Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12
diagramas, ilustraciones a color, fotografías, tablas
- Autores:
-
Nieto Camacho, Johann Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79581
- Palabra clave:
- 530 - Física::538 - Magnetismo
Ferromagnetismo
Ferromagnetism
Propiedades magnéticas
Magnetic properties
Perovskita
Perovskita doble
Estructura cristalina
perovskita semiconductora
propiedades magnéticas
caracterización estructural
gap óptico
Crystal structure
Ferromagnetic perovskite-like material
Structural and morphological analysis
Electric feature
Semiconductor character
Optical band gap
Soft ferromagnet
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f4abd119d2bd83303f39f5e0f15f2563 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79581 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
dc.title.translated.eng.fl_str_mv |
Structural aspects and magnetic properties of Dysprosium Ferrobismutite Dy2Bi2Fe4O12 |
title |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
spellingShingle |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 530 - Física::538 - Magnetismo Ferromagnetismo Ferromagnetism Propiedades magnéticas Magnetic properties Perovskita Perovskita doble Estructura cristalina perovskita semiconductora propiedades magnéticas caracterización estructural gap óptico Crystal structure Ferromagnetic perovskite-like material Structural and morphological analysis Electric feature Semiconductor character Optical band gap Soft ferromagnet |
title_short |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
title_full |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
title_fullStr |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
title_full_unstemmed |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
title_sort |
Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12 |
dc.creator.fl_str_mv |
Nieto Camacho, Johann Andrés |
dc.contributor.advisor.none.fl_str_mv |
Roa Rojas, Jairo |
dc.contributor.author.none.fl_str_mv |
Nieto Camacho, Johann Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física de Nuevos Materiales |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::538 - Magnetismo |
topic |
530 - Física::538 - Magnetismo Ferromagnetismo Ferromagnetism Propiedades magnéticas Magnetic properties Perovskita Perovskita doble Estructura cristalina perovskita semiconductora propiedades magnéticas caracterización estructural gap óptico Crystal structure Ferromagnetic perovskite-like material Structural and morphological analysis Electric feature Semiconductor character Optical band gap Soft ferromagnet |
dc.subject.other.none.fl_str_mv |
Ferromagnetismo Ferromagnetism Propiedades magnéticas Magnetic properties |
dc.subject.proposal.spa.fl_str_mv |
Perovskita Perovskita doble Estructura cristalina perovskita semiconductora propiedades magnéticas caracterización estructural gap óptico |
dc.subject.proposal.eng.fl_str_mv |
Crystal structure Ferromagnetic perovskite-like material Structural and morphological analysis Electric feature Semiconductor character Optical band gap Soft ferromagnet |
description |
diagramas, ilustraciones a color, fotografías, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-31T22:23:24Z |
dc.date.available.none.fl_str_mv |
2021-05-31T22:23:24Z |
dc.date.issued.none.fl_str_mv |
2021-01-20 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79581 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79581 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] G. Kieslich, S. Sun, and A. K. Cheetham, “Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog,” Chem. Sci., vol. 5, no. 12, pp. 4712–4715, Oct. 2014, doi: 10.1039/c4sc02211d. [2] Yuanbing Mao, Hongjun Zhou, and Stanislaus S. Wong, “Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures Properties of Perovskite Systems,” Mater. Matters, vol. 5, no. 2, p. 50, 2010. [3] S. Jiang et al., “A new class of high-entropy perovskite oxides,” Scr. Mater., vol. 142, pp. 116–120, 2017, doi: 10.1016/j.scriptamat.2017.08.040. [4] H. W. Eng, P. W. Barnes, B. M. Auer, and P. M. Woodward, “Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family,” J. Solid State Chem., vol. 175, no. 1, pp. 94–109, Oct. 2003, doi: 10.1016/S0022-4596(03)00289-5. [5] A. S. Bhalla, R. Guo, and R. Roy, “The perovskite structure - A review of its role in ceramic science and technology,” Materials Research Innovations, vol. 4, no. 1. Springer New York, pp. 3–26, Nov. 13, 2000, doi: 10.1007/s100190000062. [6] A. S. Cavichini et al., “Exotic magnetism and spin-orbit-assisted Mott insulating state in a 3d-5d double perovskite,” Phys. Rev. B, vol. 97, no. 5, p. 054431, Feb. 2018, doi: 10.1103/PhysRevB.97.054431. [7] M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. Sect. B Struct. Sci., vol. 57, no. 6, pp. 725–738, Dec. 2001, doi: 10.1107/S0108768101015282. [8] J. A. Cuervo-Farfán et al., “Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic,” J. Mater. Sci. Mater. Electron., vol. 29, no. 24, pp. 20942–20951, Dec. 2018, doi: 10.1007/s10854-018-0238-z. [9] G. King and P. M. Woodward, “Cation ordering in perovskites,” J. Mater. Chem., vol. 20, no. 28, pp. 5785–5796, Jul. 2010, doi: 10.1039/b926757c. [10] Y. Shimakawa and T. Saito, “A-site magnetism in A-site-ordered perovskite-structure oxides,” Phys. Status Solidi Basic Res., vol. 249, no. 3, pp. 423–434, Mar. 2012, doi: 10.1002/pssb.201147477. [11] S. Sahoo, P. K. Mahapatra, and R. N. P. Choudhary, “The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics,” J. Phys. D. Appl. Phys., vol. 49, no. 3, Dec. 2015, doi: 10.1088/0022-3727/49/3/035302. [12] A. S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, J. M. Greneche, and P. K. Chakrabarti, “Modulation of magnetic and dielectric property of LaFeO3 by simultaneous doping with Ca2+ and Co2+-ions,” J. Alloys Compd., vol. 743, pp. 274–282, Apr. 2018, doi: 10.1016/j.jallcom.2018.01.207. [13] R. D. Kumar and R. Jayavel, “Synthesis, morphology and optical properties of LaFeO3 nanospheres,” in AIP Conference Proceedings, 2014, vol. 1591, pp. 315–317, doi: 10.1063/1.4872585. [14] S. S. K. Reddy et al., “Study of Mn doped multiferroic DyFeO3 ceramics,” Ceram. Int., vol. 43, no. 8, pp. 6148–6155, Jun. 2017, doi: 10.1016/j.ceramint.2017.02.010. [15] G. Srinivasan, A. N. Slavin, A. M. BALBASHOV, G. V. KOZLOV, A. A. MUKHIN, and A. S. PROKHOROV, “SUBMILLIMETER SPECTROSCOPY OF ANTIFERROMAGNETIC DIELECTRICS: RARE-EARTH ORTHOFERRITES,” in High Frequency Processes in Magnetic Materials, WORLD SCIENTIFIC, 1995, pp. 56–98. [16] E. Haye et al., “Properties of rare-earth orthoferrites perovskite driven by steric hindrance,” J. Alloys Compd., vol. 657, pp. 631–638, Feb. 2016, doi: 10.1016/j.jallcom.2015.10.135. [17] U. Nuraini and S. Suasmoro, “ Crystal structure and phase transformation of BiFeO 3 multiferroics on the temperature variation ,” J. Phys. Conf. Ser., vol. 817, p. 012059, Apr. 2017, doi: 10.1088/1742-6596/817/1/012059. [18] J. A. Nieto Camacho, J. A. Cardona Vásquez, A. Sarmiento Santos, D. A. Landínez Téllez, and J. Roa-Rojas, “Study of the microstructure and the optical, electrical, and magnetic feature of the Dy2Bi2Fe4O12 ferromagnetic semiconductor,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10686–10697, Sep. 2020, doi: 10.1016/j.jmrt.2020.07.073. [19] J. Even, G. Giorgi, C. Katan, H. Kawai, and K. Yamashita, Organic-inorganic halide perovskite quasi-particle nature analysis via the interplay among classic solid-state concepts, density functional, and many-body perturbation theory. CRC Press, 2017. [20] R. J. D. Tilley, Perovskites: Structure-Property Relationships. Willey, 2016. [21] T. Wolfram and S. Ellialtioglu, Electronic and Optical Properties of D -Band Perovskites . Cambridge University Press, 2006. [22] A. K. Kundu, Magnetic Perovskitesm, Synthesis, Structures and Physical Properties, no. 2016. Srpinger, 2016. [23] T. Kubo and H. Nozoye, “Microscopic properties of the SrTiO3(100) surface,” Appl. Phys. A Mater. Sci. Process., vol. 72, no. 8, pp. S277–S280, Apr. 2001, doi: 10.1007/s003390100662. [24] J. B. Goodenough and J. S. Zhou, “Localized to Itinerant Electronic Transitions in Transition-Metal Oxides with the Perovskite Structure,” Chemistry of Materials, vol. 10, no. 10. Springer, pp. 2980–2993, 1998, doi: 10.1021/cm980276u. [25] A. M. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., vol. 28, no. 11, pp. 3384–3392, Nov. 1972, doi: 10.1107/s0567740872007976. [26] C. J. Howard and H. T. Stokes, “Group-Theoretical Analysis of Octahedral Tilting in Perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 54, no. 6, pp. 782–789, Dec. 1998, doi: 10.1107/S0108768198004200. [27] P. M. Woodward, “Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, no. 1, pp. 44–66, Feb. 1997, doi: 10.1107/S0108768196012050. [28] R. ROY, “Multiple Ion Substitution in the Perovskite Lattice,” J. Am. Ceram. Soc., vol. 37, no. 12, pp. 581–588, Dec. 1954, doi: 10.1111/j.1151-2916.1954.tb13992.x. [29] Y. Kawasaki et al., “NMR study of successive magnetic transitions in the A-site ordered perovskite LaMn3Cr4O12,” J. Korean Phys. Soc., vol. 63, no. 3, pp. 640–643, Aug. 2013, doi: 10.3938/jkps.63.640. [30] M. Bieringer et al., “Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ,” Chem. Mater., vol. 15, no. 2, pp. 586–597, Jan. 2003, doi: 10.1021/cm020461e. [31] M. Ducau, K. S. Suh, J. Senegas, and J. Darriet, “Crystal structure and NMR studies of a cubic perovskite. The fluoride NaBaLiNiF6,” Mater. Res. Bull., vol. 27, no. 9, pp. 1115–1123, Sep. 1992, doi: 10.1016/0025-5408(92)90251-T. [32] V. M. Talanov, M. V. Talanov, and V. B. Shirokov, “Group-theoretical study of cationic ordering in perovskite structure,” Crystallogr. Reports, vol. 59, no. 5, pp. 650–661, Sep. 2014, doi: 10.1134/S1063774514050186. [33] V. M. Goldschmidt, “Die Gesetze der Krystallochemie,” Naturwissenschaften, vol. 14, no. 21, pp. 477–485, May 1926, doi: 10.1007/BF01507527. [34] A. E. Fedorovskiy, N. A. Drigo, and M. K. Nazeeruddin, “The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range,” Small Methods, vol. 4, no. 5, p. 1900426, May 2020, doi: 10.1002/smtd.201900426. [35] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 64, no. 6, pp. 702–707, Dec. 2008, doi: 10.1107/S0108768108032734. [36] N. F. Atta, A. Galal, and E. H. El-Ads, “Perovskite Nanomaterials – Synthesis, Characterization, and Applications,” in Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, InTech, 2016. [37] S. T. Thornton and A. Rex, Modern Physics for Scientists and Engineers: 4th edition, vol. 4. 2013. [38] M. N. O. Sadiku, Elements of Electromagnetics, Second Edition. Oxford University Press, 1989. [39] H. Y. Chang, S. H. Kim, M. O. Kang, and P. S. Halasyamani, “Polar or nonpolar? A+ cation polarity control in A 2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl),” J. Am. Chem. Soc., vol. 131, no. 19, pp. 6865–6873, May 2009, doi: 10.1021/ja9015099. [40] K. Daum Machado, Teoria do Eletromagnetismo - Vol 1. Universidade Estadual de Ponta Grossa, 2000. [41] H. I. Hsiang, K. Y. Lin, F. S. Yen, and C. Y. Hwang, “Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites,” J. Mater. Sci., vol. 36, no. 15, pp. 3809–3815, Aug. 2001, doi: 10.1023/A:1017946405447. [42] W. Gao and N. M. Sammes, “An Introduction to Electronic and Ionic Materials.” 1999. [43] D. R. Askeland, “The Science and Engineering of Materials,” Eur. J. Eng. Educ., vol. 19, no. 3, p. 380, 1994, doi: 10.1080/03043799408928327. [44] M. W. Lufaso, P. W. Barnes, and P. M. Woodward, “Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS,” Acta Crystallogr. Sect. B Struct. Sci., vol. 62, no. 3, pp. 397–410, Jun. 2006, doi: 10.1107/S010876810600262X. [45] F. Orlandi et al., “Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system,” Inorg. Chem., vol. 53, no. 19, pp. 10283–10290, Oct. 2014, doi: 10.1021/ic501328s. [46] Y. Q. Huang, J. Su, Q. F. Li, D. Wang, L. H. Xu, and Y. Bai, “Structure, optical and electrical properties of CH 3 NH 3 SnI 3 single crystal,” Phys. B Condens. Matter, vol. 563, pp. 107–112, Jun. 2019, doi: 10.1016/j.physb.2019.03.035. [47] N. A. Spaldin, Magnetic materials: Fundamentals and applications, vol. 9780521886. 2010. [48] R. Skomski, Simple Models of Magnetism, vol. 9780198570752. 2010. [49] S. Blundell and D. Thouless, Magnetism in Condensed Matter, vol. 71, no. 1. 2003. [50] Y. M. Poplavko, Electronic Materials. Principles and Applied Science. Elsevier, 2019. [51] M. Reis, Fundamentals of Magnetism. 2013. [52] S. N. Achary, O. D. Jayakumar, and A. K. Tyagi, “Multiferroic materials,” in Functional Materials, Elsevier Inc., 2012, pp. 155–191. [53] Suk-joong L. Kang, Sintering. Densification, Grain Growth and Microstructure. Elsevier Ltd, 2005. [54] Z. Z. Fang, Sintering of Advanced Materials. 2010. [55] M. N. Rahaman, Sintering of ceramics. 2007. [56] A. Clearfield, J. H. Reibenspies, and N. Bhuvanesh, Principles and Applications of Powder Diffraction. 2009. [57] G. Will, Powder diffraction: The rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data. 2006. [58] Tilley and R. J. D., Crystals and Crystal Structures. 2006. [59] V. Pecharsky, P. Zavalij, J. R. Votano, M. Parham, and L. H. Hall, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition. 2008. [60] H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., vol. 22, no. 1, pp. 151–152, Jan. 1967, doi: 10.1107/s0365110x67000234. [61] D. S. J. B. Robert E., Powder Diffraction Theory and Practice. 2008. [62] R. Dinnebier, A. Leineweber, and J. Evans, Rietveld Refinement Practical Powder Diffraction Pattern Analysis using TOPAS. 2019. [63] N. Tanaka, Scanning transmission electron microscopy of nanomaterials: Basics of imaging and analysis. Imperial College Press, 2014. [64] D. J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM). Wiley, 2008. [65] V. Kazmiruk, Scanning Electron Microscopy. Rijeka: InTech, 2012. [66] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and x-ray microanalysis. Springer, 2017. [67] A. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy. Springer, 2018. [68] R. W. Frei and J. . D. MacNeil, Diffuse Reflectance Spectroscopy in Enviromental Problem-Solving. CRC Press, 1973. [69] W. W. Wendlandt, Modern Aspects of Reflectance Spectroscopy. New York: Plenum Press, 1968. [70] H. M. Niemz, Laser-Tissue Interactions. Fundamentals and Applications. Springer, 1996. [71] G. Kortüm, Reflectance Spectroscopy. Principles, Methods, Applications. New York: Springer-Verlag, 1969. [72] B. Hapke, Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012. [73] S. Jacquemoud and S. Ustin, Leaf Optical Properties. Cambridge University Press, 2019. [74] I. J. Pankove, Optical Processes in Semiconductors. Dover books, 1975. [75] S. Foner, “Versatile and sensitive vibrating-sample magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959, doi: 10.1063/1.1716679. [76] F. Fiorillo, Measurement And Characterization of Magnetic Materials. Elsevier, 2004. [77] A. C. Larson, R. B. Von, and D. Lansce, “LAUR 86-748 © GENERAL STRUCTURE ANALYSIS SYSTEM,” 2004. [78] P. M. Woodward, “Octahedral Tilting in Perovskites. I. Geometrical Considerations,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, no. 1, pp. 32–43, Feb. 1997, doi: 10.1107/S0108768196010713. [79] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551. [80] M. J. Mehl et al., “The AFLOW Library of Crystallographic Prototypes: Part 1,” Comput. Mater. Sci., vol. 136, pp. S1–S828, Aug. 2017, doi: 10.1016/j.commatsci.2017.01.017. [81] C. Suryanarayana and M. G. Norton, X-ray diffraction: a practical approach. New York: Plenum Press Publishing, 1998. [82] M. Saleem, “Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method,” Int. J. Phys. Sci., vol. 7, no. 23, Jun. 2012, doi: 10.5897/ijps12.219. [83] S. Vasala and M. Karppinen, “A2B′B″O6 perovskites: A review,” Progress in Solid State Chemistry, vol. 43, no. 1–2. Elsevier Ltd, pp. 1–36, May 01, 2015, doi: 10.1016/j.progsolidstchem.2014.08.001. [84] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7. pp. 671–675, Jul. 28, 2012, doi: 10.1038/nmeth.2089. [85] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. status solidi, vol. 15, no. 2, pp. 627–637, 1966, doi: 10.1002/pssb.19660150224. [86] K. Kharel and A. Freundlich, “Design of wide bandgap (1.7 eV-1.9 eV) III-V dilute nitride quantum-engineered solar cells for tandem application with silicon,” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, Feb. 2018, vol. 10527, p. 12, doi: 10.1117/12.2290053. [87] C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys., vol. 107, no. 5, p. 053710, Mar. 2010, doi: 10.1063/1.3318468. [88] A. Nakane et al., “Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis,” J. Appl. Phys., vol. 120, no. 6, p. 064505, Aug. 2016, doi: 10.1063/1.4960698. [89] G. Blatter and F. Greuter, “Carrier transport through grain boundaries in semiconductors,” Phys. Rev. B, vol. 33, no. 6, pp. 3952–3966, Mar. 1986, doi: 10.1103/PhysRevB.33.3952. [90] C. R. M. Grovenor, “Grain boundaries in semiconductors,” J. Phys. C Solid State Phys., vol. 18, no. 21, pp. 4079–4119, Jul. 1985, doi: 10.1088/0022-3719/18/21/008. [91] F. Greuter and G. Blatter, “Electrical properties of grain boundaries in polycrystalline compound semiconductors,” Semiconductor Science and Technology, vol. 5, no. 2. pp. 111–137, Feb. 01, 1990, doi: 10.1088/0268-1242/5/2/001. [92] A. Vojta, Q. Wen, and D. R. Clarke, “Influence of microstructural disorder on the current transport behavior of varistor ceramics,” Comput. Mater. Sci., vol. 6, no. 1, pp. 51–62, Jul. 1996, doi: 10.1016/0927-0256(96)00011-0. [93] G. Zhao, R. P. Joshi, V. K. Lakdawala, and H. P. Hjalmarson, “Electro-thermal simulation studies for pulsed voltage induced energy absorption and potential failure in microstructured ZnO varistors,” in IEEE Transactions on Dielectrics and Electrical Insulation, Aug. 2007, vol. 14, no. 4, pp. 1007–1015, doi: 10.1109/TDEI.2007.4286541. [94] A. I. Dedyk, A. D. Kanareykin, E. A. Nenasheva, J. V. Pavlova, and S. F. Karmanenko, “I-V and C-V characteristics of ceramic materials based on barium strontium titanate,” Tech. Phys., vol. 51, no. 9, pp. 1168–1173, Sep. 2006, doi: 10.1134/S1063784206090106. [95] K. Bavelis, E. Gjonaj, and T. Weiland, “Modeling of electrical transport in Zinc Oxide varistors,” Adv. Radio Sci, vol. 12, pp. 29–34, 2014, doi: 10.5194/ars-12-29-2014. [96] A. Jiingel, Quasi-hydrodynamic Semiconductor Equations. Berlin: Birkhauser Verlag, 2001. [97] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin: Springer-Verlag, 2003. [98] H. R. Fuh, K. C. Weng, Y. P. Liu, and Y. K. Wang, “New ferromagnetic semiconductor double perovskites: La2FeMO6 (M = Co, Rh, and Ir),” J. Alloys Compd., vol. 622, pp. 657–661, Feb. 2015, doi: 10.1016/j.jallcom.2014.10.010. [99] L. Ren et al., “Tuning Magnetism and Photocurrent in Mn-Doped Organic-Inorganic Perovskites,” J. Phys. Chem. Lett., vol. 11, no. 7, pp. 2577–2584, Apr. 2020, doi: 10.1021/acs.jpclett.0c00034. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (88 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79581/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79581/2/1012406518.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79581/3/1012406518.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 b5f50b97126d231ebb352684259eeffa 97f93b2231ad86edb17b6eb51b4d15c8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089276553428992 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roa Rojas, Jairo2e10826bd7af55149f1d326253c3336fNieto Camacho, Johann Andrés2fb65d794398a8dd8fede40d315d6d57Grupo de Física de Nuevos Materiales2021-05-31T22:23:24Z2021-05-31T22:23:24Z2021-01-20https://repositorio.unal.edu.co/handle/unal/79581Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, fotografías, tablasEl material de tipo perovskita doble Dy2Bi2Fe4O12 fue sintetizado a partir de la técnica de estado sólido. La caracterización estructural, mediante difracción de rayos x, revela un cristal ortorrómbico perteneciente al grupo espacial Pnma (#62) con fuertes distorsiones octaédricas. El análisis morfológico mediante SEM muestra una difusión granular con tamaños promedios del orden nanométrico. El espectro de energía por dispersión de rayos X señala que no hay elementos diferentes a los esperados de los óxidos precursores y en la proporción estequiométrica calculada. La determinación de la banda prohibida Eg=1.88 eV, a partir de espectroscopía por reflectancia difusa, clasifica a Dy2Bi2Fe4O12 como un material semiconductor. Las curvas de corriente contra voltaje sugieren una respuesta eléctrica no lineal de tipo varistor. Además, su permitividad eléctrica está marcada por polarización de tipo Maxwell-Wagner. La respuesta magnética clasifica a esta perovskita doble como un ferromagneto blando con bajo campo coercitivo (500 Oe < HC < 700 Oe) y magnetización remanente (2.15x10-4 emu/g < MR < 3.25x10-4 emu/g). Las curvas de histéresis muestran un comportamiento ferromagnético con evidencia de efectos superparamagnéticos debido a la presencia de granos nanométricos ferromagnéticos.Double perovskite-like material Dy2Bi2Fe4O12 has been obtain using the solid-state synthesis Structural characterization through X-ray diffraction technique reveals an orthorhombic crystal belonging to Pnma space group (# 62) with strong octahedral distortions. Analysis of the Morphology by SEM shows a granular diffusion with nanometric order mean sizes. X-ray energy dispersion spectra establishes that there are no elements other than those expected from the precursor oxides in the stoichiometric proportions calculated. Determination of the band gap Eg = 1.88 eV from diffuse reflectance spectroscopy classifies Dy2Bi2Fe4O12 as a semiconductor material. The I-V curves suggest a non-linear varistor-type electrical response. Furthermore, its electrical permittivity is marked by Maxwell-Wagner-type polarization. The magnetic response of the material shows a soft ferromagnet with low coercive field (500 Oe < HC <700 Oe) and remnant magnetization (2.15x10-4 emu/g < MR <3.25x10-4 emu/g). Hysteresis curves reveal a ferromagnetic response with evidence of superparamagnetic effects due to the significant presence of nano-sized ferromagnetic grains.MaestríaMagíster en Ciencias - FísicaCaracterización y Síntesis de Nuevos Materiales1 recurso en línea (88 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá530 - Física::538 - MagnetismoFerromagnetismoFerromagnetismPropiedades magnéticasMagnetic propertiesPerovskitaPerovskita dobleEstructura cristalinaperovskita semiconductorapropiedades magnéticascaracterización estructuralgap ópticoCrystal structureFerromagnetic perovskite-like materialStructural and morphological analysisElectric featureSemiconductor characterOptical band gapSoft ferromagnetAspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12Structural aspects and magnetic properties of Dysprosium Ferrobismutite Dy2Bi2Fe4O12Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] G. Kieslich, S. Sun, and A. K. Cheetham, “Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog,” Chem. Sci., vol. 5, no. 12, pp. 4712–4715, Oct. 2014, doi: 10.1039/c4sc02211d.[2] Yuanbing Mao, Hongjun Zhou, and Stanislaus S. Wong, “Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures Properties of Perovskite Systems,” Mater. Matters, vol. 5, no. 2, p. 50, 2010.[3] S. Jiang et al., “A new class of high-entropy perovskite oxides,” Scr. Mater., vol. 142, pp. 116–120, 2017, doi: 10.1016/j.scriptamat.2017.08.040.[4] H. W. Eng, P. W. Barnes, B. M. Auer, and P. M. Woodward, “Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family,” J. Solid State Chem., vol. 175, no. 1, pp. 94–109, Oct. 2003, doi: 10.1016/S0022-4596(03)00289-5.[5] A. S. Bhalla, R. Guo, and R. Roy, “The perovskite structure - A review of its role in ceramic science and technology,” Materials Research Innovations, vol. 4, no. 1. Springer New York, pp. 3–26, Nov. 13, 2000, doi: 10.1007/s100190000062.[6] A. S. Cavichini et al., “Exotic magnetism and spin-orbit-assisted Mott insulating state in a 3d-5d double perovskite,” Phys. Rev. B, vol. 97, no. 5, p. 054431, Feb. 2018, doi: 10.1103/PhysRevB.97.054431.[7] M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. Sect. B Struct. Sci., vol. 57, no. 6, pp. 725–738, Dec. 2001, doi: 10.1107/S0108768101015282.[8] J. A. Cuervo-Farfán et al., “Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic,” J. Mater. Sci. Mater. Electron., vol. 29, no. 24, pp. 20942–20951, Dec. 2018, doi: 10.1007/s10854-018-0238-z.[9] G. King and P. M. Woodward, “Cation ordering in perovskites,” J. Mater. Chem., vol. 20, no. 28, pp. 5785–5796, Jul. 2010, doi: 10.1039/b926757c.[10] Y. Shimakawa and T. Saito, “A-site magnetism in A-site-ordered perovskite-structure oxides,” Phys. Status Solidi Basic Res., vol. 249, no. 3, pp. 423–434, Mar. 2012, doi: 10.1002/pssb.201147477.[11] S. Sahoo, P. K. Mahapatra, and R. N. P. Choudhary, “The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics,” J. Phys. D. Appl. Phys., vol. 49, no. 3, Dec. 2015, doi: 10.1088/0022-3727/49/3/035302.[12] A. S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, J. M. Greneche, and P. K. Chakrabarti, “Modulation of magnetic and dielectric property of LaFeO3 by simultaneous doping with Ca2+ and Co2+-ions,” J. Alloys Compd., vol. 743, pp. 274–282, Apr. 2018, doi: 10.1016/j.jallcom.2018.01.207.[13] R. D. Kumar and R. Jayavel, “Synthesis, morphology and optical properties of LaFeO3 nanospheres,” in AIP Conference Proceedings, 2014, vol. 1591, pp. 315–317, doi: 10.1063/1.4872585.[14] S. S. K. Reddy et al., “Study of Mn doped multiferroic DyFeO3 ceramics,” Ceram. Int., vol. 43, no. 8, pp. 6148–6155, Jun. 2017, doi: 10.1016/j.ceramint.2017.02.010.[15] G. Srinivasan, A. N. Slavin, A. M. BALBASHOV, G. V. KOZLOV, A. A. MUKHIN, and A. S. PROKHOROV, “SUBMILLIMETER SPECTROSCOPY OF ANTIFERROMAGNETIC DIELECTRICS: RARE-EARTH ORTHOFERRITES,” in High Frequency Processes in Magnetic Materials, WORLD SCIENTIFIC, 1995, pp. 56–98.[16] E. Haye et al., “Properties of rare-earth orthoferrites perovskite driven by steric hindrance,” J. Alloys Compd., vol. 657, pp. 631–638, Feb. 2016, doi: 10.1016/j.jallcom.2015.10.135.[17] U. Nuraini and S. Suasmoro, “ Crystal structure and phase transformation of BiFeO 3 multiferroics on the temperature variation ,” J. Phys. Conf. Ser., vol. 817, p. 012059, Apr. 2017, doi: 10.1088/1742-6596/817/1/012059.[18] J. A. Nieto Camacho, J. A. Cardona Vásquez, A. Sarmiento Santos, D. A. Landínez Téllez, and J. Roa-Rojas, “Study of the microstructure and the optical, electrical, and magnetic feature of the Dy2Bi2Fe4O12 ferromagnetic semiconductor,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10686–10697, Sep. 2020, doi: 10.1016/j.jmrt.2020.07.073.[19] J. Even, G. Giorgi, C. Katan, H. Kawai, and K. Yamashita, Organic-inorganic halide perovskite quasi-particle nature analysis via the interplay among classic solid-state concepts, density functional, and many-body perturbation theory. CRC Press, 2017.[20] R. J. D. Tilley, Perovskites: Structure-Property Relationships. Willey, 2016.[21] T. Wolfram and S. Ellialtioglu, Electronic and Optical Properties of D -Band Perovskites . Cambridge University Press, 2006.[22] A. K. Kundu, Magnetic Perovskitesm, Synthesis, Structures and Physical Properties, no. 2016. Srpinger, 2016.[23] T. Kubo and H. Nozoye, “Microscopic properties of the SrTiO3(100) surface,” Appl. Phys. A Mater. Sci. Process., vol. 72, no. 8, pp. S277–S280, Apr. 2001, doi: 10.1007/s003390100662.[24] J. B. Goodenough and J. S. Zhou, “Localized to Itinerant Electronic Transitions in Transition-Metal Oxides with the Perovskite Structure,” Chemistry of Materials, vol. 10, no. 10. Springer, pp. 2980–2993, 1998, doi: 10.1021/cm980276u.[25] A. M. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., vol. 28, no. 11, pp. 3384–3392, Nov. 1972, doi: 10.1107/s0567740872007976.[26] C. J. Howard and H. T. Stokes, “Group-Theoretical Analysis of Octahedral Tilting in Perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 54, no. 6, pp. 782–789, Dec. 1998, doi: 10.1107/S0108768198004200.[27] P. M. Woodward, “Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, no. 1, pp. 44–66, Feb. 1997, doi: 10.1107/S0108768196012050.[28] R. ROY, “Multiple Ion Substitution in the Perovskite Lattice,” J. Am. Ceram. Soc., vol. 37, no. 12, pp. 581–588, Dec. 1954, doi: 10.1111/j.1151-2916.1954.tb13992.x.[29] Y. Kawasaki et al., “NMR study of successive magnetic transitions in the A-site ordered perovskite LaMn3Cr4O12,” J. Korean Phys. Soc., vol. 63, no. 3, pp. 640–643, Aug. 2013, doi: 10.3938/jkps.63.640.[30] M. Bieringer et al., “Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ,” Chem. Mater., vol. 15, no. 2, pp. 586–597, Jan. 2003, doi: 10.1021/cm020461e.[31] M. Ducau, K. S. Suh, J. Senegas, and J. Darriet, “Crystal structure and NMR studies of a cubic perovskite. The fluoride NaBaLiNiF6,” Mater. Res. Bull., vol. 27, no. 9, pp. 1115–1123, Sep. 1992, doi: 10.1016/0025-5408(92)90251-T.[32] V. M. Talanov, M. V. Talanov, and V. B. Shirokov, “Group-theoretical study of cationic ordering in perovskite structure,” Crystallogr. Reports, vol. 59, no. 5, pp. 650–661, Sep. 2014, doi: 10.1134/S1063774514050186.[33] V. M. Goldschmidt, “Die Gesetze der Krystallochemie,” Naturwissenschaften, vol. 14, no. 21, pp. 477–485, May 1926, doi: 10.1007/BF01507527.[34] A. E. Fedorovskiy, N. A. Drigo, and M. K. Nazeeruddin, “The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range,” Small Methods, vol. 4, no. 5, p. 1900426, May 2020, doi: 10.1002/smtd.201900426.[35] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 64, no. 6, pp. 702–707, Dec. 2008, doi: 10.1107/S0108768108032734.[36] N. F. Atta, A. Galal, and E. H. El-Ads, “Perovskite Nanomaterials – Synthesis, Characterization, and Applications,” in Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, InTech, 2016.[37] S. T. Thornton and A. Rex, Modern Physics for Scientists and Engineers: 4th edition, vol. 4. 2013.[38] M. N. O. Sadiku, Elements of Electromagnetics, Second Edition. Oxford University Press, 1989.[39] H. Y. Chang, S. H. Kim, M. O. Kang, and P. S. Halasyamani, “Polar or nonpolar? A+ cation polarity control in A 2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl),” J. Am. Chem. Soc., vol. 131, no. 19, pp. 6865–6873, May 2009, doi: 10.1021/ja9015099.[40] K. Daum Machado, Teoria do Eletromagnetismo - Vol 1. Universidade Estadual de Ponta Grossa, 2000.[41] H. I. Hsiang, K. Y. Lin, F. S. Yen, and C. Y. Hwang, “Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites,” J. Mater. Sci., vol. 36, no. 15, pp. 3809–3815, Aug. 2001, doi: 10.1023/A:1017946405447.[42] W. Gao and N. M. Sammes, “An Introduction to Electronic and Ionic Materials.” 1999.[43] D. R. Askeland, “The Science and Engineering of Materials,” Eur. J. Eng. Educ., vol. 19, no. 3, p. 380, 1994, doi: 10.1080/03043799408928327.[44] M. W. Lufaso, P. W. Barnes, and P. M. Woodward, “Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS,” Acta Crystallogr. Sect. B Struct. Sci., vol. 62, no. 3, pp. 397–410, Jun. 2006, doi: 10.1107/S010876810600262X.[45] F. Orlandi et al., “Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system,” Inorg. Chem., vol. 53, no. 19, pp. 10283–10290, Oct. 2014, doi: 10.1021/ic501328s.[46] Y. Q. Huang, J. Su, Q. F. Li, D. Wang, L. H. Xu, and Y. Bai, “Structure, optical and electrical properties of CH 3 NH 3 SnI 3 single crystal,” Phys. B Condens. Matter, vol. 563, pp. 107–112, Jun. 2019, doi: 10.1016/j.physb.2019.03.035.[47] N. A. Spaldin, Magnetic materials: Fundamentals and applications, vol. 9780521886. 2010.[48] R. Skomski, Simple Models of Magnetism, vol. 9780198570752. 2010.[49] S. Blundell and D. Thouless, Magnetism in Condensed Matter, vol. 71, no. 1. 2003.[50] Y. M. Poplavko, Electronic Materials. Principles and Applied Science. Elsevier, 2019.[51] M. Reis, Fundamentals of Magnetism. 2013.[52] S. N. Achary, O. D. Jayakumar, and A. K. Tyagi, “Multiferroic materials,” in Functional Materials, Elsevier Inc., 2012, pp. 155–191.[53] Suk-joong L. Kang, Sintering. Densification, Grain Growth and Microstructure. Elsevier Ltd, 2005.[54] Z. Z. Fang, Sintering of Advanced Materials. 2010.[55] M. N. Rahaman, Sintering of ceramics. 2007.[56] A. Clearfield, J. H. Reibenspies, and N. Bhuvanesh, Principles and Applications of Powder Diffraction. 2009.[57] G. Will, Powder diffraction: The rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data. 2006.[58] Tilley and R. J. D., Crystals and Crystal Structures. 2006.[59] V. Pecharsky, P. Zavalij, J. R. Votano, M. Parham, and L. H. Hall, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition. 2008.[60] H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., vol. 22, no. 1, pp. 151–152, Jan. 1967, doi: 10.1107/s0365110x67000234.[61] D. S. J. B. Robert E., Powder Diffraction Theory and Practice. 2008.[62] R. Dinnebier, A. Leineweber, and J. Evans, Rietveld Refinement Practical Powder Diffraction Pattern Analysis using TOPAS. 2019.[63] N. Tanaka, Scanning transmission electron microscopy of nanomaterials: Basics of imaging and analysis. Imperial College Press, 2014.[64] D. J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM). Wiley, 2008.[65] V. Kazmiruk, Scanning Electron Microscopy. Rijeka: InTech, 2012.[66] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and x-ray microanalysis. Springer, 2017.[67] A. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy. Springer, 2018.[68] R. W. Frei and J. . D. MacNeil, Diffuse Reflectance Spectroscopy in Enviromental Problem-Solving. CRC Press, 1973.[69] W. W. Wendlandt, Modern Aspects of Reflectance Spectroscopy. New York: Plenum Press, 1968.[70] H. M. Niemz, Laser-Tissue Interactions. Fundamentals and Applications. Springer, 1996.[71] G. Kortüm, Reflectance Spectroscopy. Principles, Methods, Applications. New York: Springer-Verlag, 1969.[72] B. Hapke, Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012.[73] S. Jacquemoud and S. Ustin, Leaf Optical Properties. Cambridge University Press, 2019.[74] I. J. Pankove, Optical Processes in Semiconductors. Dover books, 1975.[75] S. Foner, “Versatile and sensitive vibrating-sample magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959, doi: 10.1063/1.1716679.[76] F. Fiorillo, Measurement And Characterization of Magnetic Materials. Elsevier, 2004.[77] A. C. Larson, R. B. Von, and D. Lansce, “LAUR 86-748 © GENERAL STRUCTURE ANALYSIS SYSTEM,” 2004.[78] P. M. Woodward, “Octahedral Tilting in Perovskites. I. Geometrical Considerations,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, no. 1, pp. 32–43, Feb. 1997, doi: 10.1107/S0108768196010713.[79] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551.[80] M. J. Mehl et al., “The AFLOW Library of Crystallographic Prototypes: Part 1,” Comput. Mater. Sci., vol. 136, pp. S1–S828, Aug. 2017, doi: 10.1016/j.commatsci.2017.01.017.[81] C. Suryanarayana and M. G. Norton, X-ray diffraction: a practical approach. New York: Plenum Press Publishing, 1998.[82] M. Saleem, “Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method,” Int. J. Phys. Sci., vol. 7, no. 23, Jun. 2012, doi: 10.5897/ijps12.219.[83] S. Vasala and M. Karppinen, “A2B′B″O6 perovskites: A review,” Progress in Solid State Chemistry, vol. 43, no. 1–2. Elsevier Ltd, pp. 1–36, May 01, 2015, doi: 10.1016/j.progsolidstchem.2014.08.001.[84] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7. pp. 671–675, Jul. 28, 2012, doi: 10.1038/nmeth.2089.[85] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. status solidi, vol. 15, no. 2, pp. 627–637, 1966, doi: 10.1002/pssb.19660150224.[86] K. Kharel and A. Freundlich, “Design of wide bandgap (1.7 eV-1.9 eV) III-V dilute nitride quantum-engineered solar cells for tandem application with silicon,” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, Feb. 2018, vol. 10527, p. 12, doi: 10.1117/12.2290053.[87] C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys., vol. 107, no. 5, p. 053710, Mar. 2010, doi: 10.1063/1.3318468.[88] A. Nakane et al., “Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis,” J. Appl. Phys., vol. 120, no. 6, p. 064505, Aug. 2016, doi: 10.1063/1.4960698.[89] G. Blatter and F. Greuter, “Carrier transport through grain boundaries in semiconductors,” Phys. Rev. B, vol. 33, no. 6, pp. 3952–3966, Mar. 1986, doi: 10.1103/PhysRevB.33.3952.[90] C. R. M. Grovenor, “Grain boundaries in semiconductors,” J. Phys. C Solid State Phys., vol. 18, no. 21, pp. 4079–4119, Jul. 1985, doi: 10.1088/0022-3719/18/21/008.[91] F. Greuter and G. Blatter, “Electrical properties of grain boundaries in polycrystalline compound semiconductors,” Semiconductor Science and Technology, vol. 5, no. 2. pp. 111–137, Feb. 01, 1990, doi: 10.1088/0268-1242/5/2/001.[92] A. Vojta, Q. Wen, and D. R. Clarke, “Influence of microstructural disorder on the current transport behavior of varistor ceramics,” Comput. Mater. Sci., vol. 6, no. 1, pp. 51–62, Jul. 1996, doi: 10.1016/0927-0256(96)00011-0.[93] G. Zhao, R. P. Joshi, V. K. Lakdawala, and H. P. Hjalmarson, “Electro-thermal simulation studies for pulsed voltage induced energy absorption and potential failure in microstructured ZnO varistors,” in IEEE Transactions on Dielectrics and Electrical Insulation, Aug. 2007, vol. 14, no. 4, pp. 1007–1015, doi: 10.1109/TDEI.2007.4286541.[94] A. I. Dedyk, A. D. Kanareykin, E. A. Nenasheva, J. V. Pavlova, and S. F. Karmanenko, “I-V and C-V characteristics of ceramic materials based on barium strontium titanate,” Tech. Phys., vol. 51, no. 9, pp. 1168–1173, Sep. 2006, doi: 10.1134/S1063784206090106.[95] K. Bavelis, E. Gjonaj, and T. Weiland, “Modeling of electrical transport in Zinc Oxide varistors,” Adv. Radio Sci, vol. 12, pp. 29–34, 2014, doi: 10.5194/ars-12-29-2014.[96] A. Jiingel, Quasi-hydrodynamic Semiconductor Equations. Berlin: Birkhauser Verlag, 2001.[97] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin: Springer-Verlag, 2003.[98] H. R. Fuh, K. C. Weng, Y. P. Liu, and Y. K. Wang, “New ferromagnetic semiconductor double perovskites: La2FeMO6 (M = Co, Rh, and Ir),” J. Alloys Compd., vol. 622, pp. 657–661, Feb. 2015, doi: 10.1016/j.jallcom.2014.10.010.[99] L. Ren et al., “Tuning Magnetism and Photocurrent in Mn-Doped Organic-Inorganic Perovskites,” J. Phys. Chem. Lett., vol. 11, no. 7, pp. 2577–2584, Apr. 2020, doi: 10.1021/acs.jpclett.0c00034.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79581/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1012406518.2021.pdf1012406518.2021.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf2257968https://repositorio.unal.edu.co/bitstream/unal/79581/2/1012406518.2021.pdfb5f50b97126d231ebb352684259eeffaMD52THUMBNAIL1012406518.2021.pdf.jpg1012406518.2021.pdf.jpgGenerated Thumbnailimage/jpeg4704https://repositorio.unal.edu.co/bitstream/unal/79581/3/1012406518.2021.pdf.jpg97f93b2231ad86edb17b6eb51b4d15c8MD53unal/79581oai:repositorio.unal.edu.co:unal/795812024-07-20 23:10:52.388Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |