Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus
ilustraciones, fotografías, graficas
- Autores:
-
Gómez Moreno, Dory Lineth
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81343
- Palabra clave:
- 570 - Biología::572 - Bioquímica
610 - Medicina y salud::615 - Farmacología y terapéutica
Infecciones por Rotavirus
Rotavirus Infections
Rotavirus
PPARγ
NFκB
NSP1
NSP2
NSP3
NSP4
NSP5
NSP6
Rotavirus
PPARγ
NFκB
NSP1
NSP2
NSP3
NSP4
NSP5
NSP6
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f5c72c1e6fd09c4721a861803ebdf982 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81343 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
dc.title.translated.eng.fl_str_mv |
Possible unions between proteins related to the PPARγ – NFκB pathway and non-structural proteins of rotavirus |
title |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
spellingShingle |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus 570 - Biología::572 - Bioquímica 610 - Medicina y salud::615 - Farmacología y terapéutica Infecciones por Rotavirus Rotavirus Infections Rotavirus PPARγ NFκB NSP1 NSP2 NSP3 NSP4 NSP5 NSP6 Rotavirus PPARγ NFκB NSP1 NSP2 NSP3 NSP4 NSP5 NSP6 |
title_short |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
title_full |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
title_fullStr |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
title_full_unstemmed |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
title_sort |
Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirus |
dc.creator.fl_str_mv |
Gómez Moreno, Dory Lineth |
dc.contributor.advisor.none.fl_str_mv |
Guerrero Fonseca, Carlos Arturo |
dc.contributor.author.none.fl_str_mv |
Gómez Moreno, Dory Lineth |
dc.contributor.researchgroup.spa.fl_str_mv |
Biología Molecular de Virus |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica 610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
570 - Biología::572 - Bioquímica 610 - Medicina y salud::615 - Farmacología y terapéutica Infecciones por Rotavirus Rotavirus Infections Rotavirus PPARγ NFκB NSP1 NSP2 NSP3 NSP4 NSP5 NSP6 Rotavirus PPARγ NFκB NSP1 NSP2 NSP3 NSP4 NSP5 NSP6 |
dc.subject.other.spa.fl_str_mv |
Infecciones por Rotavirus |
dc.subject.other.eng.fl_str_mv |
Rotavirus Infections |
dc.subject.proposal.spa.fl_str_mv |
Rotavirus PPARγ NFκB NSP1 NSP2 NSP3 NSP4 NSP5 NSP6 |
dc.subject.proposal.eng.fl_str_mv |
Rotavirus PPARγ NFκB NSP1 NSP2 NSP3 NSP4 NSP5 NSP6 |
description |
ilustraciones, fotografías, graficas |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2022-03-23T21:01:41Z |
dc.date.available.none.fl_str_mv |
2022-03-23T21:01:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81343 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81343 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
World Health Organization. Nota informativa vacunas contra el rotavirus. Acerca del rotavirus 2015 [cited 2015. Organization, W.H. Children: reducing mortality. Fact sheet N°178. 2014 www.who.int]. Romero Cabello Raúl, Microbiología y parasitología humana. Vol. 3. 2007, Mexico: Panamericana. Pesavento, J., Crawford SE., Estes MK. and Venkataram Prasad BV, Rotavirus Proteins: Structure and Assembly. CTMI, 2006. 309: p. 189–219. Estes, M.K., and J. Cohen, Rotavirus gene structure and function. Microbiol. Rev. , 1989. 53(4): p. 410. Haselhorst, T., Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS, von Itzstein M, Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol, 2009. 5: p. 91-93. Guerrero, C.A., Méndez Ernesto, Susana López, Carlos F. Arias Pavel Isa, Tomás López, Rafaela Espinosa, Pedro Romero, Daniela Bouyssounade and Selene Zárate., Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry. J. Virol., 2002. 76(8): p. 4096. Zárate, S., Mariela A. Cuadras, Rafaela Espinosa, Pedro Romero, Karla O. Juárez, Minerva Camacho-Nuez, Carlos F. Arias, and Susana López, Interaction of Rotaviruses with Hsc70 during Cell Entry Is Mediated by VP5. J. Virol. , 2003. 77(13): p. 7254. Calderon, M.N., Guerrero C.A., Acosta O., Lopez S., Arias C.F., Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology, 2012. Guerrero Carlos A and Acosta Orlando, Inflammatory and oxidative stress in rotavirus infection. World Journal of Virology, 2015. submission: p. 1-71. Gómez, D., Muñoz, N., Guerrero, R., Acosta, O., & Guerrero, C. A., PPARγ Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi. PPAR research, 2016. 2016(4049373). Barro Mario and Patton John T, Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. PNAS, 2005. 102(11): p. 4114–4119. Sen, A., Feng N, Ettayebi K, Hardy ME, Greenberg HB, IRF3 inhibition by rotavirus NSP1 is host cell and virus strain dependent but independent of NSP1 proteasomal degradation. J Virol, 2009. 83: p. 10322-10335. Barro M and Patton JT, Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol 2007. 81: p. 4473-4481. Feng, N., Sen A, Nguyen H, Vo P, Hoshino Y, Deal EM, Greenberg HB, Variation in antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse embryonic fibroblasts. J Virol, 2009. 83: p. 6987-6994. Graff, J.W., Ettayebi, K., Hardy, M. E, Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog 2009. 5: p. e1000280 Firth AE and Brierley I, Non-canonical translation in RNA viruses. J Gen Virol, 2012. 93: p. 1385-1409 Piron, M., Vende P, Cohen J, Poncet D, Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO Journal, 1998. 17(19): p. 5811-5821. Deo, R., Groft CM, Rajashankar KR, Burley SK, Recognition of the rotavirus mRNA 3' consensus by an asymmetric NSP3 homodimer. Cell, 2002. 108: p. 71-81. Rodríguez-Díaz J; Banasaz M, I.C., Buesa J, Lundgren O, Espinoza F, Sundqvist T, Rottenberg M, Svensson L. , Role of nitric oxide during rotavirus infection. J Med Virol., 2006. 78(7): p. 979-85. Bhowmick, R., Halder UC, Chattopadhyay S, et al, Rotaviral Enterotoxin Nonstructural Protein 4 Targets Mitochondria for Activation of Apoptosis during Infection. The Journal of Biological Chemistry, 2012. 287(42): p. 35004-35020. Hu, L., et al., Rotavirus non-structural proteins: structure and function. Curr Opin Virol, 2012. 2(4): p. 380-8. Zarate, S., Pedro Romero, Rafaela Espinosa, Carlos F. Arias, and Susana López, VP7 Mediates the Interaction of Rotaviruses with Integrin anb3 through a Novel Integrin-Binding Site. J. Virol., 2004. 78(20): p. 10839. Contin, R., Arnoldi F., Campagna M. and Burrone O. R, Rotavirus NSP5 orchestrates recruitment of viroplasmic proteins. Journal of General Virology 2010. 91: p. 1782. Arias, C., Romero P., Alvarez V. and López S, Trypsin Activation Pathway of Rotavirus Infectivity. J. Virol. , 1996. 70(9): p. 5832. Guerrero, C.A., Mendez E, Zarate S, Pavel I, López S, Arias A Integrin alpha V Beta-3 mediates rotavirus cell entry. Proc. Natl. Acad. Sci. USA., 2000. 97: p. 14644-14649. Estes, M., Graham DY., Gerba CP. and Smith EM., Simian Rotavirus SAl Replication in Cell Cultures. J. Virol. , 1979. 31(3): p. 810. Sue, E.C., Sharmila K. Mukherjee, Mary K. Estes, Jeffery A. Lawton, Andrea L. Shaw, Robert F. Ramig and BV. Venkataram Prasad, Trypsin Cleavage Stabilizes the Rotavirus VP4 Spike. J. Virol. , 2001. 75(13): p. 6052. Sánchez-San Martín, C., Tomás López, Carlos F. Arias, and Susana López., Characterization of Rotavirus Cell Entry. J. Virol. , 2004. 78(5): p. 2310. Gutierrez Michelle, I.P., Sánchez-San Martin Claudia, Pérez-Vargas Jimena,Espinosa Rafaela, Arias Carlos F. and López Susana., Different Rotavirus Strains Enter MA104 Cells through Different Endocytic Pathways: the Role of Clathrin-Mediated Endocytosis. J. Virol., 2010. 84(18): p. 9161. Kim, I., Trask SD., Babyonyshev M., Dormitzer PR., Harrison SC, Effect of mutations in VP5* hydrophobic loops on rotavirus cell entry. J Virol 2010. 84(6200-6207). Fuentes - Panama Ezequiel, M., López Susana, Gorziglia Mario y Arias Carlos F., Mapping the Hemagglutination Domain of Rotaviruses. J. Virol., 1995. 69(4): p. 2629. Guerrero, C.A., Selene Zárate, Gabriel Corkidi, Susana López and Carlos F. Arias, Biochemical Characterization of Rotavirus Receptors in MA104 Cells. J. Virol. , 2000. 74(20): p. 9362. Tavaria, M., Gabriele T, Kola I, Anderson RL, A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones, 1996. 1: p. 23–28. Morano, K., New tricks for an old dog: the evolving world of Hsp70. Annals of the New York Academy of Sciences, 2007. 1113: p. 1-14. Rojas, M., Ayala-Breton Camilo y López Susana, Biología molecular de rotavirus: una mirada a través de la interferencia de RNA. Mensaje Bioquímico, 2008. 32: p. 149-162. López, T., Camacho Minerva, Zayas Margarita, Nájera Rebeca, Sánchez Rosana, Arias Carlos F. and López Susana, Silencing the Morphogenesis of Rotavirus. J Virol., 2005. 79(1). Mitchell, D.B. and G.W. Both, Conservation of a potential metal binding motif despite extensive sequence diversity in the rotavirus nonstructural protein NS53. Virology, 1990. 174(2): p. 618-21. Taniguchi, K., et al., Structure and function of rotavirus NSP1. Arch Virol Suppl, 1996. 12: p. 53-8. Hua, J., Chen X, Patton JT, Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding. Journal of Virology., 1994. 68(6): p. 3990-4000. Holloway, G., Truong TT, Coulson BS, Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB. Journal of Virology, 2009. 83: p. 4942-4951. Bagchi P, D.D., Chattopadhyay S, et al, Rotavirus Nonstructural Protein 1 Suppresses Virus-Induced Cellular Apoptosis To Facilitate Viral Growth by Activating the Cell Survival Pathways during Early Stages of Infection. Journal of Virology, 2010. 84(13): p. 6834–6845. Petrie, B., Greenberg HB, Graham DY, Estes MK, Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res, 1984. 1(2): p. 133-152. Maha, D.K., Xia Chen, John T. Patton, The Rotavirus RNA-Binding Protein NS35 (NSP2) Forms 10S Multimers and Interacts with the Viral RNA Polymerase. Virology, 1994. 202(2): p. 803-813. Taraporewala, Z., Chen D, Patton JT, Multimers Formed by the Rotavirus Nonstructural Protein NSP2 Bind to RNA and Have Nucleoside Triphosphatase Activity. Journal of Virology, 1999. 73(12): p. 9934-9943. Afrikanova, I., MC Miozzo, S Giambiagi, and OR Burrone, Phosphorylation generates different forms of rotavirus NSP5. J. Gen. Virol, 1996. 77: p. 2059-2065. Sen, A., Agresti D, Mackow ER, Hyperphosphorylation of the Rotavirus NSP5 Protein Is Independent of Serine 67 or NSP2, and the Intrinsic Insolubility of NSP5 Is Regulated by Cellular Phosphatases. Journal of Virology, 2006. 80(4): p. 1807-1816. Bar-Magen, T., Spencer E, Patton JT, An ATPase Activity Associated with the Rotavirus Phosphoprotein NSP5. Virology, 2007. 369(2): p. 389-399. Eichwald, C., Rodriguez JF, Burrone OR., Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J Gen Virol, 2004. 85(3): p. 625-634. Groft, C., Burley SK, Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell, 2002. 9(6): p. 1273-1283. Poncet, D., Aponte C, Cohen J, Rotavirus protein NSP3 (NS34) is bound to the 3’ end consensus sequence of viral mRNAs in infected cells. Journal of Virology, 1993. 67(6): p. 3159-3165. Vende, P., Piron M, Castagné N, Poncet D, Efficient Translation of Rotavirus mRNA Requires Simultaneous Interaction of NSP3 with the Eukaryotic Translation Initiation Factor eIF4G and the mRNA 3′ End. Journal of Virology, 2000. 74(15): p. 7064-7071. Poncet, D., Aponte C, Cohen J, Structure and function of rotavirus nonstructural protein NSP3. Arch Virol Suppl, 1996. 12(29): p. 29-35. Imataka, H., Gradi A, Sonenberg N, A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal, 1998. 17(24): p. 7480-7489. Montero, H., Arias Carlos F and Lopez Susana Rotavirus Nonstructural Protein NSP3 Is Not Required for Viral Protein Synthesis. Journal of virology 2006. 80(18): p. 9031–9038. Mossel, E., Ramig RF, Rotavirus Genome Segment 7 (NSP3) Is a Determinant of Extraintestinal Spread in the Neonatal Mouse. Journal of Virology, 2002. 76(13): p. 6502-6509. Boshuizen, J.A., et al., Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J Virol, 2004. 78(18): p. 10045-53. Au, K., Chan WK, Burns JW, Estes MK, Receptor activity of rotavirus nonstructural glycoprotein NS28. Journal of Virology, 1989. 63(11): p. 4553-4562. Hyser, J.M., et al., Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio, 2010. 1(5). Brunet, J.P., et al., Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol, 2000. 74(5): p. 2323-32. Lorrot M and Vasseur M, How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 2007. 4: p. 31-31. Buccigrossi, V., Laudiero G, Russo C, Miele E, Sofia M, Monini M, Ruggeri FM, Guarino A, Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PLoS One 2014. 9: p. e99830. Samaniego-Hernandez, M., et al., Expression and purification of rotavirus proteins NSP5 and NSP6 in Escherichia coli. Cell Biochem Biophys, 2006. 44(3): p. 336-41. Rainsford, E.W. and M.A. McCrae, Characterization of the NSP6 protein product of rotavirus gene 11. Virus Res, 2007. 130(1-2): p. 193-201. Holloway, G., et al., Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal alpha-helix. J Gen Virol, 2015. Walsh D and Mohr I, Viral subversion of the host protein synthesis machinery. Nat Rev Micro, 2011. 9: p. 860-875 Guerrero, C.A., Pardo Paula, Rodriguez Victor, Guerrero R. Rafael and Acosta Orlando, Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, PPARγ and COX-2 inhibitors. Submitting Memorias do Instituto Oswaldo Cruz, 2013. Ghosh, S., May M. J., Kopp EB, NFkB and Rel proteins: evoluntionary conserved mediators of immune responses. Annu. Rev. Immunol, 1998. 16: p. 225-260. Li, Q., Verma IM, NF-kappaB regulation in the immune system. Nat Rev Immunol., 2002. 10: p. 735-34. Bonizzi, G., Karin M., The two NFkB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25: p. 280-88. Memet, S., NFkB functions in the nervous system: From development to disease. Biochem. Pharmacol., 2006. 72: p. 1180-1195. Hayden, M.S., Signaling to NFkB. Genes Dev, 2004. 18: p. 2195-2224. Amir, R.E., Iwai, K., and Ciechanover, A, The NEDD8 pathway is essential for SCF(β-TrCP)-mediated ubiquitination and processing of the NF-κ B precursor p105. J. Biol. Chem, 2002. 277: p. 23253-23259 Ben-Neriah, Y., Regulatory functions of ubiquitination in the immune system. Nat. Immunol., 2002. 3: p. 20-26. Israel, A. Biochemical and genetic analysis of the NF-κB signaling pathway. in In Keystone Symposium on NF-κB: Biology and pathology. 2004. Keystone Symposia, Snowbird Resort, Snowbird, UT. Krishnan, A., Nair SA , Pillai MR, Biología de los PPAR gamma en el cáncer: una revisión crítica de las lagunas existentes. Biology of PPAR gamma in cancer: a critical review on existing lacunae. . Curr Mol Med., 2007. 7(6): p. 532-540. Fajas, L., Debril M.B., Auwerx J, Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. Journal of Molecular Endocrinology 2001. 27: p. 1-9. Mangelsdorf, D., Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM, The nuclear receptor superfamily: the second decade. cell, 1995. 83(6): p. 835-839. Kliewer, S., Lenhard JM, Willson TM, Patel I, Morris DC and Lehmann JM A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. cell, 1995. 83: p. 813-819. Lehmann, J., Lenhard JM, Oliver BB, Ringold GM, Kliewer SA, Peroxisome proliferatoractivated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997. 272: p. 272: 3406–3410. Stumvoll, M., Häring H. , Glitazones: clinical effects and molecular mechanisms. Ann Med, 2002. 34(3): p. 217-224. Chinetti, G., Fruchart JC, Staels B, Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res, 2000. 10: p. 497-505. Delerive, P., Fruchart JC, Staels B, Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol, 2001. 169(3): p. 453–459. Acosta, P., López Segovia, Blé Castillo, A Rodríguez Hernández, D Muñoz Romero, E Acosta Nieto, Effect of Rosiglitazone and Pioglitazone in combination with Metformin in the control of Diabetes Mellitus type 2. Universidad y Ciencia, 2005. 21(41): p. 11-17. Wikimedia Foundation Inc. Pioglitazone. 2012 http://en.wikipedia.org/wiki/Pioglitazone]. Tegeder, I., Pfeilschifter J, Geisslinger G, Cyclooxygenase-independent actions of cyclooxygenase inhibitors. The Fased, 2001. 15: p. 2057-2072. Little, D., Jones S L, Blikslager AT, Cyclooxygenase (cox) inhibitors and the intestine. J Vet Intern Med, 2007. 21: p. 367–377. Youssef, M.B., Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol, 2004. 29(3): p. 156-166. Bassaganya-Riera, J., Song R, Roberts PC, Hontecillas R, PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol, 2010. 23: p. 343-352. Liu, J., Xia Q, Zhang Q, Li H, Zhang J, Li A, Xiu R, Peroxisome proliferator-activated receptor-gamma ligands 15-deoxy-delta(12,14)-prostaglandin J2 and pioglitazone inhibit hydroxyl peroxide-induced TNF-alpha and lipopolysaccharide-induced CXC chemokine expression in neonatal rat cardiac myocytes. Shock 2009. 32: p. 317-324. Li, M., Pascual G, Glass CK, Peroxisome Proliferator-Activated Receptor γ-Dependent Repression of the Inducible Nitric Oxide Synthase Gene. Mol Cell Biol, 2000. 20: p. 4699-4707. Jiang, C., Ting AT, Seed B, PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998. 391: p. 82-86. Polvani, S., Tarocchi M, Galli A, PPARgamma and Oxidative Stress: Con(beta) Catenating NRF2 and FOXO. PPAR Res 2012,. 2012: p. 641087. Okuno, Y., Matsuda M, Miyata Y, Fukuhara A, Komuro R, Shimabukuro M, Shimomura I, Human catalase gene is regulated by peroxisome proliferator activated receptor-gamma through a response element distinct from that of mouse. Endocr J 2010. 57: p. 303-309 Ren, Y., Sun C, Sun Y, Tan H, Wu Y, Cui B, Wu Z, PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul Pharmacol, 2009. 51: p. 169-174. Morgan MJ and Liu ZG, Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research 2011. 21: p. 103-115. Wu, Z., et al., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. cell, 1999. 98(1): p. 115-24. Liang, H. and W.F. Ward, PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ, 2006. 30(4): p. 145-51. Summermatter, S., et al., Remodeling of calcium handling in skeletal muscle through PGC-1alpha: impact on force, fatigability, and fiber type. Am J Physiol Cell Physiol, 2012. 302(1): p. C88-99. Viatour, P., et al., Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci, 2005. 30(1): p. 43-52. Harris, C.D., G. Ermak, and K.J. Davies, Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product calcipressin 1 (or RCAN1) in disease. Cell Mol Life Sci, 2005. 62(21): p. 2477-86. Olesen, J., et al., Skeletal Muscle PGC-1α Is Required for Maintaining an Acute LPS-Induced TNFα Response. PLOS One, 2012. 7(2). Brault, J.J., J.G. Jespersen, and A.L. Goldberg, Peroxisome Proliferator-activated Receptor γ Coactivator 1α or 1β Overexpression Inhibits Muscle Protein Degradation, Induction of Ubiquitin Ligases, and Disuse Atrophy. J Biol Chem, 2010. 285(25): p. 19460-71. Guerrero, C.A., Murillo A. y Acosta O, Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists and NSAIDs. Antiviral Res, 2012. 96(1): p. 1-12. Guerrero, C.A., Guerrero R. Rafael and Acosta Orlando, N-acetyl-cysteine: an efficient and safe treatment for rotavirus-associated diarrhoea in children. Pharmacotherapy, 2014. 34(11): p. e333-340. Rainsford Edward W and McCrae Malcolm A, Characterization of the NSP6 protein product of rotavirus gene 11. Virus Research, 2007. 130(1-2): p. 193–220. Patton, J., Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Taraporewala ZF, Rotavirus genome replication and morphogenesis: role of the viroplasm. Curr Top Microbiol Immunol, 2006. 309: p. 169-187. Samaniego-Hernández, M., León-Rodriguez A, Aparicio-Fabre R Expression and purification of rotavirus proteins NSP5 and NSP6 in Escherichia coli. Cell Biochemistry and Biophysics, 2006. 44(3): p. 336-341. Browne, E.P., Bellamy A. Richard and Taylor John A, Membrane-destabilizing activity of rotavirus NSP4 is mediated by a membrane-proximal amphipathic domain. Journal of General Virology, 2000. 81: p. 1955–1959. Tian, P., Estes MK, Hu Y, Ball JM, Zeng CQ, Schilling WP, The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. Journal of Virology, 1995. 69(9): p. 5763-5772. Taylor, R.G., Walker D. C. and McInnes R. R, E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res., 1993. 21: p. 1677 -1678. Moreno Luz Yurany, G.C.A., Acosta Orlando, Expression and purification of rotavirus structural proteins VP5* and VP8* in bacteria E. coli BL21(DE3). Rev. Colomb. Biotecnol, 2013. 15(1): p. 82-97. Estatuto Nacional de Protección de los Animales in Ley 84. 1989: Republica de Colombia. Ruiz-Palacios Guillermo, M., Pérez-Schael Irene and co., Safety and efficacy of an attenuated vaccine against severe Rotavirus gastroenteritis. The New England Journal of Medicine, 2006. 354(1): p. 11-22. Zhang, B., et al., Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol, 1996. 10(11): p. 1457-66. Michael, K., How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene, 1999. 18: p. 6867–6874. Gómez Dory L, Evaluación de la expresión de las proteínas PPARγ y NFκB en vellosidades intestinales de ratones adultos ICR infectados con Rotavirus ECwt y tratados con pioglitazona, in Facultad de Medicina. 2013, Universidad Nacional de Colombia: Bogotá. p. 1-113. Calderón, M.N., Guzmán Fanny, Acosta Orlando, Guerrero Carlos A Rotavirus VP4 and VP7-derived synthetic peptides as potential substrates of protein disulfide isomerase lead to inhibition of rotavirus infection. International Journal of Peptide Research and Therapeutics, 2012. 18(4): p. 373-382. Rossen John, W., Bouma Janneke, Rolien H C Raatgeep, Hans A Büller, Alexandra WC Einerhand, Inhibition of Cyclooxygenase Activity Reduces Rotavirus Infection at a Postbinding Step. J Virol. , 2004. 78(18): p. 9721-9730. Nandi, S., Chanda, S., Bagchi, P., Nayak, M. K., Bhowmick, R. and Chawla-Sarkar, M., MAVS protein is attenuated by rotavirus nonstructural protein 1. PloS one, 2014. 9(3): p. e92126. Izabel J. M. Di Fiore, J.A.P., Gavan Holloway, Barbara S. Coulson, NSP1 of human rotaviruses commonly inhibits NF-κB signalling by inducing β-TrCP degradation Journal of Virology 2015. 96(7): p. 1768–1776. Matthieu Gratia, E.S., Patrice Vende, Annie Charpilienne, Carolina Hilma Baron, Mariela Duarte, Stephane Pyronnet, Didier Ponceta, Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. Journal of Virology, 2015 89(17): p. 8773-8782. Ball, K.A.Y.Z.D.F.J.M., Rotaviruses: Extraction and Isolation of RNA, Reassortant Strains, and NSP4 Protein. Current Protocols in Microbiology, 2015. 37(1): p. 15C.6.1-15C.6.44. Yakshe, K.A., Functional Analysis of Interactions of Rotavirus NSP4 with Caveolin-1, Cyclophilin A, Cyclophilin 40, Heat Shock Protein 56, and Cholesterol. Doctoral dissertation, Texas A & M University., 2015: p. 1-217. Jeanette M. Criglar, L.H., Sue E. Crawford, Joseph M. Hyser, James R. Broughman, B. V. Venkataram Prasad, Mary K. Estes, A Novel Form of Rotavirus NSP2 and Phosphorylation-Dependent NSP2-NSP5 Interactions Are Associated with Viroplasm Assembly. Journal of Virology, 2013. 88(2): p. 786-798. Davy Martin, M.D., Jean Lepault, Didier Poncet, Sequestration of Free Tubulin Molecules by the Viral Protein NSP2 Induces Microtubule Depolymerization during Rotavirus Infection. Journal of Virology 2010. 84(5): p. 2522-2532. Holloway Gavan, R.I.J., Yilin Kang, Vi T. Dang, Diana Stojanovski and Barbara S. Coulson, Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal a-helix. Journal of General Virology, 2015. 96: p. 3519–3524 Ruan, H., et al., Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes, 2002. 51(5): p. 1319-36. Adams, M., et al., Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem, 1997. 272(8): p. 5128-32. Camp, H.S., S.R. Tafuri, and T. Leff, c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology, 1999. 140(1): p. 392-7. Zhanguo Gao , Q.H., Bailu Peng , Paul J. Chiao and Jianping Ye Regulation of Nuclear Translocation of HDAC3 by IκBα Is Required for Tumor Necrosis Factor Inhibition of Peroxisome Proliferator-activated Receptor γ Function. The Journal of Biological Chemistry, 2006. 281(7): p. 4540-4547. Carreño-Torres JJ, G.M., Arias CF, López S, Isa P, Characterization of viroplasm formation during the early stages of Rotavirus infection. Virology Journal, 2010. 7(350). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
74 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Biotecnología |
dc.publisher.department.spa.fl_str_mv |
Instituto de Biotecnología (IBUN) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81343/3/53098853.2019.pdf https://repositorio.unal.edu.co/bitstream/unal/81343/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81343/5/53098853.2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
71d1ffc1c39ed7fb732a173e75c85a4b 8153f7789df02f0a4c9e079953658ab2 88ffaf44c30d690498f00814f06993fc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089893516673024 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero Fonseca, Carlos Arturocdd4ab53ceaeef988597f7e1a5dcf0b9Gómez Moreno, Dory Lineth00ae36a27c7a6ac89b0c184816738dc5Biología Molecular de Virus2022-03-23T21:01:41Z2022-03-23T21:01:41Z2019https://repositorio.unal.edu.co/handle/unal/81343Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasRotavirus es un virus perteneciente a la familia Reoviridae, icosaédrico sin envoltura; su cápside está constituida por tres capas: externa, media e interna. Mide aproximadamente 70 nm de diámetro, su genoma de 11 segmentos de ARN de doble-cadena codifica para seis proteínas estructurales (VP) y seis proteínas no estructurales (NSP). OBJETIVO GENERAL: Determinar la unión de las proteínas no estructurales de Rotavirus (NSP1-6) con proteínas de la vía PPARγ – NFκB. METODOLOGÍA: Se evaluó la expresión de proteínas celulares relacionadas con las vías NFκB y PPARγ, mediante las técnicas de ELISA, luminiscencia, citometría de flujo y Western blot, en células MA104 infectadas con Rotavirus y/o transfectadas con cada uno de los plásmidos que expresan para proteínas NSPs. La unión entre proteínas celulares y virales (NSPs) se examinó por las técnicas de ELISA, Epi-fluorescencia y microscopia confocal. RESULTADOS: La expresión de las proteínas p-IKKα/β, NFκB, p-NFκB, PPARγ, RXR y PGC1α aumentaron en células infectadas con rotavirus RRV y en células transfectadas con plásmidos que expresan para cada una de las NSPs se observó que la expresión de p-IKKα/β aumento en presencia de NSP3,4,5 y 6; NFκB aumento en presencia de NSP1, 3 y 4, p-NFκB aumento en presencia de NSP1, 2, 3, 4, 5 y 6; PPARγ aumento en presencia de NSP1, 3, 5 6; RXR aumentó en presencia de NSP4, 6 y PGC1α aumento en presencia de NSP1 y 5. Al analizar por ELISA la unión in-vitro con proteínas recombinantes se observó unión entre rPPARγ y rNSP 1, 2, 3, 4 y RXR con rNSP1; cuando se estudió la unión por ELISA in-vivo en células infectadas y/o transfectadas con cada uno de los plásmidos que expresan proteínas celulares con las proteínas virales, se evidenció unión entre PPARγ con NSP1, 2, 3, 4; RXR con NSP1,6; p-IKKα/β con NSP1, NSP2, NSP3, NSP4, NSP5, NSP6 y p-NFκB con NSP 5, 6. Posteriormente, por microscopia confocal, se observó colocalización de RXR con NSP1; PPARγ con NSP1 y NSP3; p-IKKα/β con NSP2 y NFκB con NSP5. Finalmente, cuando se analizó si la infección por rotavirus RRV afecta la activación de la vía inflamatoria; se estudió la expresión de PPARγ a nivel citoplasmático y nuclear por Western blot, identificándose la presencia de p- PPARγ. Adicionalmente, por ELISA in-vivo en células, se evaluó la unión entre PPARγ y PGC1α, encontrándose que solo a nivel nuclear hay unión de estas dos proteínas celulares en células infectadas con rotavirus RRV y en células transfectadas con los plásmidos que expresan para NSP2 y 4. Además, al activar la vía PPARγ con un agonista como Tiazolinediona o inhibirla con un antagonista como GW-9662, tratando células infectadas o no y/o transfectadas con plásmidos que expresan para cada una de las proteínas NSPs, se observó que la expresión de PPARγ disminuía en células infectadas y tratadas con Tiazolinediona y aumentaba en células infectadas y tratadas con el inhibidor GW-9662, pero cuando las células eran transfectadas con plásmidos que expresan para cada una de las proteínas NSPs y tratadas con el inhibidor GW-9662 se observó aumento de la expresión de PPARγ en presencia de NSP1, 5 y 6. Por otra parte, cuando se inhibió la vía NFκB con un inhibidor como curcumina, se observó que la expresión de NFκB disminuía en células infectadas y tratadas con curcumina y en células transfectadas con plásmidos que expresan para cada una de las proteínas NSPs y tratadas con curcumina se observó disminución de la expresión de NFκB en presencia de NSP2 y 4. CONCLUSIÓN: Durante la infección por Rotavirus, la expresión de NFκB y su actividad transcripcional aumentan, se observa que RXR colocaliza con NSP1, PPARγ colocaliza con NSP1 y NSP3, p-IKKα/β colocaliza con NSP2 y NFκB colocaliza con NSP5. Adicionalmente, a nivel citoplasmático se detectó que a las 12 h.p.i. PPARγ está siendo fosforilado. Por otra parte, en el núcleo, PPARγ se encuentra unido a PGC1α, sin embargo, la actividad transcripcional disminuye. (Texto tomado de la fuente)Rotavirus is a virus belonging to the family Reoviridae, icosahedral without envelope; Its capsid is made up of three layers: external, middle and internal. Measuring approximately 70nm in diameter, its 11-segment double-stranded RNA genome encodes six structural (VP) and six non-structural (NSP) proteins. GENERAL OBJECTIVE: To determine the union of the non-structural Rotavirus proteins (NSP1-6) with proteins of the PPARγ-NFκB pathway. METHODOLOGY: The expression of cellular proteins related to the NFκB and PPARγ pathways was evaluated, using ELISA, luminescence, flow cytometry and Western blot techniques, in MA104 cells infected with Rotavirus and / or transfected with each of the plasmids that express for NSPs proteins. The binding between cellular and viral proteins (NSPs) was examined by ELISA, Epi-fluorescence and confocal microscopy techniques. RESULTS: The expression of the proteins p-IKKα / β, NFκB, p-NFκB, PPARγ, RXR and PGC1α increased in cells infected with rotavirus RRV and in cells transfected with plasmids expressing for each of the NSPs it was observed that the expression p-IKKα / β increase in the presence of NSP3,4,5 and 6; NFκB increased in the presence of NSP1, 3 and 4, p-NFκB increased in the presence of NSP1, 2, 3, 4, 5 and 6; PPARγ increased in the presence of NSP1, 3, 5 6; RXR increased in the presence of NSP4, 6 and PGC1α increased in the presence of NSP1 and 5. When analyzing in-vitro the binding in vitro with recombinant proteins, binding between rPPARγ and rNSP 1, 2, 3, 4 and RXR with rNSP1 was observed; When the binding by ELISA in-vivo was studied in cells infected and / or transfected with each one of the plasmids that express cellular proteins with the viral proteins, binding between PPARγ with NSP1, 2, 3, 4 was evident; RXR with NSP1,6; p-IKKα / β with NSP1, NSP2, NSP3, NSP4, NSP5, NSP6 and p-NFκB with NSP 5, 6. Subsequently, by confocal microscopy, RXR colocalization with NSP1 was observed; PPARγ with NSP1 and NSP3; p-IKKα / β with NSP2 and NFκB with NSP5. Finally, when it was analyzed if the infection by rotavirus RRV affects the activation of the inflammatory pathway; The expression of PPARy at the cytoplasmic and nuclear level was studied by Western blot, identifying the presence of p-PPARy. Additionally, by in-vivo ELISA in cells, the binding between PPARγ and PGC1α was evaluated, finding that only at the nuclear level there is binding of these two cellular proteins in cells infected with rotavirus RRV and in cells transfected with the plasmids that express for NSP2 and 4. Furthermore, when activating the PPARγ pathway with an agonist such as Thiazolinedione or inhibiting it with an antagonist such as GW-9662, treating cells infected or not and / or transfected with plasmids that express for each of the NSPs proteins, it was observed that the expression PPARγ decreased in cells infected and treated with Thiazolinedione and increased in cells infected and treated with the GW-9662 inhibitor, but when the cells were transfected with plasmids that express for each of the NSPs proteins and treated with the GW-9662 inhibitor, observed an increase in PPARγ expression in the presence of NSP1, 5 and 6. On the other hand, when the NFκB pathway was inhibited with an inhibitor such as curcum ina, it was observed that the expression of NFκB decreased in cells infected and treated with curcumin and in cells transfected with plasmids that express for each of the NSPs proteins and treated with curcumin, a decrease in the expression of NFκB was observed in the presence of NSP2 and 4. CONCLUSION: During Rotavirus infection, the expression of NFκB and its transcriptional activity increase, it is observed that RXR collocates with NSP1, PPARγ collocates with NSP1 and NSP3, p-IKKα / β collocates with NSP2 and NFκB collocates with NSP5. Additionally, at the cytoplasmic level, it was detected that at 12 p.m. PPARγ is being phosphorylated. On the other hand, in the nucleus, PPARγ is bound to PGC1α, however, transcriptional activity decreases.DoctoradoDoctor en BiotecnologíaSe evaluó la expresión de proteínas celulares relacionadas con las vías NFκB y PPARγ, mediante las técnicas de ELISA, luminiscencia, citometría de flujo y Western blot, en células MA104 infectadas con Rotavirus y/o transfectadas con cada uno de los plásmidos que expresan para proteínas NSPs. La unión entre proteínas celulares y virales (NSPs) se examinó por las técnicas de ELISA, Epi-fluorescencia y microscopia confocal.Biología Molecular de Virus74 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica610 - Medicina y salud::615 - Farmacología y terapéuticaInfecciones por RotavirusRotavirus InfectionsRotavirusPPARγNFκBNSP1NSP2NSP3NSP4NSP5NSP6RotavirusPPARγNFκBNSP1NSP2NSP3NSP4NSP5NSP6Posibles uniones entre proteínas relacionadas con la vía PPARγ – NFκB y proteínas no estructurales de rotavirusPossible unions between proteins related to the PPARγ – NFκB pathway and non-structural proteins of rotavirusTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDWorld Health Organization. Nota informativa vacunas contra el rotavirus. Acerca del rotavirus 2015 [cited 2015.Organization, W.H. Children: reducing mortality. Fact sheet N°178. 2014 www.who.int].Romero Cabello Raúl, Microbiología y parasitología humana. Vol. 3. 2007, Mexico: Panamericana.Pesavento, J., Crawford SE., Estes MK. and Venkataram Prasad BV, Rotavirus Proteins: Structure and Assembly. CTMI, 2006. 309: p. 189–219.Estes, M.K., and J. Cohen, Rotavirus gene structure and function. Microbiol. Rev. , 1989. 53(4): p. 410.Haselhorst, T., Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS, von Itzstein M, Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol, 2009. 5: p. 91-93.Guerrero, C.A., Méndez Ernesto, Susana López, Carlos F. Arias Pavel Isa, Tomás López, Rafaela Espinosa, Pedro Romero, Daniela Bouyssounade and Selene Zárate., Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry. J. Virol., 2002. 76(8): p. 4096.Zárate, S., Mariela A. Cuadras, Rafaela Espinosa, Pedro Romero, Karla O. Juárez, Minerva Camacho-Nuez, Carlos F. Arias, and Susana López, Interaction of Rotaviruses with Hsc70 during Cell Entry Is Mediated by VP5. J. Virol. , 2003. 77(13): p. 7254.Calderon, M.N., Guerrero C.A., Acosta O., Lopez S., Arias C.F., Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology, 2012.Guerrero Carlos A and Acosta Orlando, Inflammatory and oxidative stress in rotavirus infection. World Journal of Virology, 2015. submission: p. 1-71.Gómez, D., Muñoz, N., Guerrero, R., Acosta, O., & Guerrero, C. A., PPARγ Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi. PPAR research, 2016. 2016(4049373).Barro Mario and Patton John T, Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. PNAS, 2005. 102(11): p. 4114–4119.Sen, A., Feng N, Ettayebi K, Hardy ME, Greenberg HB, IRF3 inhibition by rotavirus NSP1 is host cell and virus strain dependent but independent of NSP1 proteasomal degradation. J Virol, 2009. 83: p. 10322-10335.Barro M and Patton JT, Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol 2007. 81: p. 4473-4481.Feng, N., Sen A, Nguyen H, Vo P, Hoshino Y, Deal EM, Greenberg HB, Variation in antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse embryonic fibroblasts. J Virol, 2009. 83: p. 6987-6994.Graff, J.W., Ettayebi, K., Hardy, M. E, Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog 2009. 5: p. e1000280Firth AE and Brierley I, Non-canonical translation in RNA viruses. J Gen Virol, 2012. 93: p. 1385-1409Piron, M., Vende P, Cohen J, Poncet D, Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO Journal, 1998. 17(19): p. 5811-5821.Deo, R., Groft CM, Rajashankar KR, Burley SK, Recognition of the rotavirus mRNA 3' consensus by an asymmetric NSP3 homodimer. Cell, 2002. 108: p. 71-81.Rodríguez-Díaz J; Banasaz M, I.C., Buesa J, Lundgren O, Espinoza F, Sundqvist T, Rottenberg M, Svensson L. , Role of nitric oxide during rotavirus infection. J Med Virol., 2006. 78(7): p. 979-85.Bhowmick, R., Halder UC, Chattopadhyay S, et al, Rotaviral Enterotoxin Nonstructural Protein 4 Targets Mitochondria for Activation of Apoptosis during Infection. The Journal of Biological Chemistry, 2012. 287(42): p. 35004-35020.Hu, L., et al., Rotavirus non-structural proteins: structure and function. Curr Opin Virol, 2012. 2(4): p. 380-8.Zarate, S., Pedro Romero, Rafaela Espinosa, Carlos F. Arias, and Susana López, VP7 Mediates the Interaction of Rotaviruses with Integrin anb3 through a Novel Integrin-Binding Site. J. Virol., 2004. 78(20): p. 10839.Contin, R., Arnoldi F., Campagna M. and Burrone O. R, Rotavirus NSP5 orchestrates recruitment of viroplasmic proteins. Journal of General Virology 2010. 91: p. 1782.Arias, C., Romero P., Alvarez V. and López S, Trypsin Activation Pathway of Rotavirus Infectivity. J. Virol. , 1996. 70(9): p. 5832.Guerrero, C.A., Mendez E, Zarate S, Pavel I, López S, Arias A Integrin alpha V Beta-3 mediates rotavirus cell entry. Proc. Natl. Acad. Sci. USA., 2000. 97: p. 14644-14649.Estes, M., Graham DY., Gerba CP. and Smith EM., Simian Rotavirus SAl Replication in Cell Cultures. J. Virol. , 1979. 31(3): p. 810.Sue, E.C., Sharmila K. Mukherjee, Mary K. Estes, Jeffery A. Lawton, Andrea L. Shaw, Robert F. Ramig and BV. Venkataram Prasad, Trypsin Cleavage Stabilizes the Rotavirus VP4 Spike. J. Virol. , 2001. 75(13): p. 6052.Sánchez-San Martín, C., Tomás López, Carlos F. Arias, and Susana López., Characterization of Rotavirus Cell Entry. J. Virol. , 2004. 78(5): p. 2310.Gutierrez Michelle, I.P., Sánchez-San Martin Claudia, Pérez-Vargas Jimena,Espinosa Rafaela, Arias Carlos F. and López Susana., Different Rotavirus Strains Enter MA104 Cells through Different Endocytic Pathways: the Role of Clathrin-Mediated Endocytosis. J. Virol., 2010. 84(18): p. 9161.Kim, I., Trask SD., Babyonyshev M., Dormitzer PR., Harrison SC, Effect of mutations in VP5* hydrophobic loops on rotavirus cell entry. J Virol 2010. 84(6200-6207).Fuentes - Panama Ezequiel, M., López Susana, Gorziglia Mario y Arias Carlos F., Mapping the Hemagglutination Domain of Rotaviruses. J. Virol., 1995. 69(4): p. 2629.Guerrero, C.A., Selene Zárate, Gabriel Corkidi, Susana López and Carlos F. Arias, Biochemical Characterization of Rotavirus Receptors in MA104 Cells. J. Virol. , 2000. 74(20): p. 9362.Tavaria, M., Gabriele T, Kola I, Anderson RL, A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones, 1996. 1: p. 23–28.Morano, K., New tricks for an old dog: the evolving world of Hsp70. Annals of the New York Academy of Sciences, 2007. 1113: p. 1-14.Rojas, M., Ayala-Breton Camilo y López Susana, Biología molecular de rotavirus: una mirada a través de la interferencia de RNA. Mensaje Bioquímico, 2008. 32: p. 149-162.López, T., Camacho Minerva, Zayas Margarita, Nájera Rebeca, Sánchez Rosana, Arias Carlos F. and López Susana, Silencing the Morphogenesis of Rotavirus. J Virol., 2005. 79(1).Mitchell, D.B. and G.W. Both, Conservation of a potential metal binding motif despite extensive sequence diversity in the rotavirus nonstructural protein NS53. Virology, 1990. 174(2): p. 618-21.Taniguchi, K., et al., Structure and function of rotavirus NSP1. Arch Virol Suppl, 1996. 12: p. 53-8.Hua, J., Chen X, Patton JT, Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding. Journal of Virology., 1994. 68(6): p. 3990-4000.Holloway, G., Truong TT, Coulson BS, Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB. Journal of Virology, 2009. 83: p. 4942-4951.Bagchi P, D.D., Chattopadhyay S, et al, Rotavirus Nonstructural Protein 1 Suppresses Virus-Induced Cellular Apoptosis To Facilitate Viral Growth by Activating the Cell Survival Pathways during Early Stages of Infection. Journal of Virology, 2010. 84(13): p. 6834–6845.Petrie, B., Greenberg HB, Graham DY, Estes MK, Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res, 1984. 1(2): p. 133-152.Maha, D.K., Xia Chen, John T. Patton, The Rotavirus RNA-Binding Protein NS35 (NSP2) Forms 10S Multimers and Interacts with the Viral RNA Polymerase. Virology, 1994. 202(2): p. 803-813.Taraporewala, Z., Chen D, Patton JT, Multimers Formed by the Rotavirus Nonstructural Protein NSP2 Bind to RNA and Have Nucleoside Triphosphatase Activity. Journal of Virology, 1999. 73(12): p. 9934-9943.Afrikanova, I., MC Miozzo, S Giambiagi, and OR Burrone, Phosphorylation generates different forms of rotavirus NSP5. J. Gen. Virol, 1996. 77: p. 2059-2065.Sen, A., Agresti D, Mackow ER, Hyperphosphorylation of the Rotavirus NSP5 Protein Is Independent of Serine 67 or NSP2, and the Intrinsic Insolubility of NSP5 Is Regulated by Cellular Phosphatases. Journal of Virology, 2006. 80(4): p. 1807-1816.Bar-Magen, T., Spencer E, Patton JT, An ATPase Activity Associated with the Rotavirus Phosphoprotein NSP5. Virology, 2007. 369(2): p. 389-399.Eichwald, C., Rodriguez JF, Burrone OR., Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J Gen Virol, 2004. 85(3): p. 625-634.Groft, C., Burley SK, Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell, 2002. 9(6): p. 1273-1283.Poncet, D., Aponte C, Cohen J, Rotavirus protein NSP3 (NS34) is bound to the 3’ end consensus sequence of viral mRNAs in infected cells. Journal of Virology, 1993. 67(6): p. 3159-3165.Vende, P., Piron M, Castagné N, Poncet D, Efficient Translation of Rotavirus mRNA Requires Simultaneous Interaction of NSP3 with the Eukaryotic Translation Initiation Factor eIF4G and the mRNA 3′ End. Journal of Virology, 2000. 74(15): p. 7064-7071.Poncet, D., Aponte C, Cohen J, Structure and function of rotavirus nonstructural protein NSP3. Arch Virol Suppl, 1996. 12(29): p. 29-35.Imataka, H., Gradi A, Sonenberg N, A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal, 1998. 17(24): p. 7480-7489.Montero, H., Arias Carlos F and Lopez Susana Rotavirus Nonstructural Protein NSP3 Is Not Required for Viral Protein Synthesis. Journal of virology 2006. 80(18): p. 9031–9038.Mossel, E., Ramig RF, Rotavirus Genome Segment 7 (NSP3) Is a Determinant of Extraintestinal Spread in the Neonatal Mouse. Journal of Virology, 2002. 76(13): p. 6502-6509.Boshuizen, J.A., et al., Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J Virol, 2004. 78(18): p. 10045-53.Au, K., Chan WK, Burns JW, Estes MK, Receptor activity of rotavirus nonstructural glycoprotein NS28. Journal of Virology, 1989. 63(11): p. 4553-4562.Hyser, J.M., et al., Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio, 2010. 1(5).Brunet, J.P., et al., Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol, 2000. 74(5): p. 2323-32.Lorrot M and Vasseur M, How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 2007. 4: p. 31-31.Buccigrossi, V., Laudiero G, Russo C, Miele E, Sofia M, Monini M, Ruggeri FM, Guarino A, Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PLoS One 2014. 9: p. e99830.Samaniego-Hernandez, M., et al., Expression and purification of rotavirus proteins NSP5 and NSP6 in Escherichia coli. Cell Biochem Biophys, 2006. 44(3): p. 336-41.Rainsford, E.W. and M.A. McCrae, Characterization of the NSP6 protein product of rotavirus gene 11. Virus Res, 2007. 130(1-2): p. 193-201.Holloway, G., et al., Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal alpha-helix. J Gen Virol, 2015.Walsh D and Mohr I, Viral subversion of the host protein synthesis machinery. Nat Rev Micro, 2011. 9: p. 860-875Guerrero, C.A., Pardo Paula, Rodriguez Victor, Guerrero R. Rafael and Acosta Orlando, Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, PPARγ and COX-2 inhibitors. Submitting Memorias do Instituto Oswaldo Cruz, 2013.Ghosh, S., May M. J., Kopp EB, NFkB and Rel proteins: evoluntionary conserved mediators of immune responses. Annu. Rev. Immunol, 1998. 16: p. 225-260.Li, Q., Verma IM, NF-kappaB regulation in the immune system. Nat Rev Immunol., 2002. 10: p. 735-34.Bonizzi, G., Karin M., The two NFkB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25: p. 280-88.Memet, S., NFkB functions in the nervous system: From development to disease. Biochem. Pharmacol., 2006. 72: p. 1180-1195.Hayden, M.S., Signaling to NFkB. Genes Dev, 2004. 18: p. 2195-2224.Amir, R.E., Iwai, K., and Ciechanover, A, The NEDD8 pathway is essential for SCF(β-TrCP)-mediated ubiquitination and processing of the NF-κ B precursor p105. J. Biol. Chem, 2002. 277: p. 23253-23259Ben-Neriah, Y., Regulatory functions of ubiquitination in the immune system. Nat. Immunol., 2002. 3: p. 20-26.Israel, A. Biochemical and genetic analysis of the NF-κB signaling pathway. in In Keystone Symposium on NF-κB: Biology and pathology. 2004. Keystone Symposia, Snowbird Resort, Snowbird, UT.Krishnan, A., Nair SA , Pillai MR, Biología de los PPAR gamma en el cáncer: una revisión crítica de las lagunas existentes. Biology of PPAR gamma in cancer: a critical review on existing lacunae. . Curr Mol Med., 2007. 7(6): p. 532-540.Fajas, L., Debril M.B., Auwerx J, Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. Journal of Molecular Endocrinology 2001. 27: p. 1-9.Mangelsdorf, D., Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM, The nuclear receptor superfamily: the second decade. cell, 1995. 83(6): p. 835-839.Kliewer, S., Lenhard JM, Willson TM, Patel I, Morris DC and Lehmann JM A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. cell, 1995. 83: p. 813-819.Lehmann, J., Lenhard JM, Oliver BB, Ringold GM, Kliewer SA, Peroxisome proliferatoractivated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997. 272: p. 272: 3406–3410.Stumvoll, M., Häring H. , Glitazones: clinical effects and molecular mechanisms. Ann Med, 2002. 34(3): p. 217-224.Chinetti, G., Fruchart JC, Staels B, Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res, 2000. 10: p. 497-505.Delerive, P., Fruchart JC, Staels B, Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol, 2001. 169(3): p. 453–459.Acosta, P., López Segovia, Blé Castillo, A Rodríguez Hernández, D Muñoz Romero, E Acosta Nieto, Effect of Rosiglitazone and Pioglitazone in combination with Metformin in the control of Diabetes Mellitus type 2. Universidad y Ciencia, 2005. 21(41): p. 11-17.Wikimedia Foundation Inc. Pioglitazone. 2012 http://en.wikipedia.org/wiki/Pioglitazone].Tegeder, I., Pfeilschifter J, Geisslinger G, Cyclooxygenase-independent actions of cyclooxygenase inhibitors. The Fased, 2001. 15: p. 2057-2072.Little, D., Jones S L, Blikslager AT, Cyclooxygenase (cox) inhibitors and the intestine. J Vet Intern Med, 2007. 21: p. 367–377.Youssef, M.B., Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol, 2004. 29(3): p. 156-166.Bassaganya-Riera, J., Song R, Roberts PC, Hontecillas R, PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol, 2010. 23: p. 343-352.Liu, J., Xia Q, Zhang Q, Li H, Zhang J, Li A, Xiu R, Peroxisome proliferator-activated receptor-gamma ligands 15-deoxy-delta(12,14)-prostaglandin J2 and pioglitazone inhibit hydroxyl peroxide-induced TNF-alpha and lipopolysaccharide-induced CXC chemokine expression in neonatal rat cardiac myocytes. Shock 2009. 32: p. 317-324.Li, M., Pascual G, Glass CK, Peroxisome Proliferator-Activated Receptor γ-Dependent Repression of the Inducible Nitric Oxide Synthase Gene. Mol Cell Biol, 2000. 20: p. 4699-4707.Jiang, C., Ting AT, Seed B, PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998. 391: p. 82-86.Polvani, S., Tarocchi M, Galli A, PPARgamma and Oxidative Stress: Con(beta) Catenating NRF2 and FOXO. PPAR Res 2012,. 2012: p. 641087.Okuno, Y., Matsuda M, Miyata Y, Fukuhara A, Komuro R, Shimabukuro M, Shimomura I, Human catalase gene is regulated by peroxisome proliferator activated receptor-gamma through a response element distinct from that of mouse. Endocr J 2010. 57: p. 303-309Ren, Y., Sun C, Sun Y, Tan H, Wu Y, Cui B, Wu Z, PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul Pharmacol, 2009. 51: p. 169-174.Morgan MJ and Liu ZG, Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research 2011. 21: p. 103-115.Wu, Z., et al., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. cell, 1999. 98(1): p. 115-24.Liang, H. and W.F. Ward, PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ, 2006. 30(4): p. 145-51.Summermatter, S., et al., Remodeling of calcium handling in skeletal muscle through PGC-1alpha: impact on force, fatigability, and fiber type. Am J Physiol Cell Physiol, 2012. 302(1): p. C88-99.Viatour, P., et al., Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci, 2005. 30(1): p. 43-52.Harris, C.D., G. Ermak, and K.J. Davies, Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product calcipressin 1 (or RCAN1) in disease. Cell Mol Life Sci, 2005. 62(21): p. 2477-86.Olesen, J., et al., Skeletal Muscle PGC-1α Is Required for Maintaining an Acute LPS-Induced TNFα Response. PLOS One, 2012. 7(2).Brault, J.J., J.G. Jespersen, and A.L. Goldberg, Peroxisome Proliferator-activated Receptor γ Coactivator 1α or 1β Overexpression Inhibits Muscle Protein Degradation, Induction of Ubiquitin Ligases, and Disuse Atrophy. J Biol Chem, 2010. 285(25): p. 19460-71.Guerrero, C.A., Murillo A. y Acosta O, Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists and NSAIDs. Antiviral Res, 2012. 96(1): p. 1-12.Guerrero, C.A., Guerrero R. Rafael and Acosta Orlando, N-acetyl-cysteine: an efficient and safe treatment for rotavirus-associated diarrhoea in children. Pharmacotherapy, 2014. 34(11): p. e333-340.Rainsford Edward W and McCrae Malcolm A, Characterization of the NSP6 protein product of rotavirus gene 11. Virus Research, 2007. 130(1-2): p. 193–220.Patton, J., Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Taraporewala ZF, Rotavirus genome replication and morphogenesis: role of the viroplasm. Curr Top Microbiol Immunol, 2006. 309: p. 169-187.Samaniego-Hernández, M., León-Rodriguez A, Aparicio-Fabre R Expression and purification of rotavirus proteins NSP5 and NSP6 in Escherichia coli. Cell Biochemistry and Biophysics, 2006. 44(3): p. 336-341.Browne, E.P., Bellamy A. Richard and Taylor John A, Membrane-destabilizing activity of rotavirus NSP4 is mediated by a membrane-proximal amphipathic domain. Journal of General Virology, 2000. 81: p. 1955–1959.Tian, P., Estes MK, Hu Y, Ball JM, Zeng CQ, Schilling WP, The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. Journal of Virology, 1995. 69(9): p. 5763-5772.Taylor, R.G., Walker D. C. and McInnes R. R, E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res., 1993. 21: p. 1677 -1678.Moreno Luz Yurany, G.C.A., Acosta Orlando, Expression and purification of rotavirus structural proteins VP5* and VP8* in bacteria E. coli BL21(DE3). Rev. Colomb. Biotecnol, 2013. 15(1): p. 82-97.Estatuto Nacional de Protección de los Animales in Ley 84. 1989: Republica de Colombia.Ruiz-Palacios Guillermo, M., Pérez-Schael Irene and co., Safety and efficacy of an attenuated vaccine against severe Rotavirus gastroenteritis. The New England Journal of Medicine, 2006. 354(1): p. 11-22.Zhang, B., et al., Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol, 1996. 10(11): p. 1457-66.Michael, K., How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene, 1999. 18: p. 6867–6874.Gómez Dory L, Evaluación de la expresión de las proteínas PPARγ y NFκB en vellosidades intestinales de ratones adultos ICR infectados con Rotavirus ECwt y tratados con pioglitazona, in Facultad de Medicina. 2013, Universidad Nacional de Colombia: Bogotá. p. 1-113.Calderón, M.N., Guzmán Fanny, Acosta Orlando, Guerrero Carlos A Rotavirus VP4 and VP7-derived synthetic peptides as potential substrates of protein disulfide isomerase lead to inhibition of rotavirus infection. International Journal of Peptide Research and Therapeutics, 2012. 18(4): p. 373-382.Rossen John, W., Bouma Janneke, Rolien H C Raatgeep, Hans A Büller, Alexandra WC Einerhand, Inhibition of Cyclooxygenase Activity Reduces Rotavirus Infection at a Postbinding Step. J Virol. , 2004. 78(18): p. 9721-9730.Nandi, S., Chanda, S., Bagchi, P., Nayak, M. K., Bhowmick, R. and Chawla-Sarkar, M., MAVS protein is attenuated by rotavirus nonstructural protein 1. PloS one, 2014. 9(3): p. e92126.Izabel J. M. Di Fiore, J.A.P., Gavan Holloway, Barbara S. Coulson, NSP1 of human rotaviruses commonly inhibits NF-κB signalling by inducing β-TrCP degradation Journal of Virology 2015. 96(7): p. 1768–1776.Matthieu Gratia, E.S., Patrice Vende, Annie Charpilienne, Carolina Hilma Baron, Mariela Duarte, Stephane Pyronnet, Didier Ponceta, Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. Journal of Virology, 2015 89(17): p. 8773-8782.Ball, K.A.Y.Z.D.F.J.M., Rotaviruses: Extraction and Isolation of RNA, Reassortant Strains, and NSP4 Protein. Current Protocols in Microbiology, 2015. 37(1): p. 15C.6.1-15C.6.44.Yakshe, K.A., Functional Analysis of Interactions of Rotavirus NSP4 with Caveolin-1, Cyclophilin A, Cyclophilin 40, Heat Shock Protein 56, and Cholesterol. Doctoral dissertation, Texas A & M University., 2015: p. 1-217.Jeanette M. Criglar, L.H., Sue E. Crawford, Joseph M. Hyser, James R. Broughman, B. V. Venkataram Prasad, Mary K. Estes, A Novel Form of Rotavirus NSP2 and Phosphorylation-Dependent NSP2-NSP5 Interactions Are Associated with Viroplasm Assembly. Journal of Virology, 2013. 88(2): p. 786-798.Davy Martin, M.D., Jean Lepault, Didier Poncet, Sequestration of Free Tubulin Molecules by the Viral Protein NSP2 Induces Microtubule Depolymerization during Rotavirus Infection. Journal of Virology 2010. 84(5): p. 2522-2532.Holloway Gavan, R.I.J., Yilin Kang, Vi T. Dang, Diana Stojanovski and Barbara S. Coulson, Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal a-helix. Journal of General Virology, 2015. 96: p. 3519–3524Ruan, H., et al., Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes, 2002. 51(5): p. 1319-36.Adams, M., et al., Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem, 1997. 272(8): p. 5128-32.Camp, H.S., S.R. Tafuri, and T. Leff, c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology, 1999. 140(1): p. 392-7.Zhanguo Gao , Q.H., Bailu Peng , Paul J. Chiao and Jianping Ye Regulation of Nuclear Translocation of HDAC3 by IκBα Is Required for Tumor Necrosis Factor Inhibition of Peroxisome Proliferator-activated Receptor γ Function. The Journal of Biological Chemistry, 2006. 281(7): p. 4540-4547.Carreño-Torres JJ, G.M., Arias CF, López S, Isa P, Characterization of viroplasm formation during the early stages of Rotavirus infection. Virology Journal, 2010. 7(350).EstudiantesInvestigadoresMaestrosORIGINAL53098853.2019.pdf53098853.2019.pdfTesis de Doctorado en Biotecnologíaapplication/pdf1609046https://repositorio.unal.edu.co/bitstream/unal/81343/3/53098853.2019.pdf71d1ffc1c39ed7fb732a173e75c85a4bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81343/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL53098853.2019.pdf.jpg53098853.2019.pdf.jpgGenerated Thumbnailimage/jpeg3711https://repositorio.unal.edu.co/bitstream/unal/81343/5/53098853.2019.pdf.jpg88ffaf44c30d690498f00814f06993fcMD55unal/81343oai:repositorio.unal.edu.co:unal/813432024-08-04 23:10:55.886Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |