Optimal Shrinkage Estimations for the Parameters of Exponential Distribution Based on Record Values

This paper studies shrinkage estimation after the preliminary test for the parameters of exponential distribution based on record values. The optimal value of shrinkage coefficients is also obtained based on the minimax regret criterion. The maximum likelihood, pre-test, and shrinkage estimators are...

Full description

Autores:
Zakerzadeh, Hojatollah
Jafari, Ali Akbar
Karimi, Mahdieh
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66521
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66521
http://bdigital.unal.edu.co/67549/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Exponential Distribution
Minimax Regret
Record Value
Risk Function
Shrinkage Estimator
Estimador shrinkage
Distribución exponencial
Minimax regret
Función de riesgo
Valor record.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:This paper studies shrinkage estimation after the preliminary test for the parameters of exponential distribution based on record values. The optimal value of shrinkage coefficients is also obtained based on the minimax regret criterion. The maximum likelihood, pre-test, and shrinkage estimators are compared using a simulation study. The results to estimate the scale parameter show that the optimal shrinkage estimator is better than the maximum likelihood estimator in all cases, and when the prior guess is near the true value, the pre-test estimator is better than shrinkage estimator. The results to estimate the location parameter show that the optimal shrinkage estimator is better than maximum likelihood estimator when a prior guess is close to the true value. All estimators are illustrated by a numerical example.