Noise reduction in phase maps from digital holographic microscopy
Digital Holographic Microscopy (DHM) is a technique that has allowed the quantitative measurement of the phase delays that microscopic samples introduce into a coherent illumination. The technique, however, suffers from the presence of coherent noise; this deleterious effect of coherent illumination...
- Autores:
-
Buitrago Duque, Carlos Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79357
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/79357
- Palabra clave:
- 530 - Física::535 - Luz y radiación relacionada
620 - Ingeniería y operaciones afines::621 - Física aplicada
Ruido
Ruido coherente
Microscopía Holográfica Digital
Imágenes Cuantitativas de Fase
Ruido coherente
Microscopía Holográfica Digital
Imágenes Cuantitativas de Fase
Coherent noise
Digital Holographic Microscopy
Quantitative Phase Imaging
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f5c7597fd3dbbf993ecaca3b828d99a4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79357 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Noise reduction in phase maps from digital holographic microscopy |
dc.title.translated.none.fl_str_mv |
Reducción de ruido en mapas de fase de microscopía holográfica digital |
title |
Noise reduction in phase maps from digital holographic microscopy |
spellingShingle |
Noise reduction in phase maps from digital holographic microscopy 530 - Física::535 - Luz y radiación relacionada 620 - Ingeniería y operaciones afines::621 - Física aplicada Ruido Ruido coherente Microscopía Holográfica Digital Imágenes Cuantitativas de Fase Ruido coherente Microscopía Holográfica Digital Imágenes Cuantitativas de Fase Coherent noise Digital Holographic Microscopy Quantitative Phase Imaging |
title_short |
Noise reduction in phase maps from digital holographic microscopy |
title_full |
Noise reduction in phase maps from digital holographic microscopy |
title_fullStr |
Noise reduction in phase maps from digital holographic microscopy |
title_full_unstemmed |
Noise reduction in phase maps from digital holographic microscopy |
title_sort |
Noise reduction in phase maps from digital holographic microscopy |
dc.creator.fl_str_mv |
Buitrago Duque, Carlos Andrés |
dc.contributor.advisor.none.fl_str_mv |
García Sucerquia, Jorge Iván |
dc.contributor.author.none.fl_str_mv |
Buitrago Duque, Carlos Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Óptica y procesamiento optodigital |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::535 - Luz y radiación relacionada 620 - Ingeniería y operaciones afines::621 - Física aplicada |
topic |
530 - Física::535 - Luz y radiación relacionada 620 - Ingeniería y operaciones afines::621 - Física aplicada Ruido Ruido coherente Microscopía Holográfica Digital Imágenes Cuantitativas de Fase Ruido coherente Microscopía Holográfica Digital Imágenes Cuantitativas de Fase Coherent noise Digital Holographic Microscopy Quantitative Phase Imaging |
dc.subject.lemb.none.fl_str_mv |
Ruido |
dc.subject.proposal.spa.fl_str_mv |
Ruido coherente Microscopía Holográfica Digital Imágenes Cuantitativas de Fase |
dc.subject.proposal.none.fl_str_mv |
Ruido coherente Microscopía Holográfica Digital Imágenes Cuantitativas de Fase Coherent noise Digital Holographic Microscopy Quantitative Phase Imaging |
description |
Digital Holographic Microscopy (DHM) is a technique that has allowed the quantitative measurement of the phase delays that microscopic samples introduce into a coherent illumination. The technique, however, suffers from the presence of coherent noise; this deleterious effect of coherent illumination has detrimental results for the resolution power and accuracy of the measured information, hindering the widespread adoption of DHM-based technologies. Therefore, the advancement of DHM and its effective implementation in Quantitative Phase Imaging applications is highly linked to the development of robust denoising methods that can adequately compensate for this limitation. In this Master’s thesis, the proposal and implementation of noise reduction strategies that can be applied to quantitative phase maps numerically obtained from Digital Holographic Microscopy are sought. To achieve so, a review of the state-of-the-art in existing phase-map denoising methodologies was done, finding that, while extensive literature sources that tackle the problem of noise in digital holography exist, most are focused on intensity information; meanwhile, the few that are optimized for phase denoising have been mostly used in macroscopic objects thus failing to consider the experimental conditions of DHM. Under this understanding, new denoising methodologies adapted to the specific experimental conditions of DHM are explored, its feasibility verified on both numerically modeled and experimental results, and their application limits established with previously reported metrics from the existing literature. The results were reported on 9 manuscripts submitted to indexed journals of international circulation, 7 of them already published, and 6 presentations in international conferences. These products constitute the core of the present thesis. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-09-15 |
dc.date.accessioned.none.fl_str_mv |
2021-03-15T16:04:54Z |
dc.date.available.none.fl_str_mv |
2021-03-15T16:04:54Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79357 |
url |
https://repositorio.unal.edu.co/handle/unal/79357 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Buitrago-Duque C, Garcia-Sucerquia J. Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields. Appl Opt 2019;58:G11. https://doi.org/10.1364/ao.58.000g11 Doblas A, Buitrago-Duque C, Robinson A, Garcia-Sucerquia J. Phase-shifting digital holographic microscopy with an iterative blind reconstruction algorithm. Appl Opt 2019;58:G311. https://doi.org/10.1364/AO.58.00G311. Buitrago-Duque C, Garcia-Sucerquia J. Realistic modeling of digital holographic microscopy. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.10.102418. Buitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Single-shot pseudostochastic speckle noise reduction in numerical complex-valued wavefields. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.7.073107 Buitrago-Duque C, Garcia-Sucerquia J. Sizing calibration in digital lensless holographic microscopy via iterative Talbot self-imaging. Opt Lasers Eng 2020;134:106176. https://doi.org/10.1016/j.optlaseng.2020.106176. Castañeda R, Buitrago-Duque C, Garcia-Sucerquia J, Doblas A. Fast-iterative blind phase-shifting digital holographic microscopy using two images. Appl Opt 2020;59:7469. https://doi.org/10.1364/AO.398352. Buitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Pointwise phasor tuning for single-shot speckle noise reduction in phase wave fields. Opt Lasers Eng 2021;137:106365. https://doi.org/10.1016/j.optlaseng.2020.106365. Buitrago-Duque C, Garcia-Sucerquia J. Physical pupil manipulation for speckle reduction in digital holographic microscopy. Heliyon 2021;7:e06098. https://doi.org/10.1016/j.heliyon.2021.e06098. Tobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, Garcia- Sucerquia J. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope. Appl Opt 2021;60:A205. https://doi.org/10.1364/AO.405605. Buitrago-Duque C, Garcia-Sucerquia J. Evaluation of Non-Approximated Numerical Calculation of the Diffraction Integral. Digit. Hologr. Three-Dimensional Imaging 2019, Washington, D.C.: OSA; 2019, p. W3A.12. https://doi.org/10.1364/DH.2019.W3A.12. Buitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Denoising Phase Maps of Digital Holographic Microscopy by Complex Tuning. Digit. Hologr. Three- Dimensional Imaging 2019, Washington, D.C.: OSA; 2019, p. Th3A.15. https://doi.org/10.1364/DH.2019.Th3A.15. Doblas A, Robinson A, Buitrago-Duque C, Garcia-Sucerquia J. Blind phase-shifting digital holographic microscopy using an iterative approach (Conference Presentation). Three-Dimensional Imaging, Vis. Disp. 2020, 2020, p. 114020D. https://doi.org/10.1117/12.2555093 Castaneda R, Buitrago C, Garcia-Sucerquia J, Robinson A, Doblas A. Fast- iterative blind reconstruction algorithms for accurate quantitative phase images in phase-shifting digital holographic microscopy. Imaging Appl. Opt. Congr., Washington, D.C.: OSA; 2020, p. HTh5D.3. https://doi.org/10.1364/DH.2020.HTh5D.3. Buitrago-Duque C, Garcia-Sucerquia J. Iterative Talbot Self-Imaging Calibration for Sizing in Digital Lensless Holographic Microscopy. Imaging Appl. Opt. Congr., Washington, D.C.: OSA; 2020, p. HW3C.5. https://doi.org/10.1364/DH.2020.HW3C.5. Buitrago-Duque C, Garcia-Sucerquia J. Speckle Reduction in Digital Holographic Microscopy by Physical Manipulation of the Pupil Function. Imaging Appl. Opt. Congr., Washington, D.C.: OSA; 2020, p. HTh5D.5. https://doi.org/10.1364/DH.2020.HTh5D.5. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
172 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Física Medellín - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Escuela de física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79357/4/1152453501.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79357/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/79357/6/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79357/7/1152453501.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
1934a884c04107632f137dd1f2eebe11 cccfe52f796b7c63423298c2d3365fc6 0175ea4a2d4caec4bbcc37e300941108 a7ebc0349facc26a7b91d417503ca7c7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089880023597056 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García Sucerquia, Jorge Ivánf3b431cf-ab09-46ff-b3e1-d6b0d2940e5cBuitrago Duque, Carlos Andrés21d117be-1558-4dbf-bf0f-0488fa151970Óptica y procesamiento optodigital2021-03-15T16:04:54Z2021-03-15T16:04:54Z2020-09-15https://repositorio.unal.edu.co/handle/unal/79357Digital Holographic Microscopy (DHM) is a technique that has allowed the quantitative measurement of the phase delays that microscopic samples introduce into a coherent illumination. The technique, however, suffers from the presence of coherent noise; this deleterious effect of coherent illumination has detrimental results for the resolution power and accuracy of the measured information, hindering the widespread adoption of DHM-based technologies. Therefore, the advancement of DHM and its effective implementation in Quantitative Phase Imaging applications is highly linked to the development of robust denoising methods that can adequately compensate for this limitation. In this Master’s thesis, the proposal and implementation of noise reduction strategies that can be applied to quantitative phase maps numerically obtained from Digital Holographic Microscopy are sought. To achieve so, a review of the state-of-the-art in existing phase-map denoising methodologies was done, finding that, while extensive literature sources that tackle the problem of noise in digital holography exist, most are focused on intensity information; meanwhile, the few that are optimized for phase denoising have been mostly used in macroscopic objects thus failing to consider the experimental conditions of DHM. Under this understanding, new denoising methodologies adapted to the specific experimental conditions of DHM are explored, its feasibility verified on both numerically modeled and experimental results, and their application limits established with previously reported metrics from the existing literature. The results were reported on 9 manuscripts submitted to indexed journals of international circulation, 7 of them already published, and 6 presentations in international conferences. These products constitute the core of the present thesis.La Microscopía Holográfica Digital (DHM) es una técnica que ha permitido la medición cuantitativa de las diferencias de fase que los objetos microscópicos introducen en una iluminación coherente. Esta técnica, sin embargo, sufre de la presencia de ruido coherente; este infortunado efecto de la iluminación coherente tiene efectos perjudiciales sobre el poder de resolución y la precisión de las mediciones realizadas, obstaculizando la amplia adopción de tecnologías basadas en DHM. Por lo tanto, el desarrollo de DHM y su efectiva implementación en aplicaciones de imágenes cuantitativas de fase está altamente relacionado con el desarrollo de métodos de reducción de ruido robustos que puedan compensar adecuadamente esta limitación. En la presente tesis de maestría, se proponen e implementan estrategias de reducción de ruido que puedan ser aplicadas a mapas de fase cuantitativos obtenidos numéricamente en microscopía holográfica digital. Para lograrlo, se realizó una revisión del estado del arte de las técnicas existentes para reducción de ruido en mapas de fase, identificando que, si bien existen extensas fuentes literarias que abordar el problema de ruido en holografía digital, la mayoría están orientadas hacia información de intensidad; además, las pocas que están optimizadas para reducción de ruido en fase han sido principalmente empleadas en objetos macroscópicos, por lo que no han sido consideradas las condiciones experimentales específicas de DHM. Bajo esta idea, nuevas técnicas de reducción de ruido que se adaptan a las condiciones experimentales específicas de DHM son propuestas, su factibilidad es estudiada en modelaciones numéricas y resultados experimentales, y sus límites de aplicación establecidos con métricas previamente reportadas en la literatura especializada. Los resultados fueron consolidados en 9 manuscritos sometidos a revistas indexadas de circulación internacional, 7 de estos ya publicados, y 6 presentaciones en eventos internacionales. Estos productos constituyen el núcleo de la presente tesis.MaestríaDigital Holographic MicroscopyMicroscopía holográfica digital172application/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - FísicaMedellín - Ciencias - Maestría en Ciencias - FísicaEscuela de físicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín530 - Física::535 - Luz y radiación relacionada620 - Ingeniería y operaciones afines::621 - Física aplicadaRuidoRuido coherenteMicroscopía Holográfica DigitalImágenes Cuantitativas de FaseRuido coherenteMicroscopía Holográfica DigitalImágenes Cuantitativas de FaseCoherent noiseDigital Holographic MicroscopyQuantitative Phase ImagingNoise reduction in phase maps from digital holographic microscopyReducción de ruido en mapas de fase de microscopía holográfica digitalTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBuitrago-Duque C, Garcia-Sucerquia J. Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields. Appl Opt 2019;58:G11. https://doi.org/10.1364/ao.58.000g11Doblas A, Buitrago-Duque C, Robinson A, Garcia-Sucerquia J. Phase-shifting digital holographic microscopy with an iterative blind reconstruction algorithm. Appl Opt 2019;58:G311. https://doi.org/10.1364/AO.58.00G311.Buitrago-Duque C, Garcia-Sucerquia J. Realistic modeling of digital holographic microscopy. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.10.102418.Buitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Single-shot pseudostochastic speckle noise reduction in numerical complex-valued wavefields. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.7.073107Buitrago-Duque C, Garcia-Sucerquia J. Sizing calibration in digital lensless holographic microscopy via iterative Talbot self-imaging. Opt Lasers Eng 2020;134:106176. https://doi.org/10.1016/j.optlaseng.2020.106176.Castañeda R, Buitrago-Duque C, Garcia-Sucerquia J, Doblas A. Fast-iterative blind phase-shifting digital holographic microscopy using two images. Appl Opt 2020;59:7469. https://doi.org/10.1364/AO.398352.Buitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Pointwise phasor tuning for single-shot speckle noise reduction in phase wave fields. Opt Lasers Eng 2021;137:106365. https://doi.org/10.1016/j.optlaseng.2020.106365.Buitrago-Duque C, Garcia-Sucerquia J. Physical pupil manipulation for speckle reduction in digital holographic microscopy. Heliyon 2021;7:e06098. https://doi.org/10.1016/j.heliyon.2021.e06098.Tobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, Garcia- Sucerquia J. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope. Appl Opt 2021;60:A205. https://doi.org/10.1364/AO.405605.Buitrago-Duque C, Garcia-Sucerquia J. Evaluation of Non-Approximated Numerical Calculation of the Diffraction Integral. Digit. Hologr. Three-Dimensional Imaging 2019, Washington, D.C.: OSA; 2019, p. W3A.12. https://doi.org/10.1364/DH.2019.W3A.12.Buitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Denoising Phase Maps of Digital Holographic Microscopy by Complex Tuning. Digit. Hologr. Three- Dimensional Imaging 2019, Washington, D.C.: OSA; 2019, p. Th3A.15. https://doi.org/10.1364/DH.2019.Th3A.15.Doblas A, Robinson A, Buitrago-Duque C, Garcia-Sucerquia J. Blind phase-shifting digital holographic microscopy using an iterative approach (Conference Presentation). Three-Dimensional Imaging, Vis. Disp. 2020, 2020, p. 114020D. https://doi.org/10.1117/12.2555093Castaneda R, Buitrago C, Garcia-Sucerquia J, Robinson A, Doblas A. Fast- iterative blind reconstruction algorithms for accurate quantitative phase images in phase-shifting digital holographic microscopy. Imaging Appl. Opt. Congr., Washington, D.C.: OSA; 2020, p. HTh5D.3. https://doi.org/10.1364/DH.2020.HTh5D.3.Buitrago-Duque C, Garcia-Sucerquia J. Iterative Talbot Self-Imaging Calibration for Sizing in Digital Lensless Holographic Microscopy. Imaging Appl. Opt. Congr., Washington, D.C.: OSA; 2020, p. HW3C.5. https://doi.org/10.1364/DH.2020.HW3C.5.Buitrago-Duque C, Garcia-Sucerquia J. Speckle Reduction in Digital Holographic Microscopy by Physical Manipulation of the Pupil Function. Imaging Appl. Opt. Congr., Washington, D.C.: OSA; 2020, p. HTh5D.5. https://doi.org/10.1364/DH.2020.HTh5D.5.ORIGINAL1152453501.2021.pdf1152453501.2021.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf50623711https://repositorio.unal.edu.co/bitstream/unal/79357/4/1152453501.2021.pdf1934a884c04107632f137dd1f2eebe11MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79357/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79357/6/license_rdf0175ea4a2d4caec4bbcc37e300941108MD56THUMBNAIL1152453501.2021.pdf.jpg1152453501.2021.pdf.jpgGenerated Thumbnailimage/jpeg4665https://repositorio.unal.edu.co/bitstream/unal/79357/7/1152453501.2021.pdf.jpga7ebc0349facc26a7b91d417503ca7c7MD57unal/79357oai:repositorio.unal.edu.co:unal/793572024-07-30 23:10:58.094Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |