl_str_mv |
Vaccines |
dc.subject.proposal.spa.fl_str_mv |
Microencapsulación PLGA Hidrofobicidad Doble emulsión-evaporación del disolvente Péptidos sintéticos |
dc.subject.proposal.eng.fl_str_mv |
SPPS |
description |
imágenes, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-24T19:39:54Z |
dc.date.available.none.fl_str_mv |
2021-09-24T19:39:54Z |
dc.date.issued.none.fl_str_mv |
2021-09-22 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80299 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80299 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018;8:147–64. https://doi.org/10.1016/j.apsb.2018.01.013. Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, et al. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics 2014;4:58–69. https://doi.org/10.1016/j.euprot.2014.05.003. Rojas M, Rojas M, Amador R, Posada MA, Patarroyo ME. Desarrollo y pruebas de campo de la vacuna sintética contra la malaria SPf66. Rev La Fac Med 1993;41:60–9. Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, Romero P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 1988;332:158–61. https://doi.org/10.1038/332158a0. Rosas JE, Hernández RM, Gascón AR, Igartua M, Guzman F, Patarroyo ME, et al. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001;19:4445–51. https://doi.org/10.1016/S0264-410X(01)00192-X. Carcaboso AM, Hernández RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004;22:1423–32. https://doi.org/10.1016/j.vaccine.2003.10.020. Rosas JE, Pedraz JL, Hernández RM, Gascón AR, Igartua M, Guzmán F, et al. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine 2002;20:1707–10. https://doi.org/10.1016/S0264-410X(01)00508-4. Merrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 1963;85:2149–54. https://doi.org/10.1021/ja00897a025. Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A 1985;82:5131–5. https://doi.org/10.1073/pnas.82.15.5131. Tam JP, Heath WF, Merrifiled RB. SN 1 and SN 2 mechanisms for the deprotection of synthetic peptides by hydrogen fluoride: Studies to minimize the tyrosine alkylation side reaction. Int J Pept Protein Res 1983;21:57–65. https://doi.org/10.1111/j.1399-3011.1983.tb03078.x. Moreno A, Patarroyo ME. Development of an asexual blood stage malaria vaccine. Blood 1989;74:537–46. Valero M V., Amador LR, Galindo C, Figueroa J, Bello MS, Murillo LA, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. Lancet 1993;341:705–10. https://doi.org/10.1016/0140-6736(93)90483-W. Noya G O, Berti YG, Noya BA De, Borges R, Zerpa N, Urbáez JD, et al. A population-based clinical trial with the spf66 synthetic plasmodium falciparum malaria vaccine in venezuela. J Infect Dis 1994;170:396–402. https://doi.org/10.1093/infdis/170.2.396. Sempértegui F, Estrella B, Moscoso J, Luis Piedrahita C, Hernández D, Gaybor J, et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodium falciparum infection in a randomized double-blind placebo-controlled field trial in an endemic area of Ecuador. Vaccine 1994;12:337–42. https://doi.org/https://doi.org/10.1016/0264-410X(94)90098-1. Beck H ‐P., Felger I, Huber W, Steiger S, Smith T, Weiss N, et al. Analysis of Multiple Plasmodium falciparum Infections in Tanzanian Children during the Phase III Trial of the Malaria Vaccine SPf66. J Infect Dis 1997;175:921–6. https://doi.org/10.1086/513991. D’Alessandro U, Leach A, Olaleye BO, Fegan GW, Jawara M, Langerock P, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995. https://doi.org/10.1016/S0140-6736(95)91321-1. Nosten F, Luxemburger C, Kyle DE, Ballou WR, Wittes J, Wah E, et al. Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Lancet 1996. https://doi.org/10.1016/S0140-6736(96)04465-0. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105–32. https://doi.org/10.1016/0022-2836(82)90515-0. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21:2475–90. https://doi.org/10.1016/S0142-9612(00)00115-0. O’Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 1997;28:25–42. https://doi.org/10.1016/S0169-409X(97)00049-5. Arshady R. Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters. J Control Release 1991;17:1–21. https://doi.org/10.1016/0168-3659(91)90126-X. Martín-Sabroso C, Fraguas-Sánchez AI, Aparicio-Blanco J, Cano-Abad MF, Torres-Suárez AI. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int J Pharm 2015;480:27–36. https://doi.org/10.1016/j.ijpharm.2015.01.008. Zhang Z, Bi X, Li H, Huang G. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv 2011. https://doi.org/10.3109/10717544.2011.596584. Andreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomater 2011. https://doi.org/10.1016/j.actbio.2010.12.014. Edelman R, Russell RG, Losonsky G, Tall BD, Tacket CO, Levine MM, et al. Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide). Vaccine 1993;11:155–8. https://doi.org/10.1016/0264-410X(93)90012-M. Hua FJ, Park TG, Lee DS. A facile preparation of highly interconnected macroporous poly(D,L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer (Guildf) 2003. https://doi.org/10.1016/S0032-3861(03)00025-9. Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016. https://doi.org/10.1016/j.ijpharm.2015.12.025. Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur J Pharm Biopharm 2004. https://doi.org/10.1016/j.ejpb.2003.10.018. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release 2019. https://doi.org/10.1016/j.jconrel.2019.05.003. Picos D, Gómez M, Fernández D, Núñez L. Microesferas biodegradables de liberación controlada para administración parenteral. Control 2000. Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015. https://doi.org/10.1016/j.ijpharm.2015.10.057. Taluja A, Youn YS, Bae YH. Novel approaches in microparticulate PLGA delivery systems encapsulating proteins. J Mater Chem 2007;17:4002. https://doi.org/10.1039/b706939a. Alonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 1994;12:299–306. https://doi.org/10.1016/0264-410X(94)90092-2. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011;3:1377–97. https://doi.org/10.3390/polym3031377. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015. https://doi.org/10.4155/tde.14.91. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012. https://doi.org/10.1016/j.addr.2012.09.004. Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:325–41. https://doi.org/10.1586/erm.09.15. D’Avila Carvalho Erbetta C. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J Biomater Nanobiotechnol 2012. https://doi.org/10.4236/jbnb.2012.32027. Kricheldorf HR, Jonté JM, Berl M. Polylactones 3. Copolymerization of glycolide with L, L-lactide and other lactones. Die Makromol Chemie 1985;12:25–38. https://doi.org/10.1002/macp.1985.020121985104. Washington MA, Swiner DJ, Bell KR, Fedorchak M V., Little SR, Meyer TY. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials 2017. https://doi.org/10.1016/j.biomaterials.2016.11.037. Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 2005;57:357–76. https://doi.org/10.1016/j.addr.2004.09.002. Pedraz JER y JL. Microesferas de PLGA: un sistema para la liberación controlada de moléculas con actividad inmunogénica. Rev Colomb Cienc Quím Farm 2007;36:134–53. Felnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004;15:518–29. https://doi.org/10.1016/j.copbio.2004.10.005. Pagels RF, Prud’Homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 2015;219:519–35. https://doi.org/10.1016/j.jconrel.2015.09.001. Powles L, Xiang SD, Selomulya C, Plebanski M. The use of synthetic carriers in malaria vaccine design. Vaccines 2015;3:894–929. https://doi.org/10.3390/vaccines3040894. Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M. Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 2008. https://doi.org/10.1586/14760584.7.7.1103. Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, et al. Pathogen recognition and development of particulate vaccines: Does size matter? Methods 2006. https://doi.org/10.1016/j.ymeth.2006.05.016. Bookstaver ML, Tsai SJ, Bromberg JS, Jewell CM. Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends Immunol 2018;39:135–50. https://doi.org/10.1016/j.it.2017.10.002. Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine 2008;3:367–93. https://doi.org/10.2217/17435889.3.3.367. Jorgensen L, Moeller EH, van de Weert M, Nielsen HM, Frokjaer S. Preparing and evaluating delivery systems for proteins. Eur J Pharm Sci 2006;29:174–82. https://doi.org/10.1016/j.ejps.2006.05.008. Johansen P, Men Y, Merkle HP, Gander B. Revisiting PLA/PLGA microspheres: An analysis of their potential in parenteral vaccination. Eur J Pharm Biopharm 2000;50:129–46. https://doi.org/10.1016/S0939-6411(00)00079-5. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471–6. https://doi.org/10.1081/DDC-100102197. Dyrberg T, Oldstone MB. Peptides as antigens. Importance of orientation. J Exp Med 1986;164:1344–9. https://doi.org/10.1084/jem.164.4.1344. Briand JP, Muller S, Van Regenmortel MH. Synthetic peptides as antigens: pitfalls of conjugation methods. J Immunol Methods 1985;78:59–69. https://doi.org/10.1016/0022-1759(85)90329-1. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008;364:298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042. Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C 2018;92:1041–60. https://doi.org/10.1016/j.msec.2017.12.036. Engineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 2011;25:79–85. Hirota K, Ter H. Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment. Mol. Regul. Endocytosis, 2012. https://doi.org/10.5772/45820. Salvador A, Sandgren KJ, Liang F, Thompson EA, Koup RA, Pedraz JL, et al. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int J Pharm 2015. https://doi.org/10.1016/j.ijpharm.2015.10.037. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 2010;147:408–12. https://doi.org/10.1016/j.jconrel.2010.07.116. Abdelkader DH, El-Gizawy SA, Faheem AM, McCarron PA, Osman MA. Effect of process variables on formulation, in-vitro characterisation and subcutaneous delivery of insulin PLGA nanoparticles: An optimisation study. J Drug Deliv Sci Technol 2018. https://doi.org/10.1016/j.jddst.2017.10.004. Feczkó T, Tóth J, Gyenis J. Comparison of the preparation of PLGA-BSA nano- and microparticles by PVA, poloxamer and PVP. Colloids Surfaces A Physicochem Eng Asp 2008. https://doi.org/10.1016/j.colsurfa.2007.07.011. Liu J, Ren H, Xu Y, Wang Y, Liu K, Zhou Y, et al. Mechanistic Evaluation of the Opposite Effects on Initial Burst Induced by Two Similar Hydrophilic Additives From Octreotide Acetate–Loaded PLGA Microspheres. J Pharm Sci 2019. https://doi.org/10.1016/j.xphs.2019.02.012. Murty SB, Goodman J, Thanoo BC, DeLuca PP. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions. AAPS PharmSciTech 2003. https://doi.org/10.1208/pt040450. Gasmi H, Siepmann F, Hamoudi MC, Danede F, Verin J, Willart JF, et al. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int J Pharm 2016. https://doi.org/10.1016/j.ijpharm.2016.08.032. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. Int J Pharm 2011;415:34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049. Lucke A, Göpferich A. Acylation of peptides by lactic acid solutions. Eur J Pharm Biopharm 2003. https://doi.org/10.1016/S0939-6411(02)00138-8. Liu J, Xu Y, Wang Y, Ren H, Meng Z, Liu K, et al. Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci 2019. https://doi.org/10.1016/j.ejps.2019.04.017. Sarin VK, Kent SBH, Tam JP, Merrifield RB. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 1981;117:147–57. https://doi.org/10.1016/0003-2697(81)90704-1. Carcaboso AM, Hernández RM, Igartua M, Gascón AR, Rosas JE, Patarroyo ME, et al. Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 2003;260:273–82. https://doi.org/10.1016/S0378-5173(03)00266-7. Quattrocchi, O., Laba, R. y Andrizzi S. Introducción A La Hplc. Aplicación y Práctica. 1st ed. Buenos Aires: 1992. Kent SBH. Chemical synthesis of peptides and proteins. Annu Rev Biochem 1988. https://doi.org/10.1146/annurev.bi.57.070188.004521. L. Zhang, C. Goldammer, B. Henkel, G. Panhaus, F. Züohl, et al. Innovation and Perspectives in Solid Phase Synthesis 1994: Proceedings of the 3rd International Symposium, Oxford. In: Epton R, editor., Birmingham: Mayflower Worldwide; 1994, p. 711. López MC, Silva Y, Thomas M a. C, Garcia A, Faus MJ, Alonso P, et al. Characterization of SPf(66)n: a chimeric molecule used as a malaria vaccine. Vaccine 1994. https://doi.org/10.1016/0264-410X(94)90261-5. Amador R, Moreno A, Valero V, Murillo L, Mora AL, Rojas M, et al. The first field trials of the chemically synthesized malaria vaccine SPf66: safety, immunogenicity and protectivity. Vaccine 1992;10:179–84. https://doi.org/https://doi.org/10.1016/0264-410X(92)90009-9. Lloyd-Williams P, Albericio F, Giralt E. Chemical Approaches to the Synthesis of Peptides and Proteins. 1997. https://doi.org/10.1201/9781003069225. Regenmortel. M.H.V. van, Briand J.P., Muller S. PS. Synthetic Polypeptides as Antigens, Volume 19. Elsevier Science; 1988. Santoveña A, Oliva A, Guzman F, Patarroyo ME, Llabrés M, Fariña JB. Chromatographic characterization of synthetic peptides: SPf66 malaria vaccine. J Chromatogr B Anal Technol Biomed Life Sci 2002. https://doi.org/10.1016/S0378-4347(01)00392-9. Ito F, Fujimori H, Makino K. Incorporation of water-soluble drugs in PLGA microspheres. Colloids Surfaces B Biointerfaces 2007. https://doi.org/10.1016/j.colsurfb.2006.10.019. ISO 22412. International Standard ISO22412 Particle Size Analysis - Dynamic Light Scattering. 2017. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004. https://doi.org/10.1016/j.ijpharm.2004.04.013. Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, et al. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm 2008. https://doi.org/10.1016/j.ejpb.2008.01.013. Feczkó T, Tóth J, Dósa G, Gyenis J. Influence of process conditions on the mean size of PLGA nanoparticles. Chem Eng Process Process Intensif 2011. https://doi.org/10.1016/j.cep.2011.05.006. Gaignaux A, Réeff J, Siepmann F, Siepmann J, De Vriese C, Goole J, et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm 2012. https://doi.org/10.1016/j.ijpharm.2012.08.006. Liu R, Huang S-S, Wan Y-H, Ma G-H, Su Z-G. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B Biointerfaces 2006;51:30–8. https://doi.org/10.1016/j.colsurfb.2006.05.014. Zhang C, Wu L, Tao A, Bera H, Tang X, Cun D, et al. Formulation and in vitro characterization of long-acting PLGA injectable microspheres encapsulating a peptide analog of LHRH. J Mater Sci Technol 2020. https://doi.org/10.1016/j.jmst.2020.04.020. Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Control Release 2000. https://doi.org/10.1016/S0168-3659(00)00291-1. Yang YY, Chung TS, Ping Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001. https://doi.org/10.1016/S0142-9612(00)00178-2. Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 2007. https://doi.org/10.1016/j.ijpharm.2006.10.036. Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J Control Release 2019. https://doi.org/10.1016/j.jconrel.2018.12.037. Mata E, Igartua M, Patarroyo ME, Pedraz JL, Hernández RM. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur. J. Pharm. Sci., 2011. https://doi.org/10.1016/j.ejps.2011.05.015. Liu J, Xu Y, Liu Z, Ren H, Meng Z, Liu K, et al. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur J Pharm Biopharm 2019. https://doi.org/10.1016/j.ejpb.2019.09.022. Han FY, Thurecht KJ, Lam AL, Whittaker AK, Smith MT. Novel Polymeric Bioerodable Microparticles for Prolonged-Release Intrathecal Delivery of Analgesic Agents for Relief of Intractable Cancer-Related Pain. J Pharm Sci 2015;104:2334–44. https://doi.org/10.1002/jps.24497. Rosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 2004;99:271–80. https://doi.org/10.1016/j.jconrel.2004.07.007. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001. https://doi.org/10.1016/S0169-409X(00)00118-6. van Oss CJ, Absolom DR, Neumann AW. INTERACTION OF PHAGOCYTES WITH OTHER BLOOD CELLS AND WITH PATHOGENIC AND NONPATHOGENIC MICROBES. Ann N Y Acad Sci 1983. https://doi.org/10.1111/j.1749-6632.1983.tb35197.x. Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, et al. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 2011. https://doi.org/10.1016/j.biomaterials.2010.08.086. Andreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomater 2011. https://doi.org/10.1016/j.actbio.2010.12.014. Bhattacharjee S. Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2021. https://doi.org/10.4155/tde-2020-0099. Kohno M, Andhariya J V., Wan B, Bao Q, Rothstein S, Hezel M, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm 2020. https://doi.org/10.1016/j.ijpharm.2020.119339. Crotts G, Sah H, Park TG. Adsorption determines in-vitro protein release rate from biodegradable microspheres: Quantitative analysis of surface area during degradation. J Control Release 1997. https://doi.org/10.1016/S0168-3659(96)01624-0. Lu W, Park TG. Protein release from poly(lactic-co-glycolic acid) microspheres: Protein stability problems. PDA J Pharm Sci Technol 1995;49:13–9. Kim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: Protein aggregation stability and incomplete release mechanism. Biotechnol Bioeng 1999;65:659–67. https://doi.org/10.1002/(SICI)1097-0290(19991220)65:6<659::AID-BIT6>3.0.CO;2-9. Paillard-Giteau A, Tran VT, Thomas O, Garric X, Coudane J, Marchal S, et al. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an S/O/W emulsion technique. Eur J Pharm Biopharm 2010;75:128–36. https://doi.org/10.1016/j.ejpb.2010.03.005. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 100 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.department.spa.fl_str_mv |
Instituto de Biotecnología (IBUN) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá - Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80299/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80299/4/1015405564.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80299/5/1015405564.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 b52a81fcd23e5726642d7da2487893a1 2384bcbbb4c1d869238d7e6a189f1b7e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089255310327808 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vanegas Murcia, Magnoliaf484b6abad210b5b93849c6856104244Rosas Pérez, Jaiver Eduardod998f772bc3d8f602a106bc9e589eac8Pabón Ardila, María Laurae8d6e7b4ca4f2a7bffb6ab278d83ef09Grupo Funcional de Síntesis Química – Fundación Instituto de Inmunología de Colombia –FIDIC2021-09-24T19:39:54Z2021-09-24T19:39:54Z2021-09-22https://repositorio.unal.edu.co/handle/unal/80299Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/imágenes, gráficas, tablasEn el presente estudio se evaluó el efecto de la hidrofobicidad de péptidos sintéticos durante su microencapsulación en sistemas microparticulares elaborados con PLGA. De la base de datos de la Fundación Instituto de Inmunología de Colombia (FIDIC), fueron preseleccionadas 280 secuencias peptídicas diseñadas y evaluadas como potenciales candidatos en la búsqueda de una vacuna sintética contra la malaria, y se clasificaron en tres grupos, según su índice de hidropaticidad (hidrofílico, neutro e hidrofóbico). De estas, seis secuencias (dos por cada grupo) fueron seleccionadas y sintetizadas por síntesis de péptidos en fase sólida (SPPS) mediante la estrategia t-Boc/Bzl y fueron adecuadamente caracterizadas y purificadas. Posteriormente, estos péptidos se encapsularon en micropartículas elaboradas con el co-polímero PLGA 50:50 por la técnica de doble emulsión-evaporación del disolvente (W/O/W). Los sistemas microparticulares fueron evaluados en su tamaño, forma, carga, eficiencia de encapsulación y el perfil de liberación in vitro. Los resultados de este trabajo indicaron que independientemente del índice de hidropatía de las secuencias, fue posible obtener estos péptidos con alto grado de pureza mediante la metodología SPPS estrategia t-Boc/Bzl. Además, que el carácter hidrofóbico del péptido encapsulado afectó en mayor o menor proporción en cada una de las variables evaluadas en los sistemas microparticulares. (Texto tomado de la fuente)In the present study the effect of the hydrophobicity of synthetic peptides during microencapsulation in microparticulate systems based on PLGA was evaluated. From the database of the Fundación Instituto de Inmunología de Colombia (FIDIC) were preselected 280 peptide sequences designed and evaluated as potential candidates in the search for a synthetic vaccine against malaria and were classified into three groups, according to their hydropathic index (hydrophilic, neutral, and hydrophobic). Of these, six sequences (two for each group) were selected and synthesized by solid phase peptide synthesis (SPPS) using the t-Boc/Bzl strategy and were adequately characterized and purified. These peptides were subsequently encapsulated in microparticles prepared with the PLGA 50:50 copolymer by the double emulsion-solvent evaporation technique (W/O/W). The microparticulate systems were evaluated for size, shape, charge, encapsulation efficiency, and in vitro release profile. The results of this work indicated that regardless of the hydropathic index of the sequence it was possible to obtain these peptides with a high degree of purity by the SPPS methodology t-Boc/Bzl strategy. Furthermore, the hydrophobic character of the encapsulated peptides affected to a greater or lesser extent each of the variables evaluated in the microparticulate systems, being more relevant in the charge, encapsulation efficiency and in the release profile.MaestríaMagister en Ciencias - MicrobiologíaBioprocesos y bioprospecciónxix, 100 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá - ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud540 - Química y ciencias afinesVacunasVaccinesMicroencapsulaciónPLGAHidrofobicidadDoble emulsión-evaporación del disolventePéptidos sintéticosSPPSMicroencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptidoMicroencapsulation of synthetic peptides in poly (lactic-co-glycolic) copolymers (PLGA): Effect of peptide hydrophobicityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMWagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018;8:147–64. https://doi.org/10.1016/j.apsb.2018.01.013.Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, et al. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics 2014;4:58–69. https://doi.org/10.1016/j.euprot.2014.05.003.Rojas M, Rojas M, Amador R, Posada MA, Patarroyo ME. Desarrollo y pruebas de campo de la vacuna sintética contra la malaria SPf66. Rev La Fac Med 1993;41:60–9.Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, Romero P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 1988;332:158–61. https://doi.org/10.1038/332158a0.Rosas JE, Hernández RM, Gascón AR, Igartua M, Guzman F, Patarroyo ME, et al. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001;19:4445–51. https://doi.org/10.1016/S0264-410X(01)00192-X.Carcaboso AM, Hernández RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004;22:1423–32. https://doi.org/10.1016/j.vaccine.2003.10.020.Rosas JE, Pedraz JL, Hernández RM, Gascón AR, Igartua M, Guzmán F, et al. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine 2002;20:1707–10. https://doi.org/10.1016/S0264-410X(01)00508-4.Merrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 1963;85:2149–54. https://doi.org/10.1021/ja00897a025.Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A 1985;82:5131–5. https://doi.org/10.1073/pnas.82.15.5131.Tam JP, Heath WF, Merrifiled RB. SN 1 and SN 2 mechanisms for the deprotection of synthetic peptides by hydrogen fluoride: Studies to minimize the tyrosine alkylation side reaction. Int J Pept Protein Res 1983;21:57–65. https://doi.org/10.1111/j.1399-3011.1983.tb03078.x.Moreno A, Patarroyo ME. Development of an asexual blood stage malaria vaccine. Blood 1989;74:537–46.Valero M V., Amador LR, Galindo C, Figueroa J, Bello MS, Murillo LA, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. Lancet 1993;341:705–10. https://doi.org/10.1016/0140-6736(93)90483-W.Noya G O, Berti YG, Noya BA De, Borges R, Zerpa N, Urbáez JD, et al. A population-based clinical trial with the spf66 synthetic plasmodium falciparum malaria vaccine in venezuela. J Infect Dis 1994;170:396–402. https://doi.org/10.1093/infdis/170.2.396.Sempértegui F, Estrella B, Moscoso J, Luis Piedrahita C, Hernández D, Gaybor J, et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodium falciparum infection in a randomized double-blind placebo-controlled field trial in an endemic area of Ecuador. Vaccine 1994;12:337–42. https://doi.org/https://doi.org/10.1016/0264-410X(94)90098-1.Beck H ‐P., Felger I, Huber W, Steiger S, Smith T, Weiss N, et al. Analysis of Multiple Plasmodium falciparum Infections in Tanzanian Children during the Phase III Trial of the Malaria Vaccine SPf66. J Infect Dis 1997;175:921–6. https://doi.org/10.1086/513991. D’Alessandro U, LeachA, Olaleye BO, Fegan GW, Jawara M, Langerock P, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995. https://doi.org/10.1016/S0140-6736(95)91321-1.Nosten F, Luxemburger C, Kyle DE, Ballou WR, Wittes J, Wah E, et al. Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Lancet 1996. https://doi.org/10.1016/S0140-6736(96)04465-0.Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105–32. https://doi.org/10.1016/0022-2836(82)90515-0.Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21:2475–90. https://doi.org/10.1016/S0142-9612(00)00115-0.O’Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 1997;28:25–42. https://doi.org/10.1016/S0169-409X(97)00049-5.Arshady R. Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters. J Control Release 1991;17:1–21. https://doi.org/10.1016/0168-3659(91)90126-X.Martín-Sabroso C, Fraguas-Sánchez AI, Aparicio-Blanco J, Cano-Abad MF, Torres-Suárez AI. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int J Pharm 2015;480:27–36. https://doi.org/10.1016/j.ijpharm.2015.01.008.Zhang Z, Bi X, Li H, Huang G. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv 2011. https://doi.org/10.3109/10717544.2011.596584.Andreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomater 2011. https://doi.org/10.1016/j.actbio.2010.12.014.Edelman R, Russell RG, Losonsky G, Tall BD, Tacket CO, Levine MM, et al. Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide). Vaccine 1993;11:155–8. https://doi.org/10.1016/0264-410X(93)90012-M.Hua FJ, Park TG, Lee DS. A facile preparation of highly interconnected macroporous poly(D,L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer (Guildf) 2003. https://doi.org/10.1016/S0032-3861(03)00025-9.Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016. https://doi.org/10.1016/j.ijpharm.2015.12.025.Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur J Pharm Biopharm 2004. https://doi.org/10.1016/j.ejpb.2003.10.018.Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release 2019. https://doi.org/10.1016/j.jconrel.2019.05.003.Picos D, Gómez M, Fernández D, Núñez L. Microesferas biodegradables de liberación controlada para administración parenteral. Control 2000.Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015. https://doi.org/10.1016/j.ijpharm.2015.10.057.Taluja A, Youn YS, Bae YH. Novel approaches in microparticulate PLGA delivery systems encapsulating proteins. J Mater Chem 2007;17:4002. https://doi.org/10.1039/b706939a.Alonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 1994;12:299–306. https://doi.org/10.1016/0264-410X(94)90092-2.Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011;3:1377–97. https://doi.org/10.3390/polym3031377.Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015. https://doi.org/10.4155/tde.14.91.Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012. https://doi.org/10.1016/j.addr.2012.09.004.Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:325–41. https://doi.org/10.1586/erm.09.15.D’Avila Carvalho Erbetta C. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J Biomater Nanobiotechnol 2012. https://doi.org/10.4236/jbnb.2012.32027.Kricheldorf HR, Jonté JM, Berl M. Polylactones 3. Copolymerization of glycolide with L, L-lactide and other lactones. Die Makromol Chemie 1985;12:25–38. https://doi.org/10.1002/macp.1985.020121985104.Washington MA, Swiner DJ, Bell KR, Fedorchak M V., Little SR, Meyer TY. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials 2017. https://doi.org/10.1016/j.biomaterials.2016.11.037.Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 2005;57:357–76. https://doi.org/10.1016/j.addr.2004.09.002.Pedraz JER y JL. Microesferas de PLGA: un sistema para la liberación controlada de moléculas con actividad inmunogénica. Rev Colomb Cienc Quím Farm 2007;36:134–53.Felnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004;15:518–29. https://doi.org/10.1016/j.copbio.2004.10.005.Pagels RF, Prud’Homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 2015;219:519–35. https://doi.org/10.1016/j.jconrel.2015.09.001.Powles L, Xiang SD, Selomulya C, Plebanski M. The use of synthetic carriers in malaria vaccine design. Vaccines 2015;3:894–929. https://doi.org/10.3390/vaccines3040894.Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M. Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 2008. https://doi.org/10.1586/14760584.7.7.1103.Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, et al. Pathogen recognition and development of particulate vaccines: Does size matter? Methods 2006. https://doi.org/10.1016/j.ymeth.2006.05.016.Bookstaver ML, Tsai SJ, Bromberg JS, Jewell CM. Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends Immunol 2018;39:135–50. https://doi.org/10.1016/j.it.2017.10.002.Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine 2008;3:367–93. https://doi.org/10.2217/17435889.3.3.367.Jorgensen L, Moeller EH, van de Weert M, Nielsen HM, Frokjaer S. Preparing and evaluating delivery systems for proteins. Eur J Pharm Sci 2006;29:174–82. https://doi.org/10.1016/j.ejps.2006.05.008.Johansen P, Men Y, Merkle HP, Gander B. Revisiting PLA/PLGA microspheres: An analysis of their potential in parenteral vaccination. Eur J Pharm Biopharm 2000;50:129–46. https://doi.org/10.1016/S0939-6411(00)00079-5.Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471–6. https://doi.org/10.1081/DDC-100102197.Dyrberg T, Oldstone MB. Peptides as antigens. Importance of orientation. J Exp Med 1986;164:1344–9. https://doi.org/10.1084/jem.164.4.1344.Briand JP, Muller S, Van Regenmortel MH. Synthetic peptides as antigens: pitfalls of conjugation methods. J Immunol Methods 1985;78:59–69. https://doi.org/10.1016/0022-1759(85)90329-1.Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008;364:298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042.Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C 2018;92:1041–60. https://doi.org/10.1016/j.msec.2017.12.036.Engineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 2011;25:79–85.Hirota K, Ter H. Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment. Mol. Regul. Endocytosis, 2012. https://doi.org/10.5772/45820.Salvador A, Sandgren KJ, Liang F, Thompson EA, Koup RA, Pedraz JL, et al. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int J Pharm 2015. https://doi.org/10.1016/j.ijpharm.2015.10.037.Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 2010;147:408–12. https://doi.org/10.1016/j.jconrel.2010.07.116.Abdelkader DH, El-Gizawy SA, Faheem AM, McCarron PA, Osman MA. Effect of process variables on formulation, in-vitro characterisation and subcutaneous delivery of insulin PLGA nanoparticles: An optimisation study. J Drug Deliv Sci Technol 2018. https://doi.org/10.1016/j.jddst.2017.10.004.Feczkó T, Tóth J, Gyenis J. Comparison of the preparation of PLGA-BSA nano- and microparticles by PVA, poloxamer and PVP. Colloids Surfaces A Physicochem Eng Asp 2008. https://doi.org/10.1016/j.colsurfa.2007.07.011.Liu J, Ren H, Xu Y, Wang Y, Liu K, Zhou Y, et al. Mechanistic Evaluation of the Opposite Effects on Initial Burst Induced by Two Similar Hydrophilic Additives From Octreotide Acetate–Loaded PLGA Microspheres. J Pharm Sci 2019. https://doi.org/10.1016/j.xphs.2019.02.012.Murty SB, Goodman J, Thanoo BC, DeLuca PP. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions. AAPS PharmSciTech 2003. https://doi.org/10.1208/pt040450.Gasmi H, Siepmann F, Hamoudi MC, Danede F, Verin J, Willart JF, et al. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int J Pharm 2016. https://doi.org/10.1016/j.ijpharm.2016.08.032.Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. Int J Pharm 2011;415:34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049.Lucke A, Göpferich A. Acylation of peptides by lactic acid solutions. Eur J Pharm Biopharm 2003. https://doi.org/10.1016/S0939-6411(02)00138-8.Liu J, Xu Y, Wang Y, Ren H, Meng Z, Liu K, et al. Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci 2019. https://doi.org/10.1016/j.ejps.2019.04.017.Sarin VK, Kent SBH, Tam JP, Merrifield RB. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 1981;117:147–57. https://doi.org/10.1016/0003-2697(81)90704-1.Carcaboso AM, Hernández RM, Igartua M, Gascón AR, Rosas JE, Patarroyo ME, et al. Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 2003;260:273–82. https://doi.org/10.1016/S0378-5173(03)00266-7.Quattrocchi, O., Laba, R. y Andrizzi S. Introducción A La Hplc. Aplicación y Práctica. 1st ed. Buenos Aires: 1992.Kent SBH. Chemical synthesis of peptides and proteins. Annu Rev Biochem 1988. https://doi.org/10.1146/annurev.bi.57.070188.004521.L. Zhang, C. Goldammer, B. Henkel, G. Panhaus, F. Züohl, et al. Innovation and Perspectives in Solid Phase Synthesis 1994: Proceedings of the 3rd International Symposium, Oxford. In: Epton R, editor., Birmingham: Mayflower Worldwide; 1994, p. 711.López MC, Silva Y, Thomas M a. C, Garcia A, Faus MJ, Alonso P, et al. Characterization of SPf(66)n: a chimeric molecule used as a malaria vaccine. Vaccine 1994. https://doi.org/10.1016/0264-410X(94)90261-5.Amador R, Moreno A, Valero V, Murillo L, Mora AL, Rojas M, et al. The first field trials of the chemically synthesized malaria vaccine SPf66: safety, immunogenicity and protectivity. Vaccine 1992;10:179–84. https://doi.org/https://doi.org/10.1016/0264-410X(92)90009-9.Lloyd-Williams P, Albericio F, Giralt E. Chemical Approaches to the Synthesis of Peptides and Proteins. 1997. https://doi.org/10.1201/9781003069225.Regenmortel. M.H.V. van, Briand J.P., Muller S. PS. Synthetic Polypeptides as Antigens, Volume 19. Elsevier Science; 1988.Santoveña A, Oliva A, Guzman F, Patarroyo ME, Llabrés M, Fariña JB. Chromatographic characterization of synthetic peptides: SPf66 malaria vaccine. J Chromatogr B Anal Technol Biomed Life Sci 2002. https://doi.org/10.1016/S0378-4347(01)00392-9.Ito F, Fujimori H, Makino K. Incorporation of water-soluble drugs in PLGA microspheres. Colloids Surfaces B Biointerfaces 2007. https://doi.org/10.1016/j.colsurfb.2006.10.019.ISO 22412. International Standard ISO22412 Particle Size Analysis - Dynamic Light Scattering. 2017.Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004. https://doi.org/10.1016/j.ijpharm.2004.04.013.Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, et al. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm 2008. https://doi.org/10.1016/j.ejpb.2008.01.013.Feczkó T, Tóth J, Dósa G, Gyenis J. Influence of process conditions on the mean size of PLGA nanoparticles. Chem Eng Process Process Intensif 2011. https://doi.org/10.1016/j.cep.2011.05.006.Gaignaux A, Réeff J, Siepmann F, Siepmann J, De Vriese C, Goole J, et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm 2012. https://doi.org/10.1016/j.ijpharm.2012.08.006.Liu R, Huang S-S, Wan Y-H, Ma G-H, Su Z-G. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B Biointerfaces 2006;51:30–8. https://doi.org/10.1016/j.colsurfb.2006.05.014.Zhang C, Wu L, Tao A, Bera H, Tang X, Cun D, et al. Formulation and in vitro characterization of long-acting PLGA injectable microspheres encapsulating a peptide analog of LHRH. J Mater Sci Technol 2020. https://doi.org/10.1016/j.jmst.2020.04.020.Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Control Release 2000. https://doi.org/10.1016/S0168-3659(00)00291-1.Yang YY, Chung TS, Ping Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001. https://doi.org/10.1016/S0142-9612(00)00178-2.Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 2007. https://doi.org/10.1016/j.ijpharm.2006.10.036.Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J Control Release 2019. https://doi.org/10.1016/j.jconrel.2018.12.037.Mata E, Igartua M, Patarroyo ME, Pedraz JL, Hernández RM. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur. J. Pharm. Sci., 2011. https://doi.org/10.1016/j.ejps.2011.05.015.Liu J, Xu Y, Liu Z, Ren H, Meng Z, Liu K, et al. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur J Pharm Biopharm 2019. https://doi.org/10.1016/j.ejpb.2019.09.022.Han FY, Thurecht KJ, Lam AL, Whittaker AK, Smith MT. Novel Polymeric Bioerodable Microparticles for Prolonged-Release Intrathecal Delivery of Analgesic Agents for Relief of Intractable Cancer-Related Pain. J Pharm Sci 2015;104:2334–44. https://doi.org/10.1002/jps.24497.Rosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 2004;99:271–80. https://doi.org/10.1016/j.jconrel.2004.07.007.Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001. https://doi.org/10.1016/S0169-409X(00)00118-6.van Oss CJ, Absolom DR, Neumann AW. INTERACTION OF PHAGOCYTES WITH OTHER BLOOD CELLS AND WITH PATHOGENIC AND NONPATHOGENIC MICROBES. Ann N Y Acad Sci 1983. https://doi.org/10.1111/j.1749-6632.1983.tb35197.x.Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, et al. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 2011. https://doi.org/10.1016/j.biomaterials.2010.08.086.Andreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomater 2011. https://doi.org/10.1016/j.actbio.2010.12.014.Bhattacharjee S. Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2021. https://doi.org/10.4155/tde-2020-0099.Kohno M, Andhariya J V., Wan B, Bao Q, Rothstein S, Hezel M, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm 2020. https://doi.org/10.1016/j.ijpharm.2020.119339.Crotts G, Sah H, Park TG. Adsorption determines in-vitro protein release rate from biodegradable microspheres: Quantitative analysis of surface area during degradation. J Control Release 1997. https://doi.org/10.1016/S0168-3659(96)01624-0.Lu W, Park TG. Protein release from poly(lactic-co-glycolic acid) microspheres: Protein stability problems. PDA J Pharm Sci Technol 1995;49:13–9.Kim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: Protein aggregation stability and incomplete release mechanism. Biotechnol Bioeng 1999;65:659–67. https://doi.org/10.1002/(SICI)1097-0290(19991220)65:6<659::AID-BIT6>3.0.CO;2-9.Paillard-Giteau A, Tran VT, Thomas O, Garric X, Coudane J, Marchal S, et al. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an S/O/W emulsion technique. Eur J Pharm Biopharm 2010;75:128–36. https://doi.org/10.1016/j.ejpb.2010.03.005.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80299/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1015405564.2021.pdf1015405564.2021.pdfTesis de Maestría en Ciencias Microbiologíaapplication/pdf7736334https://repositorio.unal.edu.co/bitstream/unal/80299/4/1015405564.2021.pdfb52a81fcd23e5726642d7da2487893a1MD54THUMBNAIL1015405564.2021.pdf.jpg1015405564.2021.pdf.jpgGenerated Thumbnailimage/jpeg5331https://repositorio.unal.edu.co/bitstream/unal/80299/5/1015405564.2021.pdf.jpg2384bcbbb4c1d869238d7e6a189f1b7eMD55unal/80299oai:repositorio.unal.edu.co:unal/802992024-07-29 23:13:15.144Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |