Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae)
ilustraciones, fotografías, gráficas, tablas
- Autores:
-
Bustamante Romero, Andrés Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81720
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
Zanthoxylum
Zanthoxylum
Enfermedad de Alzheimer/tratamiento farmacológico
Fármacos Neuroprotectores
Alzheimer Disease/drug therapy
Neuroprotective Agents
Enfermedad de Alzheimer
Zanthoxylum caribaeum
Aislamiento químico biodirigido
LXR
Multifuncional
Alzheimer's disease
Bio-guided chemical isolation
Multifunctional
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f4a8f313415f2a19a9ba965f1e50adb7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81720 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
dc.title.translated.eng.fl_str_mv |
Search for active principles with neuroprotective potential for the treatment of alzheimer's disease from a species of the gender Zanthoxylum caribaeum (Rutaceae) |
title |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
spellingShingle |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) 610 - Medicina y salud::615 - Farmacología y terapéutica Zanthoxylum Zanthoxylum Enfermedad de Alzheimer/tratamiento farmacológico Fármacos Neuroprotectores Alzheimer Disease/drug therapy Neuroprotective Agents Enfermedad de Alzheimer Zanthoxylum caribaeum Aislamiento químico biodirigido LXR Multifuncional Alzheimer's disease Bio-guided chemical isolation Multifunctional |
title_short |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
title_full |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
title_fullStr |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
title_full_unstemmed |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
title_sort |
Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae) |
dc.creator.fl_str_mv |
Bustamante Romero, Andrés Felipe |
dc.contributor.advisor.spa.fl_str_mv |
Ávila Murillo, Mónica Constanza Sandoval Hernández, Adrián Gabriel |
dc.contributor.author.spa.fl_str_mv |
Bustamante Romero, Andrés Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab) |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica Zanthoxylum Zanthoxylum Enfermedad de Alzheimer/tratamiento farmacológico Fármacos Neuroprotectores Alzheimer Disease/drug therapy Neuroprotective Agents Enfermedad de Alzheimer Zanthoxylum caribaeum Aislamiento químico biodirigido LXR Multifuncional Alzheimer's disease Bio-guided chemical isolation Multifunctional |
dc.subject.agrovoc.spa.fl_str_mv |
Zanthoxylum |
dc.subject.agrovoc.eng.fl_str_mv |
Zanthoxylum |
dc.subject.decs.spa.fl_str_mv |
Enfermedad de Alzheimer/tratamiento farmacológico Fármacos Neuroprotectores |
dc.subject.decs.eng.fl_str_mv |
Alzheimer Disease/drug therapy Neuroprotective Agents |
dc.subject.proposal.spa.fl_str_mv |
Enfermedad de Alzheimer Zanthoxylum caribaeum Aislamiento químico biodirigido LXR Multifuncional |
dc.subject.proposal.eng.fl_str_mv |
Alzheimer's disease Bio-guided chemical isolation Multifunctional |
description |
ilustraciones, fotografías, gráficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-19T22:41:59Z |
dc.date.available.none.fl_str_mv |
2022-07-19T22:41:59Z |
dc.date.issued.none.fl_str_mv |
2022-06-08 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81720 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81720 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
Addae‐Mensah, I., Munenge, R., & Guantai, A. N. (1989). Comparative examination of two Zanthoxylum benzophenanthridine alkaloids for effects in rabbits. Phytotherapy Research, 3(5), 165–169. https://doi.org/10.1002/ptr.2650030502 Ahmed, & Gilani, A. (2009). Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacology Biochemistry and Behavior, 91(4), 554–559. https://doi.org/10.1016/j.pbb.2008.09.010 Ahmed, M., Davis, J., Aucoin, D., Sato, T., & Ahuja, S. (2010). Structural conversion of neurotoxic amyloid-β(1–42) oligomers to fibrils. Nat Struct Mol Biol, 17(5), 561–567. https://doi.org/10.1038/nsmb.1799.Structural Aldini, R., Tremblay, E., Vannasing, P., Roy, M. S., Lefebvre, F., Kombate, D., Lassonde, M., Lepore, F., McKerral, M., & Gallagher, A. (2014). Delayed early primary visual pathway development in premature infants: High density electrophysiological evidence. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0108112 Allinson, T. M. J., Parkin, E. T., Turner, A. J., & Hooper, N. M. (2003). ADAMs Family Members As Amyloid Precursor Protein ␣ -Secretases. 352(May), 342–352. Almeida, Z. L., & Brito, R. M. M. (2020). Structure and aggregation mechanisms in amyloids. Molecules, 25(5). https://doi.org/10.3390/molecules25051195 Alvarez Caballero, J. M. (2017). Estudio Químico Comparativo de Metabolitos Fijos y Aceite Esencial De Persea caerulea (Ruiz & Pav) Mez y Evaluación de su Actividad Biológica. http://www.bdigital.unal.edu.co/57118/ Alzheimers Disease International. (2018). World Alzheimer’s report 2018. Alzheimer’s Disease Internations: World Alzheimer Report 2018, 1–48. https://doi.org/10.1111/j.0033-0124.1950.24_14.x Amaro-Luis, J. M., Fronczek, F. R., Massanet, G. M., Pando, E., Rodríguez-Luis, F., Watkins, S. F., & Zubía, E. (1988). Meridinol, a lignan from Zanthoxylum fagara. Phytochemistry, 27(12), 3933–3935. https://doi.org/10.1016/0031-9422(88)83048-6 Ansari, N., & Khodagholi, F. (2013). Natural Products as Promising Drug Candidates for the Treatment of Alzheimer ’ s Disease : Molecular Mechanism Aspect. 414–429. Ardura-Fabregat, A., Boddeke, E. W. G. M., Boza-Serrano, A., Brioschi, S., Castro-Gomez, S., Ceyzériat, K., Dansokho, C., Dierkes, T., Gelders, G., Heneka, M. T., Hoeijmakers, L., Hoffmann, A., Iaccarino, L., Jahnert, S., Kuhbandner, K., Landreth, G., Lonnemann, N., Löschmann, P. A., McManus, R. M., … Yang, Y. (2017). Targeting Neuroinflammation to Treat Alzheimer’s Disease. CNS Drugs, 31(12), 1057–1082. https://doi.org/10.1007/s40263-017-0483-3 Asiimwe, N., Yeo, S. G., Kim, M. S., Jung, J., & Jeong, N. Y. (2016). Nitric oxide: Exploring the contextual link with Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/7205747 Bachiller, M. I. F., ConcepciónPérez, Monjas, L., Rademann, J., & Franco, M. I. R. (2012). New Tacrine − 4-Oxo-4 H -chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer ’ s Disease, with Cholinergic, Antioxidant, and β -Amyloid-Reducing Properties †. Bafi-Yeboa, N. F. A., Arnason, J. T., Baker, J., & Smith, M. L. (2005). Antifungal constituents of Northern prickly ash, Zanthoxylum americanum Mill. Phytomedicine, 12(5), 370–377. https://doi.org/10.1016/j.phymed.2003.12.005 Batista, J. M., Lopes, A. A., Ambrósio, D. L., Regasini, L. O., Kato, M. J., Bolzani, V. D. S., Cicarelli, R. M. B., & Furlan, M. (2008). Natural chromenes and chromene derivatives as potential anti-trypanosomal agents. Biological and Pharmaceutical Bulletin, 31(3), 538–540. https://doi.org/10.1248/bpb.31.538 Beyer, K. (2002). CARACTERIZACIÓN GENÉTICA DE LA ENFERMEDAD DE ALZHEIMER : ESTUDIO POBLACIONAL. Bingi, C., Narender Reddy, E., Chennapuram, M., Poornachandra, Y., Kumar, C. G., Jagadeesh Babu, N., & Atmakur, K. (2015). One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorganic and Medicinal Chemistry Letters, 25(9), 1915–1919. https://doi.org/10.1016/j.bmcl.2015.03.034 Blanco-Ayala, T., Andérica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48(6), 623–640. https://doi.org/10.3109/10715762.2014.899694 Boehme, A. K., Noletto, J. A., Haber, W. A., & Setzer, W. N. (2008). Bioactivity and chemical composition of the leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum from Monteverde, Costa Rica. Natural Product Research, 22(1), 31–36. https://doi.org/10.1080/14786410601130224 Bourin, M., & Dailly, E. (2003). Nicotinic receptors and Alzheimer ’ s disease. 19(3), 169–177. https://doi.org/10.1185/030079903125001631 Braidy, N., Jayasena, T., Poljak, A., & Sachdev, P. S. (2012). Sirtuins in cognitive ageing and Alzheimer’s disease. Current Opinion in Psychiatry, 25(3), 226–230. https://doi.org/10.1097/YCO.0b013e32835112c1 Bustos, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer. Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23(5), 655–664. Cai, Z., Wang, C., & Yang, W. (2016). Role of berberine in Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 12, 2509–2520. https://doi.org/10.2147/NDT.S114846 Calsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer ’ s disease : Current evidence and future directions. Alzheimer’s & Dementia, 12(6), 719–732. https://doi.org/10.1016/j.jalz.2016.02.010 Cardoso, R., Ong, T. P., Jacob-filho, W., Jaluul, O., & A, M. I. (2010). Nutritional status of selenium in Alzheimer’s disease patients. 103, 803–806. https://doi.org/10.1017/S0007114509992832 Carvajal, F. J., & Inestrosa, N. C. (2011). Interactions of AChE with A β aggregates in Alzheimer ’ s brain : therapeutic relevance of IDN 5706. 4(September), 1–10. https://doi.org/10.3389/fnmol.2011.00019 Castellani, R. J., Perry, G., & Tabaton, M. (2019). Tau biology, tauopathy, traumatic brain injury, and diagnostic challenges. Journal of Alzheimer’s Disease, 67(2), 447–467. https://doi.org/10.3233/JAD-180721 Castellanos-Castillo, F. A. (2014). Estudio de la inhibición de la acetilcolinesterasa y la relación estructura - actividad de terpenoides aislados de organismos marinos del caribe colombiano. http://www.bdigital.unal.edu.co/39404/ Castello, P. R., Drechsel, D. A., & Patel, M. (2007). Mitochondria Are a Major Source of Paraquat-induced Reactive Oxygen Species Production in the Brain. Bone, 23(1), 1–7. https://doi.org/10.1074/jbc.M700827200.Mitochondria Chávez, L. I. H. (2011). Estudio de la corteza de Cupania denfafa D.C. para la obtención de metabolitos bioactivos contra Giardia lamblia. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014 Chen, & Glabe, C. (2006). Distinct early folding and aggregation properties of Alzheimer amyloid-β peptides Aβ40 and Aβ42: Stable trimer or tetramer formation by Aβ42. Journal of Biological Chemistry, 281(34), 24414–24422. https://doi.org/10.1074/jbc.M602363200 Chen, L., Yoo, S. E., Na, R., Liu, Y., & Ran, Q. (2012). Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiology of Aging, 33(2), 432.e15-432.e26. https://doi.org/10.1016/j.neurobiolaging.2011.01.008 Chen, W., & Wang, Y. (2015). β -Amyloid : the key peptide in the pathogenesis of Alzheimer ’ s disease. 6(September), 1–9. https://doi.org/10.3389/fphar.2015.00221 Chian Ng, R., Kassim, N. K., Yeap, Y. S. Y., Lian Ee, G. C., Yazan, S. L., & Musa, K. H. (2018). Isolation of carbazole alkaloids and coumarins from Aegle marmelos and Murraya koenigii and their antioxidant properties. Sains Malaysiana, 47(8), 1749–1756. https://doi.org/10.17576/jsm-2018-4708-14 Christen, Y. (2018). Oxidative stress and Alzheimer disease. Am J Clin Nutr, 71(February). Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., & Knowles, T. P. J. (2013). Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9758–9763. https://doi.org/10.1073/pnas.1218402110 Conti, C., Proietti Monaco, L., & Desideri, N. (2017). 3-Phenylalkyl-2H-chromenes and -chromans as novel rhinovirus infection inhibitors. Bioorganic and Medicinal Chemistry, 25(7), 2074–2083. https://doi.org/10.1016/j.bmc.2017.02.012 Crews, P. (1999). Organic structure analysis. In Choice Reviews Online (Vol. 36, Issue 11). https://doi.org/10.5860/choice.36-6288 Crunkhorn, S. (2012). RXR agonist reverses Alzheimer ’ s disease. 11(April). https://doi.org/10.1126/science.1217697 Cuca S, L., & Taborda M, M. (2007). METABOLITOS AISLADOS DE Zanthoxylum rhoifolium. Rev. Colomb. Quím. (Bogotá), 36(1), 5–11. Cummings, J. L. (2002). Alzheimer Disease. 287(18), 2335–2338. Das, S., & Basu, S. (2018). Strategies for Multi-Target Directed Ligands : Application in Alzheimer ’ s Disease ( AD ) Therapeutics. https://doi.org/10.1007/7653 Dasuri, K., Zhang, L., & Keller, J. N. (2013). Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radical Biology and Medicine, 62, 170–185. https://doi.org/10.1016/j.freeradbiomed.2012.09.016 De-Almada, B. V. P., De-Almeida, L. D., Camporez, D., De-Moraes, M. V. D., Morelato, R. L., Perrone, A. M. S., Belcavello, L., Louro, I. D., & De-Paula, F. (2012). Protective effect of the APOE - e3 allele in Alzheimer ’ s disease. Brazilian Journal of Medical and Biological Research, 45, 8–12. https://doi.org/10.1590/S0100-879X2011007500151 De Bruijn, R. F. A. G., & Ikram, M. A. (2014). Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine, 12(1), 1–9. https://doi.org/10.1186/s12916-014-0130-5 Donald, J. M. M., O’Malley, T. T., Liu, W., Mably, A. J., Brinkmalm, G., Portelius, E., Wittbold, W. M., Frosch, M. P., & Walsh, D. M. (2016). The aqueous phase of Alzheimer’s disease brain contains assemblies built from ~4 and ~7 kDa Aβ species Jessica. Physiology & Behavior, 176(1), 139–148. https://doi.org/10.1016/j.jalz.2015.01.005.The Donmez, G. (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends in Pharmacological Sciences, 33(9), 494–501. https://doi.org/10.1016/j.tips.2012.05.007 Drechsel, D. A., & Patel, M. (2008). Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radical Biology and Medicine, 44(11), 1873–1886. https://doi.org/10.1016/j.freeradbiomed.2008.02.008 Du, X., Wang, X., & Geng, M. (2018). Alzheimer ’ s disease hypothesis and related therapies. 1–7. https://doi.org/10.1186/s40035-018-0107-y Dumont, M., & Beal, M. F. (2011). Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology and Medicine, 51(5), 1014–1026. https://doi.org/10.1016/j.freeradbiomed.2010.11.026 Edwards, A. M. (2014). Chromones. Chemical Immunology and Allergy, 100, 317–322. https://doi.org/10.1159/000359986 Ekert, J. O., Gould, R. L., Reynolds, G., & Howard, R. J. (2018). TNF alpha inhibitors in Alzheimer ’ s disease : A systematic review. September 2017, 688–694. https://doi.org/10.1002/gps.4871 Espino, E. M. (2018). Evaluación fitoquímica y perfil cromatográfico de las hojas de la Shapilloja (Zanthoxylum fagara). https://doi.org/10.1103/PhysRevA.76.032109 Fatima, M., Graq, D. A. S., Fernandes, A. S., Silva, D. A., & Gottlieb, O. R. (1988). Chemosystematics of the Rutaceae : suggestions for a more natural taxonomy and evolutionary interpretation of the family. 161(1978), 97–134. FDA. (2002). Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Final rule. Federal Register, 73(159), 47828–47829. Fernández-viadero, C., Rodríguez, E., & Combarros, O. (2013). Genética y enfermedad de Alzheimer : población en riesgo. Revista Española de Geriatría y Gerontología, 48(1), 39–44. Garro, A., Wilson, C., Benjamin, R., M, R. S., & Fernando, A. (2015). Actividad antioxidante y citotóxica de extractos de Pilea dauciodora Wedd ( Urticaceae ) Antioxidant and cytotoxic activity of extracts of Pilea. Revista Cubana de Plantas Medicinales, 20(1), 88–97. Garzon-Rodriguez, W., Vega, A., Sepulveda-Becerra, M., Milton, S., Johnson, D. A., Yatsimirsky, A. K., & Glabe, C. G. (2000). A conformation change in the carboxyl terminus of Alzheimer’s Aβ(1-40) accompanies the transition from dimer to fibril as revealed by fluorescence quenching analysis. Journal of Biological Chemistry, 275(30), 22645–22649. https://doi.org/10.1074/jbc.M000756200 Geldenhuys, W. J., & Schyf, C. J. Van Der. (2013). Designing drugs with multi-target activity : the next step in the treatment of neurodegenerative disorders. 115–129. Giacobini, E., & Gold, G. (2013). Alzheimer disease therapy - Moving from amyloid-β to tau. Nature Reviews Neurology, 9(12), 677–686. https://doi.org/10.1038/nrneurol.2013.223 Goodman & Gilman. (2006). Las bases farmacológicas de la terapéutica (M. G. Hill (ed.)). Goozee, K. G., Shah, T. M., Sohrabi, H. R., Brown, B., Verdile, G., & Martins, R. N. (2016). Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer ’ s disease. 1, 449–465. https://doi.org/10.1017/S0007114515004687 Goure, W. F., Krafft, G. A., Jerecic, J., & Hefti, F. (2014). Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimer’s Research and Therapy, 6(4), 1–15. https://doi.org/10.1186/alzrt272 Gray, I., & Waterman, P. G. (1978). Review coumarins in the rutaceae*. 17(1976), 845–864. Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102 Guleria, S., Tiku, A. K., Koul, A., Gupta, S., Singh, G., & Razdan, V. K. (2013). Antioxidant and antimicrobial properties of the essential oil and extracts of zanthoxylum alatum grown in North-Western Himalaya. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/790580 Guo, R., Li, J., Gu, Y., Li, Y., Li, S., Gao, X., Zhu, Z., & Tu, P. (2019). GYF-21, an epoxide 2‐(2‐phenethyl)‐chromone derivative, suppresses dysfunction of B cells mainly via inhibiting BAFF activated signaling pathways. International Immunopharmacology, 67(11), 473–482. https://doi.org/10.1016/j.intimp.2018.12.048 Hamouda, A. K., Kimm, T., & Cohen, J. B. (2013). Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. Journal of Neuroscience, 33(2), 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013 Hampel, H., Caraci, F., Cuello, A. C., Caruso, G., Nisticò, R., Corbo, M., Baldacci, F., Toschi, N., Garaci, F., Chiesa, P. A., Verdooner, S. R., Akman-Anderson, L., Hernández, F., Ávila, J., Emanuele, E., Valenzuela, P. L., Lucía, A., Watling, M., Imbimbo, B. P., … Lista, S. (2020). A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer’s Disease. Frontiers in Immunology, 11(March). https://doi.org/10.3389/fimmu.2020.00456 Haque, M. M., Murale, D. P., Kim, Y. K., & Lee, J. S. (2019). Crosstalk between oxidative stress and tauopathy. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081959 Hardy, J., & Selkoe, D. J. (2002). The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics. 297(July). Hassanein, R. A., Hashem, H. A., & Khalil, R. R. (2012). Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant OMICS, 5(5), 476–485. Hee, D., Gim, J., Hyeon, S., & Kim, H. (2017). Integrated late onset Alzheimer ’ s disease ( LOAD ) susceptibility genes : Cholesterol metabolism and traf fi cking perspectives. Gene, 597, 10–16. https://doi.org/10.1016/j.gene.2016.10.022 Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5 Hepler, R. W., Grimm, K. M., Nahas, D. D., Breese, R., Dodson, E. C., Acton, P., Keller, P. M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., & Joyce, J. G. (2006). Solution state characterization of amyloid β-derived diffusible ligands. Biochemistry, 45(51), 15157–15167. https://doi.org/10.1021/bi061850f Hieda, Y., Anraku, M., Choshi, T., Tomida, H., Fujioka, H., Hatae, N., Hori, O., Hirose, J., & Hibino, S. (2014). Antioxidant effects of the highly-substituted carbazole alkaloids and their related carbazoles. Bioorganic and Medicinal Chemistry Letters, 24(15), 3530–3533. https://doi.org/10.1016/j.bmcl.2014.05.050 Hozoji, M., Munehira, Y., Ikeda, Y., Makishima, M., Matsuo, M., Kioka, N., & Ueda, K. (2008). Direct Interaction of Nuclear Liver X Receptor-B with ABCA1 Modulates Cholesterol Efflux. 283(44), 30057–30063. https://doi.org/10.1074/jbc.M804599200 Hughes, R. E., Nikolic, K., Ramsay, R. R., & Ramsay, R. R. (2016). One for All ? Hitting Multiple Alzheimer ’ s Disease Targets with One Drug. 10(April), 1–10. https://doi.org/10.3389/fnins.2016.00177 Ikeda, K., Yamaguchi, T., Fukunaga, S., Hoshino, M., & Matsuzaki, K. (2011). Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry, 50(29), 6433–6440. https://doi.org/10.1021/bi200771m Ilyina, I. V., Patrusheva, O. S., Zarubaev, V. V., Misiurina, M. A., Slita, A. V., Esaulkova, I. L., Korchagina, D. V., Gatilov, Y. V., Borisevich, S. S., Volcho, K. P., & Salakhutdinov, N. F. (2021). Influenza antiviral activity of F- and OH-containing isopulegol-derived octahydro-2H-chromenes. Bioorganic and Medicinal Chemistry Letters, 31(November), 127677. https://doi.org/10.1016/j.bmcl.2020.127677 Imbimbo, B. P., Lombard, J., & Pomara, N. (2005). Pathophysiology of Alzheimer ’ s Disease Pathophysiology of Alzheimer ’ s Disease. December. https://doi.org/10.1016/j.nic.2005.09.009 Invitrogen. (2006). Transfecting Plasmid DNA into PC12 Cells Using. Invitrogen Corporation, November, 9–10. Iqbal, K., Del C. Alonso, A., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., & Grundke-Iqbal, I. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1739(2), 198–210. https://doi.org/10.1016/j.bbadis.2004.09.008 Jalili-Baleh, L., Nadri, H., Forootanfar, H., Küçükkılınç, T. T., Ayazgök, B., Sharifzadeh, M., Rahimifard, M., Baeeri, M., Abdollahi, M., Foroumadi, A., & Khoobi, M. (2021). Chromone–lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. DARU, Journal of Pharmaceutical Sciences, 29(1), 23–38. https://doi.org/10.1007/s40199-020-00378-1 Ji, H. F., & Shen, L. (2011). Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules, 16(8), 6732–6740. https://doi.org/10.3390/molecules16086732 Johnson, G. V. W., & Stoothoff, W. H. (2004). Tau phosphorylation in neuronal cell function and dysfunction. Journal of Cell Science, 117, 5271–5279. https://doi.org/10.1242/jcs.01558 Kametani, F., & Hasegawa, M. (2018). Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer ’ s Disease. 12(January). https://doi.org/10.3389/fnins.2018.00025 Kang, & Rivest. (2012). Lipid Metabolism and Neuroinflammation in Alzheimer ’ s Disease : A Role for Liver X Receptors. 33(October), 715–746. https://doi.org/10.1210/er.2011-1049 Kang, S., Ha, S., Park, H., Nam, E., Suh, W. H., Suh, Y. H., & Chang, K. A. (2018). Effects of a dehydroevodiamine-derivative on synaptic destabilization and memory impairment in the 5xFAD, Alzheimer’s disease mouse model. Frontiers in Behavioral Neuroscience, 12(November 2018), 2–12. https://doi.org/10.3389/fnbeh.2018.00273 Karch, C. M., & Goate, A. M. (2015). Review Alzheimer ’ s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biological Psychiatry, 77(1), 43–51. https://doi.org/10.1016/j.biopsych.2014.05.006 Katan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T., & Paoletti, R. (2003). Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clinic Proceedings, 78(8), 965–978. https://doi.org/10.4065/78.8.965 Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., & Glabel, C. G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300(5618), 486–489. https://doi.org/10.1126/science.1079469 Keil, U., Bonert, A., Marques, C. A., Scherping, I., Weyermann, J., Strosznajder, J. B., Müller-Spahn, F., Haass, C., Czech, C., Pradier, L., Müller, W. E., & Eckert, A. (2004). Amyloid β-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. Journal of Biological Chemistry, 279(48), 50310–50320. https://doi.org/10.1074/jbc.M405600200 Kepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer ’ s Disease Khatana, K., & Gupta, A. (2020). An Update on Natural Occurrence and Biological Activity of Benzofurans. Acta Scientific Medical Sciences, 4(10), 114–123. https://doi.org/10.31080/asms.2020.04.0748 Kim, H. J., Fan, X., Gabbi, C., Yakimchuk, K., Parini, P., Warner, M., & Gustafsson, J. Å. (2008). Liver X receptor β (LXRβ): A link between β-sitosterol and amyotrophic lateral sclerosis-Parkinson’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2094–2099. https://doi.org/10.1073/pnas.0711599105 Kim, Kim, Rhie, & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology, 27(3), 325–340. https://doi.org/10.5607/en.2015.24.4.325 Kim, Li, H., Ruberu, K., Chan, S., Elliott, D. A., Low, J. K., Cheng, D., Karl, T., & Garner, B. (2013). Deletion of Abca7 Increases Cerebral Amyloid- ␣ Accumulation in the J20 Mouse Model of Alzheimer ’ s Disease. 33(10), 4387–4394. https://doi.org/10.1523/JNEUROSCI.4165-12.2013 Kocahan, S., & Do, Z. (2017). Mechanisms of Alzheimer ’ s Disease Pathogenesis and Prevention : The Brain , Neural Pathology , N-methyl-D-aspartate Receptors , Tau Protein and Other Risk Factors. 15(1), 1–8. Komati, R., Spadoni, D., Zheng, S., Sridhar, J., Riley, K. E., & Wang, G. (2017). Ligands of therapeutic utility for the liver X Receptors. Molecules, 22(1), 1–24. https://doi.org/10.3390/molecules22010088 Konrath, E. L., Passos, C. D. S., Klein-Júnior, L. C., & Henriques, A. T. (2013). Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. Journal of Pharmacy and Pharmacology, 65(12), 1701–1725. https://doi.org/10.1111/jphp.12090 Kovalevich, J., & Abstract, D. L. (2013). Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Neuronal Cell Culture: Methods and Protocols, 1078, 35–44. https://doi.org/10.1007/978-1-62703-640-5 Krane, B. D., Fagbule, M. O., & Shamm, M. (1985). Benzophenanthridine Alkaloids. Alkaloids: Chemistry and Pharmacology, 26(C), 185–240. https://doi.org/10.1016/S0099-9598(08)60195-9 Kumar, A., Srivastava, S., Tripathi, S., Singh, S. K., Srikrishna, S., & Sharma, A. (2015). Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4- one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34(6), 1252–1263. https://doi.org/10.1080/07391102.2015.1074943 Kumar, Sandhir, R., & Ojha, S. (2014). Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7(1), 1–9. https://doi.org/10.1186/1756-0500-7-560 Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., FREED, R., LIOSATOS, M., MORGAN, T. E., ROZOVSKY, I., TROMMER, B., K.L.VIOLA, WALS, P., ZHANG, C., FINCH, C. E., G.A.KRAFFT, & KLEIN, W. L. (1998). Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.pdf. Frontiers in Aging Neuroscience, 7(1), 6448–6453. http://dx.doi.org/10.1038/s41467-020-18024 Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., FREED, R., LIOSATOS, M., MORGAN, T. E., ROZOVSKY, I., TROMMER, B., K.L.VIOLA, WALS, P., ZHANG, C., FINCH, C. E., G.A.KRAFFT, & KLEIN, W. L. (1998). Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.pdf. Frontiers in Aging Neuroscience, 7(1), 6448–6453. http://dx.doi.org/10.1038/s41467-020-18024- Lara, D. S. J. G. de, Silva, P. F. G. da, Gorlin, T. A., Angeli, A. L. F., & Alves, D. S. (2020). Biological activities and phytochemical screening of leaf extracts from zanthoxylum caribaeum l. (rutaceae). Bioscience Journal, 36(1), 223–234. https://doi.org/10.14393/BJ-v36n1a2020-48051 Laske, C., Stransky, E., Hoffmann, N., Maetzler, W., Straten, G., Eschweiler, G. W., & Leyhe, T. (2010). Macrophage Colony-Stimulating Factor (M-CSF) in Plasma and CSF of Patients with Mild Cognitive Impairment and Alzheimers Disease. Current Alzheimer Research, 7(5), 409–414. https://doi.org/10.2174/156720510791383813 Lee, J., Weon, J. B., & Ma, C. J. (2014). Neuroprotective activity of phytosterols isolated from Artemisia apiacea. Korean Journal of Pharmacognosy, 45(3), 214–219. Lee, Pan, C. C., Peng, C. C., Kou, Y. R., Chen, C. Y., Ching, L. C., Tsai, T. H., Chen, S. F., Lyu, P. C., & Shyue, S. K. (2010). Anti-atherogenic effect of berberine on LXRα-ABCA1-dependent cholesterol efflux in macrophages. Journal of Cellular Biochemistry, 111(1), 104–110. https://doi.org/10.1002/jcb.22667 Lees, A. M., Mok, H. Y. I., Lees, R. S., McCluskey, M. A., & Grundy, S. M. (1977). Plant sterols as cholesterol-lowering agents: Clinical trials in patients with hypercholesterolemia and studies of sterol balance. Atherosclerosis, 28(3), 325–338. https://doi.org/10.1016/0021-9150(77)90180-0 Leon, C., & Reyes, P. (2017). Estandarización De La Técnica Blanqueamiento Del Betacaroteno Para La Evaluación De La Actividad Antioxidante De Extractos Lipofílicos: Plantas Medicinales, Frutos Y Microalgas. Lesné, S., Ming, T. K., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., & Ashe, K. H. (2006). A specific amyloid-β protein assembly in the brain impairs memory. Nature, 440(7082), 352–357. https://doi.org/10.1038/nature04533 Li, C., & Wang, M.-H. (2014). Potential Biological Activities of Magnoflorine: A Compound from Aristolochia debilis Sieb. et Zucc. Korean Journal of Plant Resources, 27(3), 223–228. https://doi.org/10.7732/kjpr.2014.27.3.223 Li, J. W., Ning, N., Ma, Y. Z., Zhang, R., Tan, F., & Chen, N. H. (2013). Claulansine F suppresses apoptosis induced by sodium nitroprusside in PC12 cells. Free Radical Research, 47(6–7), 488–497. https://doi.org/10.3109/10715762.2013.770150 Liao, J. F., Chiou, W. F., Shen, Y. C., Wang, G. J., & Chen, C. F. (2011). Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chinese Medicine, 6(1), 6. https://doi.org/10.1186/1749-8546-6-6 Lichtenthaler, S. F., & Haass, C. (2004). Amyloid at the cutting edge : activation of α -secretase prevents amyloidogenesis in an Alzheimer disease mouse model. 10, 11–14. https://doi.org/10.1172/JCI200420208.3. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292 Linse, S. (2019). Mechanism of amyloid protein aggregation and the role of inhibitors. Pure and Applied Chemistry, 91(2), 211–229. https://doi.org/10.1515/pac-2018-1017 Liu, C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease : risk , mechanisms and therapy. Nature Reviews Neurology, 1–13. https://doi.org/10.1038/nrneurol.2012.263 Liu, P., Reed, M. N., Kotilinek, L. A., Grant, M. K. O., Colleen, L., Qiang, W., Shapiro, S. L., Reichl, J. H., Chiang, A. C. A., Jankowsky, J. L., Wilmot, C. M., Cleary, J. P., Zahs, K. R., & Ashe, K. H. (2016). Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration Peng. 11(11), 1760–1771. https://doi.org/10.1016/j.celrep.2015.05.021.Quaternary Liu, & Peterson, D. (1997). Mechanism of cellular 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) reduction. Journal of …, 69(2), 581–593. http://www.ncbi.nlm.nih.gov/pubmed/9231715%5Cnhttp://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1997.69020581.x/full Liu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., & Wei, J. (2015). The Ambiguous Relationship of Oxidative Stress , Tau Hyperphosphorylation , and Autophagy Dysfunction in Alzheimer ’ s Disease. 2015. Lladó, A., Rey, M. J., Mercadal, P., Almenar, C., Fortea, J., & Molinuevo, J. L. (2010). Nueva mutación en el gen PSEN1 (E120G) asociada a enfermedad de Alzheimer de inicio precoz. Neurología, 25(1), 13–16. https://doi.org/10.1016/S0213-4853(10)70017-7 Lue, L. F., Rydel, R., Brigham, E. F., Yang, L. B., Hampel, H., Murphy, G. M., Brachova, L., Yan, S. Du, Walker, D. G., Shen, Y., & Rogers, J. (2001). Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia, 35(1), 72–79. https://doi.org/10.1002/glia.1072 Ma, Y. Z., Ning, N., He, W. Bin, Ll, J. W., Hu, J. F., Chu, S. F., & Chen, N. H. (2013). Claulansine F promotes neuritogenesis in PC12 cells via the ERK signaling pathway. Acta Pharmacologica Sinica, 34(12), 1499–1507. https://doi.org/10.1038/aps.2013.95 Macías, N. P. (2016). Ligandos multidiana, una estrategia alternativa para el tratamiento de la enfermedad de alzheimer. Macias Villamizar, V., Cuca Suárez, L., & Jiménez, K. (2007). Usos en medicina folclórica, actividad biológica y fitoquímica de metabolitos secundarios de algunas especies del género Zanthoxylum. Duazary, 4(2), 140–159. https://doi.org/10.21676/2389783X.655 Mandelkow, E., & Mandelkow, E. (2012). Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration. 1–26. Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxidative Medicine and Cellular Longevity, 2016, 1–15. https://doi.org/10.1155/2016/8590578 Marston, A., Kissling, J., & Hostettmann, K. (2002). A Rapid TLC Bioautographic Method for the Detection of Acetylcholinesterase and Butyrylcholinesterase Inhibitors in Plants. PHYTOCHEMICAL ANALYSIS, 54(July 2001), 51–54. Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M., Yardin, C., & Terro, F. (2013). Tau protein kinases : Involvement in Alzheimer ’ s disease. Ageing Research Reviews, 12(1), 289–309. https://doi.org/10.1016/j.arr.2012.06.003 Mata, R., Macías, M. L., Rojas, I. S., Lotina-Hennsen, B., Toscano, R. A., & Anaya, A. L. (1998). Phytotoxic compounds from Esenbeckia yaxhoob. Phytochemistry, 49(2), 441–449. https://doi.org/10.1016/S0031-9422(98)00110-1 Menendez-Gonzalez, M., Capetillo-Zarate, E., Alvarez, G., Costa, A., Padilla-Zambrano, H. S., & Tomas-Zapico, C. (2018). Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10(April), 1–8. https://doi.org/10.3389/fnagi.2018.00100 MinSalud, M. de S. (2017). Boletín de salud mental Demencia. Misrani, A., Tabassum, S., & Yang, L. (2021). Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 13(February), 1–20. https://doi.org/10.3389/fnagi.2021.617588 Mojica, J. (2021). Estudio fitoquímico del extracto etanólico de raíz de Zanthoxylum caribaeum (Rutaceae) y obtención de metabolitos secundarios con posible actividad neuroprotectora aplicable en el tratamiento de la enfermedad de Alzheimer. Moreira, P. I., Carvalho, C., Zhu, X., Smith, M. A., & Perry, G. (2010). Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1802(1), 2–10. https://doi.org/10.1016/j.bbadis.2009.10.006 Moriyasu, M., Ichimaru, M., Nishiyama, Y., Kato, A., Wang, J., Zhang, H., & Lu, G. B. (1997). (R)-(+)-isotembetarine, a quaternary alkaloid from Zanthoxylum nitidium. Journal of Natural Products, 60(3), 299–301. https://doi.org/10.1021/np960420v Mouzat, K., Lobaccaro, J.-M., Baron, S., Dufour, J., Morel, L., & Viennois, E. (2011). Selective liver X receptor modulators (SLiMs): What use in human health? Molecular and Cellular Endocrinology, 351(2), 129–141. https://doi.org/10.1016/j.mce.2011.08.036 Negi, J. S., Bisht, V. K., Bhandari, A. K., Singh, P., & Sundriyal, R. C. (2011). Chemical constituents and biological activities of the genus Zanthoxylum: A review. African Journal of Pure and Applied Chemistry, 5(12), 412–416. http://www.academicjournals.org/AJPAC O’Brien, R. J., & Wong, P. C. (2011). Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu Rev Neurosci., 1987, 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.Amyloid O’Nuallain, B., Freir, D. B., Nicoll, A. J., Risse, E., Ferguson, N., Herron, C. E., Collinge, J., & Walsh, D. M. (2010). Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils. Journal of Neuroscience, 30(43), 14411–14419. https://doi.org/10.1523/JNEUROSCI.3537-10.2010 Ortega Domínguez, B., Herrera-ramírez, M., Tecalco-cruz, A. C., Prgxodu, S., Suhvlyq, O. D. H., Vxv, G. H., Eodqfr, J., Od, H., Ghvgh, V., Fohr, H. O. Q., & Gh, D. F. (2015). RECEPTORES NUCLEARES : DEL NÚCLEO AL CITOPLASMA Bibiana Ortega-Domínguez, Marlene Herrera-Ramírez y Angeles C. Tecalco-Cruz*. 18(2), 131–143. https://doi.org/10.1016/j.recqb.2015.09.005 Pagano, K., Tomaselli, S., Molinari, H., & Ragona, L. (2020). Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 14(December), 1–18. https://doi.org/10.3389/fnins.2020.619667 Patel, N. S., Paris, D., Mathura, V., Quadros, A. N., Crawford, F. C., & Mullan, M. J. (2005). Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. Journal of Neuroinflammation, 2, 1–10. https://doi.org/10.1186/1742-2094-2-9 Patil, S. A., Patil, R., Pfeffer, L. M., & Miller, D. D. (2013). Chromenes: Potential new chemotherapeutic agents for cancer. Future Medicinal Chemistry, 5(14), 1647–1660. https://doi.org/10.4155/fmc.13.126 Patiño Ladino, O. J., & Cuca Suárez, L. E. (2010). Isoquinoline alkaloids of Zanthoxylum quinduense (Rutaceae). Biochemical Systematics and Ecology, 38(4), 853–856. https://doi.org/10.1016/j.bse.2010.07.016 Patiño, O. J. (2010). AISLAMIENTO Y CARACTERIZACIÓN DE ALCALOIDES PRESENTES EN DOS ESPECIES DEL GÉNERO ZANTHOXYLUM (RUTACEAE), SÍNTESIS DE ANÁLOGOS BENZOFENANTRIDÍNICOS Y EVALUACIÓN DE ACTIVIDAD ANTIFUNGICA Y ANTIBACTERIAL. Patiño, O. J., & Cuca, L. E. (2004). ALCALOIDES BENZOFENANTRIDINICOS DE Zanthoxylum quinduensis BENZOPHENANTHRIDINE ALKALOIDS FROM Zanthoxylum quinduensis. 1, 13–20. Patiño, O. J., Rodríguez, J. A. P., Moreno, J. M. L., Sarmiento, L. L., & Suárez, L. E. C. (2011). Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género zanthoxylum (Rutaceae). Revista Cubana de Farmacia, 45(3), 431–438. Patten, D. A., Germain, M., Kelly, M. A., & Slack, R. S. (2010). Reactive oxygen species: Stuck in the middle of neurodegeneration. Journal of Alzheimer’s Disease, 20(SUPPL.2). https://doi.org/10.3233/JAD-2010-100498 Paulini, H., Eilert, U., & Schimmer, O. (1987). Mutagenic compounds in an extract from Rutae Herba (Ruta graveolens L.). I. Mutagenicity is partially caused by furoquinoline alkaloids. Mutagenesis, 2(4), 271–273. https://doi.org/10.1093/mutage/2.4.271 Perez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507. https://doi.org/10.1111/bph.14585 Piazzi, L., Cavalli, A., Colizzi, F., Belluti, F., Bartolini, M., Mancini, F., Recanatini, M., Andrisano, V., & Rampa, A. (2008). Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorganic and Medicinal Chemistry Letters, 18(1), 423–426. https://doi.org/10.1016/j.bmcl.2007.09.100 Picone, P., Nuzzo, D., Caruana, L., Scafidi, V., & Di Carlo, M. D. (2014). Mitochondrial dysfunction: Different routes to Alzheimer’s disease therapy. Oxidative Medicine and Cellular Longevity, 2014. https://doi.org/10.1155/2014/780179 Plazas, E., Ávila, M., Delgado, W., Patiño, O., & Cuca, L. E. (2018). In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Journal of Medicinal Plants, 12(1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18 Plazas, E., Casoti R, R., Murillo, M. A., Da Costa, F. B., & Cuca, L. E. (2019). Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. Phytochemistry, 168(April). https://doi.org/10.1016/j.phytochem.2019.112128 Plazas, E., Hagenow, S., Murillo, M. A., Stark, H., & Suarez, L. C. (2020). Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorganic Chemistry, 98(January), 103722. https://doi.org/10.1016/j.bioorg.2020.103722 Pontes, O., Costa, M., Santos, F., Sampaio-Marques, B., Dias, T., Ludovico, P., Baltazar, F., & Proença, F. (2018). Exploitation of new chalcones and 4H-chromenes as agents for cancer treatment. European Journal of Medicinal Chemistry, 157, 101–114. https://doi.org/10.1016/j.ejmech.2018.07.058 Porat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chemical Biology and Drug Design, 67(1), 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x Prashant, T., Dwivedi, S., Singh, M. P., Mishra, R., & Chandy, A. (2013). Basic and modern concepts on cholinergic receptor : A review. 3(5), 413–420. https://doi.org/10.1016/S2222-1808(13)60094-8 Pratiwi, R., Nantasenamat, C., Ruankham, W., Suwanjang, W., Prachayasittikul, V., Prachayasittikul, S., & Phopin, K. (2021). Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Frontiers in Nutrition, 8(May), 1–12. https://doi.org/10.3389/fnut.2021.648995 Queiroz, E. F., Hay, A. E., Chaaib, F., Van Diemen, D., Diallo, D., & Hostettmann, K. (2006). New and bioactive aromatic compounds from Zanthoxylum zanthoxyloides. Planta Medica, 72(8), 746–750. https://doi.org/10.1055/s-2006-941504 Raj, V., & Lee, J. (2020). 2H/4H-Chromenes—A Versatile Biologically Attractive Scaffold. Frontiers in Chemistry, 8(August), 1–23. https://doi.org/10.3389/fchem.2020.00623 Rappold, P. M., Cui, M., Chesser, A. S., Tibbett, J., Grima, J. C., Duan, L., Sen, N., Javitch, J. A., & Tieua, K. (2011). Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20766–20771. https://doi.org/10.1073/pnas.1115141108 Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Publishing Group, 7(3), 137–152. https://doi.org/10.1038/nrneurol.2011.2 Rienzo, A., Proft, M., Pascual, A., & Giner, A. (2009). Estudio de la regulación dinámica de la expresión génica en respuesta a estrés osmótico en levadura. TESIS DOCTORAL. Robinson-rechavi, M. (2003). The nuclear receptor superfamily. 585–586. https://doi.org/10.1242/jcs.00247 Rodríguez, J. A. P. (2012). Estudio fitoquímico de Compsoneura capitellata (Myristicaceae), Zanthoxylum (Lauraceae) y evaluación de su posible rigidum (Rutaceae) y Ocotea longifolia aplicación como biocontroladores de Sitophilus sp. Romero, S. J., Vargas González, J. C., Pardo Turriago, R., Eslava- Schmalbach, J. H., & Moreno Angarita, M. (2021). El Sistema de Salud Colombiano y el reconocimiento de la enfermedad de Alzheimer. Revista de Salud Pública, 23(2), 1–9. https://doi.org/10.15446/rsap.v23n2.88369 Ross, S. A., Krishnaven, K., Radwan, M. M., Takamatsu, S., & Burandt, C. L. (2008). Constituents of Zanthoxylum flavum and their antioxidant and antimalarial activities. Natural Product Communications, 3(5), 791–794. https://doi.org/10.1177/1934578x0800300521 Ruan, H., Zhan, Y. Y., Hou, J., Xu, B., Chen, B., Tian, Y., Wu, D., Zhao, Y., Zhang, Y., Chen, X., Mi, P., Zhang, L., Zhang, S., Wang, X., Cao, H., Zhang, W., Wang, H., Li, H., Su, Y., … Hu, T. (2017). Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene, 36(50), 6906–6918. https://doi.org/10.1038/onc.2017.296 Ruiz, J. C. G. (2021). Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer. Sabbagh, J. J., & Dickey, C. A. (2016). The Metamorphic Nature of the Tau Protein : Dynamic Flexibility Comes at a Cost. 10(January), 1–5. https://doi.org/10.3389/fnins.2016.00003 Sakono, M., & Zako, T. (2010). Amyloid oligomers : formation and toxicity of A b oligomers. 277, 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x Sanabria-Castro, A., & Monge-Bonilla, I. A.-E. C. (2017). Molecular Pathogenesis of Alzheimer ’ s Disease : An Update. 10103, 46–54. https://doi.org/10.1159/000464422 Sánchez-Gloria, J. L., Osorio-Alonso, H., Arellano-Buendía, A. S., Carbó, R., Hernández-Díazcouder, A., Guzmán-Martín, C. A., Rubio-Gayosso, I., & Sánchez-Muñoz, F. (2020). Nutraceuticals in the treatment of pulmonary arterial hypertension. International Journal of Molecular Sciences, 21(14), 1–35. https://doi.org/10.3390/ijms21144827 Sandoval, A. G., Buitrago, L., & Moreno, H. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 1–24. https://doi.org/10.1371/journal.pone.0145467 Sandoval Hernández, A. G., Hernández, H. G., Restrepo, A., Arboleda, H., & Arboled, G. H. (2015). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer ’ s Disease. Jones 2012. https://doi.org/10.1007/s12031-015-0665-8 Sayre, L. M., Smith, M. A., & Perry, G. (2001). Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. 721–738. Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2), 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Selkoe, D. J., Hardy, J., Selkoe, D., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer ’ s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. (2020). Health benefits of chromones: common ingredients of our daily diet. Phytochemistry Reviews, 19(4), 761–785. https://doi.org/10.1007/s11101-020-09681-w Sengupta, U., Nilson, A. N., & Kayed, R. (2016). The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine, 6, 42–49. https://doi.org/10.1016/j.ebiom.2016.03.035 Serrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer: Aproximaciones terapéuticas. Sever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors ER ER OFF ON. 1–4. Sharma, N., Tan, M. A., & An, S. S. A. (2021). Phytosterols: Potential metabolic modulators in neurodegenerative diseases. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212255 Shaw, Kenneth R., Zhang, M. (2015). Benzo[c]fenantridinas pseudobásicas con eficacia, estabilidad y seguridad mejoradas. Sheen, W. S., Tsai, I. L., Teng, C. M., Ko, F. N., & Chen, I. S. (1996). Indolopyridoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifoliolum. Planta Medica, 62(2), 175–176. https://doi.org/10.1055/s-2006-957846 Sheng, M., Sabatini, B. L., & Su, T. C. (2015). Synapses and Alzheimer ’ s Disease. Shestopalov, A. M., Litvinov, Y. M., Rodinovskaya, L. A., Malyshev, O. R., Semenova, M. N., & Semenov, V. V. (2012). Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity. ACS Combinatorial Science, 14(8), 484–490. https://doi.org/10.1021/co300062e Shi, C., Wu, F., Zhu, X., & Xu, J. (2013). Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling. Biochimica et Biophysica Acta - General Subjects, 1830(3), 2538–2544. https://doi.org/10.1016/j.bbagen.2012.12.012 Shipley, M. M., Mangold, C. A., & Szpara, M. L. (2016). Differentiation of the SH-SY5Y human neuroblastoma cell line. Journal of Visualized Experiments, 2016(108), 1–11. https://doi.org/10.3791/53193 Smale, S. T. (2010). Luciferase assay. Cold Spring Harbor Protocols, 5(5), 2010–2013. https://doi.org/10.1101/pdb.prot5421 Sodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 1–7. https://doi.org/10.1016/j.phrs.2013.03.008 Solomon, A., Kivipelto, M., Wolozin, B., Zhou, J., & Whitmer, R. A. (2009). Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dementia and Geriatric Cognitive Disorders, 28(1), 75–80. https://doi.org/10.1159/000231980 Sonboli, A., Mojarrad, M., Ebrahimi, S. N., & Enayat, S. (2010). Free radical scavenging activity and total phenolic content of methanolic extracts from male inflorescence of Salix aegyptiaca grown in Iran. Iranian Journal of Pharmaceutical Research, 9(3), 293–296. https://doi.org/10.22037/ijpr.2010.869 Songsiang, U., Thongthoom, T., Zeekpudsa, P., Kukongviriyapan, V., Boonyarat, C., Wangboonskul, J., & Yenjai, C. (2012). Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. ScienceAsia, 38(1), 75–81. https://doi.org/10.2306/scienceasia1513-1874.2012.38.075 Sonkusare, S. K., Kaul, C. L., & Ramarao, P. (2005). Dementia of Alzheimer ’ s disease and other neurodegenerative disorders — memantine , a new hope. 51, 1–17. https://doi.org/10.1016/j.phrs.2004.05.005 Steffensen, K. R., Jakobsson, T., & Treuter, E. (2012). Liver X receptor biology and pharmacology : new pathways , challenges and opportunities. 33(7). https://doi.org/10.1016/j.tips.2012.03.013 Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 114(8), 785–796. https://doi.org/10.1016/j.acthis.2012.01.006 Stoothoff, W. H., & Johnson, G. V. W. (2005). Tau phosphorylation : physiological and pathological consequences. Biochimica et Biophysica Acta, 1739, 280–297. https://doi.org/10.1016/j.bbadis.2004.06.017 Suárez, L. E. C., Barrera, C. A. C., Barrera, E. D. C., & Moreno, J. M. L. (2011). Actividad antibacteriana de terpenoides y alcaloides aislados de tres plantas colombianas. Revista Cubana de Farmacia, 45(2), 275–282. Subbareddy, C. V., Subashini, R., & Sumathi, S. (2017). Synthesis of substituted 2H-chromenes by a three-component reaction as potential antioxidants. Molecular Diversity, 21(4), 841–848. https://doi.org/10.1007/s11030-017-9758-3 Sugino, H., Watanabe, A., Yamamoto, M., Kostic, D., Ohgi, Y., Amada, N., & Sanchez, R. (2015). Global Trends in Alzheimer Disease Clinical Development: Increasing the Probability of Success. Clinical Therapeutics, 37(8), 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006 Supino, R. (1995). MTT assays. Methods in Molecular Biology (Clifton, N.J.), 43, 137–149. https://doi.org/10.1385/0-89603-282-5:137 Swerdlow, R. H. (2007). Pathogenesis of Alzheimer ’ s disease. 2(3), 347–359. Tachibana, Y., Kikuzaki, H., Lajis, N. H., & Nakatani, N. (2003). Comparison of Antioxidative Properties of Carbazole Alkaloids from Murraya koenigii Leaves. Journal of Agricultural and Food Chemistry, 51(22), 6461–6467. https://doi.org/10.1021/jf034700+ Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M. A., Danni, O., Smith, M. A., Perry, G., & Tabaton, M. (2002). Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiology of Disease, 10(3), 279–288. https://doi.org/10.1006/nbdi.2002.0515 Tao, L. xue, Ji, S. sha, Szalóki, D., Kovács, T., Mándi, A., Antus, S., Ding, X., Kurtán, T., & Zhang, H. yan. (2021). An optically active isochroman-2H-chromene conjugate potently suppresses neuronal oxidative injuries associated with the PI3K/Akt and MAPK signaling pathways. Acta Pharmacologica Sinica, 42(1), 36–44. https://doi.org/10.1038/s41401-020-0391-9 Tarkowski, E., Andreasen, N., Tarkowski, A., & Blennow, K. (2003). Intrathecal inflammation precedes development of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 74(9), 1200–1205. https://doi.org/10.1136/jnnp.74.9.1200 Tchinda, A. T., Fuendjiep, V., Sajjad, A., Matchawe, C., Wafo, P., Khan, S., Tane, P., & Choudhary, M. I. (2009). Bioactive compounds from the fruits of Zanthoxylum Leprieurii. Pharmacologyonline, 1(January), 406–415. Thomas, P., & Smart, T. G. (2005). HEK293 cell line: A vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods, 51(3 SPEC. ISS.), 187–200. https://doi.org/10.1016/j.vascn.2004.08.014 Tian, K. ming, Li, J. jie, & Xu, S. wen. (2019). Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacological Research, 141(November 2018), 541–550. https://doi.org/10.1016/j.phrs.2018.12.019 Tsukamoto, K. (2015). Development of Novel Pharmaceutical Agents for Alzheimer’s Disease: The Impact of Regulatory Initiatives in Japan and the United States. Clinical Therapeutics, 37(8), 1652–1660. https://doi.org/10.1016/j.clinthera.2015.02.024 Valencia Rincón, E. (2017). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales , obtenidos de plantas de las familias de Lauráceas y Miristicáceas , sobre los receptores X del hígado ( LXRs ) Generación de un modelo in vitro para evaluar la ac. Veal, E., & Day, A. (2011). Hydrogen peroxide as a signaling molecule. Antioxidants and Redox Signaling, 15(1), 147–151. https://doi.org/10.1089/ars.2011.3968 Vega, G. P. G. (2021). EVALUACIÓN DEL POTENCIAL FITOTERAPÉUTICO DE DOS EXTRATOS DE Zanthoxylum EN EL MODELO MURINO TRIPLE TRANSGÉNICO DE LA ENFERMEDAD DE ALZHEIMER (3xTg-AD). Viola, K. L., & Klein, W. L. (2015). Amyloid β oligomers in Alzheimer ’ s disease pathogenesis , treatment , and diagnosis. https://doi.org/10.1007/s00401-015-1386-3 Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers - A decade of discovery. Journal of Neurochemistry, 101(5), 1172–1184. https://doi.org/10.1111/j.1471-4159.2006.04426.x Wang, & Michaelis, E. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2(MAR), 1–13. https://doi.org/10.3389/fnagi.2010.00012 Wang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Molecular Neurodegeneration, 15(1), 1–22. https://doi.org/10.1186/s13024-020-00376-6 Warren, M. (2008). Memory Loss, Dementia, and Stroke: Implications for Rehabilitation of Older Adults with Age-Related Macular Degeneration. Journal of Visual Impairment & Blindness, October, 611–615. Waterman, P. G. (1993). PHYTOCHEMICAL DIVERSITY IN THE ORDER RUTALES. In Phytochemical Potential of Tropical Plants (Issue Table 1). Whitehouse, P. J., & Au, K. I. N. S. (1986). CHOLINERGIC RECEPTORS IN AGING AND ALZHEIMER ’ S DISEASE and Kin Sin Au In AD , treatments. 10, 665–676. Williams, P., & Howes, M. R. (2011). Natural products as a source of Alzheimer ’ s drug leads. 28, 48–77. https://doi.org/10.1039/c0np00027b Wolfender, J. L., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A, 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.10.091 Woo, H. G., Lee, C. H., Noh, M., Lee, J. J., Jung, Y., & Baik, E. J. (2001). Rutaecarpine, a Quinazolinocarboline Alkaloid, Inhibits prostaglandin production in RAW264.7. Planta Med, 67, 505–509. Wright, C. W., ANDERSON, M. M., ALLEN, D., PHILLIPSON, J. D., KIRBY, G. C., WARHURST, D. C., & CHANG, H. R. (1993). Quassinoids Exhibit Greater Selectivity Against Plasmodium Falciparum Than Against Entamoeba Histolytica, Giardia Intestinalis Or Toxoplasma Gondii In Vitro. Journal of Eukaryotic Microbiology, 40(3), 244–246. https://doi.org/10.1111/j.1550-7408.1993.tb04910.x Xiao, G. Q., Liang, B. X., Chen, S. H., Ou, T. M., Bu, X. Z., & Yan, M. (2012). 3-nitro-2H-chromenes as a new class of inhibitors against thioredoxin reductase and proliferation of cancer cells. Archiv Der Pharmazie, 345(10), 767–770. https://doi.org/10.1002/ardp.201200121 Xing, S. H., Zhu, C. X., Zhang, R., & An, L. (2014). Huperzine A in the treatment of alzheimer’s disease and vascular dementia: A meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/363985 Xu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2). https://doi.org/10.1111/j.1750-3841.2006.00260.x Yang, W., Wong, Y., Ng, O. T. W., Bai, L. P., Kwong, D. W. J., Ke, Y., Jiang, Z. H., Li, H. W., Yung, K. K. L., & Wong, M. S. (2012). Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angewandte Chemie - International Edition, 51(8), 1804–1810. https://doi.org/10.1002/anie.201104150 Yao, E. C., & Xue, L. (2014). Therapeutic Effects of Curcumin on Alzheimer ’ s Disease. December, 145–159. Ye, J. Y., Li, L., Hao, Q. M., Qin, Y., & Ma, C. S. (2020). β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice. Korean Journal of Physiology and Pharmacology, 24(1), 39–46. https://doi.org/10.4196/kjpp.2020.24.1.39 Youdim, K. A., Shukitt-Hale, B., & Joseph, J. A. (2004). Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine, 37(11), 1683–1693. https://doi.org/10.1016/j.freeradbiomed.2004.08.002 Zelcer, N. (2012). LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor Noam. 100(2009), 100–104. https://doi.org/10.1126/science.1168974 Zhang, Chen, H., & Wang, Z. (2011). Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. 2010. https://doi.org/10.1007/s13197-011-0447-4 Zhang, H. Y. (2012). New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 33(9), 1170–1175. https://doi.org/10.1038/aps.2012.128 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxiii, 138 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Neurociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81720/5/DOC%20TESIS%20AFBR%20VF%202022.pdf https://repositorio.unal.edu.co/bitstream/unal/81720/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81720/6/DOC%20TESIS%20AFBR%20VF%202022.pdf.jpg |
bitstream.checksum.fl_str_mv |
585ff3cc5327ef869f4f08c2cf0db746 8153f7789df02f0a4c9e079953658ab2 b4c3aa207b9184e4bf5d735126322130 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090123222974464 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ávila Murillo, Mónica Constanzad26839373d12f4b4932a0ceebaaf03b1600Sandoval Hernández, Adrián Gabriel2bd70ff6a3a7af73c5e7d7ef2dceb9f0600Bustamante Romero, Andrés Felipee9d69122e894e8de7287a64df77df3c9Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)2022-07-19T22:41:59Z2022-07-19T22:41:59Z2022-06-08https://repositorio.unal.edu.co/handle/unal/81720Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasLa Enfermedad de Alzheimer (EA) es la demencia más común, un desorden neurodegenerativo de carácter multifactorial caracterizado por la presencia de placas amiloides, ovillos neurofibrilares, reducción de la actividad colinesterasa, estrés oxidativo, entre otros mecanismos. A pesar de la inversión en investigación durante las últimas décadas, se considera que la investigación debe tomar nuevos enfoques, buscar nuevas dianas biológicas y desarrollar nuevos fármacos, es por ello que en este trabajo se realiza la búsqueda y caracterización de compuestos con actividad multi-diana a partir de productos naturales, teniendo en cuenta que estudios previos de los grupos de investigación demostraron la actividad biológica y el potencial neuroprotector de especies de la familia Rutaceae y particularmente las pertenecientes al género Zanthoxylum de la flora colombiana, las cuales poseen efectos antioxidantes, agonista de LXR e inhibidores de colinesterasas. El objetivo de este trabajo fue realizar una búsqueda de agentes neuroprotectores a partir de la especie Z. caribaeum. Inicialmente se obtuvo un extracto mediante maceración etanólica en frio de la raíz, posteriormente se determinaron el tipo de metabolitos presentes usando técnicas de coloración, se fraccionó el extracto usando cromatografía liquida al vacío (CLV), los compuestos se purificaron usando técnicas cromatográficas, se identificó la estructura química de los compuestos mediante técnicas espectroscópicas y espectrométricas, se evaluó la capacidad antioxidante mediante el método DPPH, y protección del foto-blanqueo del β-caroteno, se evaluó la actividad inhibitoria de acetil y butiril colinestearasas mediante el método Ellman, se realizaron ensayos de viabilidad celular y neuro-protección por MTT, se evaluó la actividad agonista de LXR mediante el ensayo del gen reportero y se determinó la capacidad antiagregante de Aβ de los compuestos mediante un modelo in vitro de cinética de agregación del péptido amiloide. Dentro de los resultados, se logró determinar en el extracto la presencia de metabolitos de tipo alcaloidal, fenólicos, aminas, entre otros. Tanto el extracto como algunas fracciones obtenidas, presentaron actividad agonista de LXR, actividad captadora de radicales libres, protección frente a la peroxidación lipídica y actividad inhibitoria de la butiril colinesterasa; de estas fracciones y mediante el aislamiento químico dirigido, se obtuvo el compuesto 10H-furano [3,2-a] carbazol, el compuesto 5,7 -dimetoxi-4H-cromen-4-ona, y una mezcla de esteroles que contiene estigmasterol y β-sitosterol. El compuesto 10H-furano [3,2-a] carbazol presentó actividad agonista de LXR, se observó efecto neuroprotector y actividad antiagregante de Aβ; el compuesto 5,7 -dimetoxi-4H-cromen-4-ona se reporta por primera vez en esta especie, presenta efecto neuroprotector y actividad antiagregante de Aβ; por su parte, la mezcla de esteroles estigmasterol y β-sitosterol presentó actividad agonista de LXR, efecto neuroprotector y actividad antiagregante de Aβ. Nuestros resultados nos permiten concluir que tanto las fracciones y compuestos aislados de Z. caribaeum presentan un potencial multifuncional para la terapéutica de la EA. (Texto tomado de la fuente).Alzheimer's Disease (AD) is the most common dementia, a multifactorial neurodegenerative disorder characterized by the accumulation of amyloid plaques, neurofibrillary tangles, reduced cholinesterase activity, oxidative stress, among other mechanisms. Despite the investment in research during the last decades, it is considered that research must take new approaches, search for new biological targets and develop new drugs. Here we carry out the search and characterization of compounds with multi-functional activity from Ethanolic extract of Z.caribaeum roots. Previous studies of our research groups demonstrated the biological activity and neuroprotective potential of species of the Rutaceae family and particularly those belonging to the Zanthoxylum genus, which have antioxidant effects, LXR agonist activity and cholinesterase inhibitors. The aim of this work was the search for neuroprotective agents from Zanthoxylum caribaeum. Ethanolic extract of Z.caribaeum roots, was obtained by maceration. The kind of metabolites presents in the extract were determined using coloration assays, the fractionation was carried out using vacuum liquid chromatography (VLC). The compounds were purified by chromatographic techniques, the chemical structures were identified by spectroscopic and spectrometric techniques. The multifunctional potential of ethanolic extract roots, and fractions was determined by antioxidant capacity (DPPH method, and protection from photo-bleaching of β-carotene), inhibitory activity of cholinesterases (acetyl and butyryl cholinesterases), and LXR agonist effect (the gene-reporter assay). In the extract was detected the presence of alkaloidal, phenolic, amines metabolites. The extract and some fractions have LXR agonist activity, free radical scavenging activity, protection against lipid peroxidation, and butyryl cholinesterase inhibitory activity. The compound 10H-furan[3,2-a]carbazole, 5,7-dimethoxy-4H-chromen-4-one, and a mixture of sterols containing stigmasterol and β-sitosterol were isolated and this multifuntional potential was determined by the LXR agonistic activity, Neuroprotective and the Aβ antiaggregating capacity in model in vitro of amyloid peptide aggregation kinetics The compound 10H-furan [3,2-a] carbazole showed LXR agonist activity, neuroprotective effect and antiaggregant activity of Aβ; the compound 5,7-dimethoxy-4H-chromen-4-one is reported for the first time in this species and has a neuroprotective effect and antiaggregant activity of Aβ. Stigmasterol and β-sitosterol presented LXR agonist activity, neuroprotective effect and Aβ antiaggregant activity. Our results allow us to conclude that both the fractions and compounds isolated from Z. caribaeum have multifunctional potential for therapeutics in AD.MaestríaMagíster en NeurocienciasNeurofarmacologíaxxiii, 138 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en NeurocienciasFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaZanthoxylumZanthoxylumEnfermedad de Alzheimer/tratamiento farmacológicoFármacos NeuroprotectoresAlzheimer Disease/drug therapyNeuroprotective AgentsEnfermedad de AlzheimerZanthoxylum caribaeumAislamiento químico biodirigidoLXRMultifuncionalAlzheimer's diseaseBio-guided chemical isolationMultifunctionalBúsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae)Search for active principles with neuroprotective potential for the treatment of alzheimer's disease from a species of the gender Zanthoxylum caribaeum (Rutaceae)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAddae‐Mensah, I., Munenge, R., & Guantai, A. N. (1989). Comparative examination of two Zanthoxylum benzophenanthridine alkaloids for effects in rabbits. Phytotherapy Research, 3(5), 165–169. https://doi.org/10.1002/ptr.2650030502Ahmed, & Gilani, A. (2009). Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacology Biochemistry and Behavior, 91(4), 554–559. https://doi.org/10.1016/j.pbb.2008.09.010Ahmed, M., Davis, J., Aucoin, D., Sato, T., & Ahuja, S. (2010). Structural conversion of neurotoxic amyloid-β(1–42) oligomers to fibrils. Nat Struct Mol Biol, 17(5), 561–567. https://doi.org/10.1038/nsmb.1799.StructuralAldini, R., Tremblay, E., Vannasing, P., Roy, M. S., Lefebvre, F., Kombate, D., Lassonde, M., Lepore, F., McKerral, M., & Gallagher, A. (2014). Delayed early primary visual pathway development in premature infants: High density electrophysiological evidence. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0108112Allinson, T. M. J., Parkin, E. T., Turner, A. J., & Hooper, N. M. (2003). ADAMs Family Members As Amyloid Precursor Protein ␣ -Secretases. 352(May), 342–352.Almeida, Z. L., & Brito, R. M. M. (2020). Structure and aggregation mechanisms in amyloids. Molecules, 25(5). https://doi.org/10.3390/molecules25051195Alvarez Caballero, J. M. (2017). Estudio Químico Comparativo de Metabolitos Fijos y Aceite Esencial De Persea caerulea (Ruiz & Pav) Mez y Evaluación de su Actividad Biológica. http://www.bdigital.unal.edu.co/57118/Alzheimers Disease International. (2018). World Alzheimer’s report 2018. Alzheimer’s Disease Internations: World Alzheimer Report 2018, 1–48. https://doi.org/10.1111/j.0033-0124.1950.24_14.xAmaro-Luis, J. M., Fronczek, F. R., Massanet, G. M., Pando, E., Rodríguez-Luis, F., Watkins, S. F., & Zubía, E. (1988). Meridinol, a lignan from Zanthoxylum fagara. Phytochemistry, 27(12), 3933–3935. https://doi.org/10.1016/0031-9422(88)83048-6Ansari, N., & Khodagholi, F. (2013). Natural Products as Promising Drug Candidates for the Treatment of Alzheimer ’ s Disease : Molecular Mechanism Aspect. 414–429.Ardura-Fabregat, A., Boddeke, E. W. G. M., Boza-Serrano, A., Brioschi, S., Castro-Gomez, S., Ceyzériat, K., Dansokho, C., Dierkes, T., Gelders, G., Heneka, M. T., Hoeijmakers, L., Hoffmann, A., Iaccarino, L., Jahnert, S., Kuhbandner, K., Landreth, G., Lonnemann, N., Löschmann, P. A., McManus, R. M., … Yang, Y. (2017). Targeting Neuroinflammation to Treat Alzheimer’s Disease. CNS Drugs, 31(12), 1057–1082. https://doi.org/10.1007/s40263-017-0483-3Asiimwe, N., Yeo, S. G., Kim, M. S., Jung, J., & Jeong, N. Y. (2016). Nitric oxide: Exploring the contextual link with Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/7205747Bachiller, M. I. F., ConcepciónPérez, Monjas, L., Rademann, J., & Franco, M. I. R. (2012). New Tacrine − 4-Oxo-4 H -chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer ’ s Disease, with Cholinergic, Antioxidant, and β -Amyloid-Reducing Properties †.Bafi-Yeboa, N. F. A., Arnason, J. T., Baker, J., & Smith, M. L. (2005). Antifungal constituents of Northern prickly ash, Zanthoxylum americanum Mill. Phytomedicine, 12(5), 370–377. https://doi.org/10.1016/j.phymed.2003.12.005Batista, J. M., Lopes, A. A., Ambrósio, D. L., Regasini, L. O., Kato, M. J., Bolzani, V. D. S., Cicarelli, R. M. B., & Furlan, M. (2008). Natural chromenes and chromene derivatives as potential anti-trypanosomal agents. Biological and Pharmaceutical Bulletin, 31(3), 538–540. https://doi.org/10.1248/bpb.31.538Beyer, K. (2002). CARACTERIZACIÓN GENÉTICA DE LA ENFERMEDAD DE ALZHEIMER : ESTUDIO POBLACIONAL.Bingi, C., Narender Reddy, E., Chennapuram, M., Poornachandra, Y., Kumar, C. G., Jagadeesh Babu, N., & Atmakur, K. (2015). One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorganic and Medicinal Chemistry Letters, 25(9), 1915–1919. https://doi.org/10.1016/j.bmcl.2015.03.034Blanco-Ayala, T., Andérica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48(6), 623–640. https://doi.org/10.3109/10715762.2014.899694Boehme, A. K., Noletto, J. A., Haber, W. A., & Setzer, W. N. (2008). Bioactivity and chemical composition of the leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum from Monteverde, Costa Rica. Natural Product Research, 22(1), 31–36. https://doi.org/10.1080/14786410601130224Bourin, M., & Dailly, E. (2003). Nicotinic receptors and Alzheimer ’ s disease. 19(3), 169–177. https://doi.org/10.1185/030079903125001631Braidy, N., Jayasena, T., Poljak, A., & Sachdev, P. S. (2012). Sirtuins in cognitive ageing and Alzheimer’s disease. Current Opinion in Psychiatry, 25(3), 226–230. https://doi.org/10.1097/YCO.0b013e32835112c1Bustos, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer.Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23(5), 655–664.Cai, Z., Wang, C., & Yang, W. (2016). Role of berberine in Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 12, 2509–2520. https://doi.org/10.2147/NDT.S114846Calsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer ’ s disease : Current evidence and future directions. Alzheimer’s & Dementia, 12(6), 719–732. https://doi.org/10.1016/j.jalz.2016.02.010Cardoso, R., Ong, T. P., Jacob-filho, W., Jaluul, O., & A, M. I. (2010). Nutritional status of selenium in Alzheimer’s disease patients. 103, 803–806. https://doi.org/10.1017/S0007114509992832Carvajal, F. J., & Inestrosa, N. C. (2011). Interactions of AChE with A β aggregates in Alzheimer ’ s brain : therapeutic relevance of IDN 5706. 4(September), 1–10. https://doi.org/10.3389/fnmol.2011.00019Castellani, R. J., Perry, G., & Tabaton, M. (2019). Tau biology, tauopathy, traumatic brain injury, and diagnostic challenges. Journal of Alzheimer’s Disease, 67(2), 447–467. https://doi.org/10.3233/JAD-180721Castellanos-Castillo, F. A. (2014). Estudio de la inhibición de la acetilcolinesterasa y la relación estructura - actividad de terpenoides aislados de organismos marinos del caribe colombiano. http://www.bdigital.unal.edu.co/39404/Castello, P. R., Drechsel, D. A., & Patel, M. (2007). Mitochondria Are a Major Source of Paraquat-induced Reactive Oxygen Species Production in the Brain. Bone, 23(1), 1–7. https://doi.org/10.1074/jbc.M700827200.MitochondriaChávez, L. I. H. (2011). Estudio de la corteza de Cupania denfafa D.C. para la obtención de metabolitos bioactivos contra Giardia lamblia.Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014Chen, & Glabe, C. (2006). Distinct early folding and aggregation properties of Alzheimer amyloid-β peptides Aβ40 and Aβ42: Stable trimer or tetramer formation by Aβ42. Journal of Biological Chemistry, 281(34), 24414–24422. https://doi.org/10.1074/jbc.M602363200Chen, L., Yoo, S. E., Na, R., Liu, Y., & Ran, Q. (2012). Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiology of Aging, 33(2), 432.e15-432.e26. https://doi.org/10.1016/j.neurobiolaging.2011.01.008Chen, W., & Wang, Y. (2015). β -Amyloid : the key peptide in the pathogenesis of Alzheimer ’ s disease. 6(September), 1–9. https://doi.org/10.3389/fphar.2015.00221Chian Ng, R., Kassim, N. K., Yeap, Y. S. Y., Lian Ee, G. C., Yazan, S. L., & Musa, K. H. (2018). Isolation of carbazole alkaloids and coumarins from Aegle marmelos and Murraya koenigii and their antioxidant properties. Sains Malaysiana, 47(8), 1749–1756. https://doi.org/10.17576/jsm-2018-4708-14Christen, Y. (2018). Oxidative stress and Alzheimer disease. Am J Clin Nutr, 71(February).Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., & Knowles, T. P. J. (2013). Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9758–9763. https://doi.org/10.1073/pnas.1218402110Conti, C., Proietti Monaco, L., & Desideri, N. (2017). 3-Phenylalkyl-2H-chromenes and -chromans as novel rhinovirus infection inhibitors. Bioorganic and Medicinal Chemistry, 25(7), 2074–2083. https://doi.org/10.1016/j.bmc.2017.02.012Crews, P. (1999). Organic structure analysis. In Choice Reviews Online (Vol. 36, Issue 11). https://doi.org/10.5860/choice.36-6288Crunkhorn, S. (2012). RXR agonist reverses Alzheimer ’ s disease. 11(April). https://doi.org/10.1126/science.1217697Cuca S, L., & Taborda M, M. (2007). METABOLITOS AISLADOS DE Zanthoxylum rhoifolium. Rev. Colomb. Quím. (Bogotá), 36(1), 5–11.Cummings, J. L. (2002). Alzheimer Disease. 287(18), 2335–2338.Das, S., & Basu, S. (2018). Strategies for Multi-Target Directed Ligands : Application in Alzheimer ’ s Disease ( AD ) Therapeutics. https://doi.org/10.1007/7653Dasuri, K., Zhang, L., & Keller, J. N. (2013). Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radical Biology and Medicine, 62, 170–185. https://doi.org/10.1016/j.freeradbiomed.2012.09.016De-Almada, B. V. P., De-Almeida, L. D., Camporez, D., De-Moraes, M. V. D., Morelato, R. L., Perrone, A. M. S., Belcavello, L., Louro, I. D., & De-Paula, F. (2012). Protective effect of the APOE - e3 allele in Alzheimer ’ s disease. Brazilian Journal of Medical and Biological Research, 45, 8–12. https://doi.org/10.1590/S0100-879X2011007500151De Bruijn, R. F. A. G., & Ikram, M. A. (2014). Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine, 12(1), 1–9. https://doi.org/10.1186/s12916-014-0130-5Donald, J. M. M., O’Malley, T. T., Liu, W., Mably, A. J., Brinkmalm, G., Portelius, E., Wittbold, W. M., Frosch, M. P., & Walsh, D. M. (2016). The aqueous phase of Alzheimer’s disease brain contains assemblies built from ~4 and ~7 kDa Aβ species Jessica. Physiology & Behavior, 176(1), 139–148. https://doi.org/10.1016/j.jalz.2015.01.005.TheDonmez, G. (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends in Pharmacological Sciences, 33(9), 494–501. https://doi.org/10.1016/j.tips.2012.05.007Drechsel, D. A., & Patel, M. (2008). Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radical Biology and Medicine, 44(11), 1873–1886. https://doi.org/10.1016/j.freeradbiomed.2008.02.008Du, X., Wang, X., & Geng, M. (2018). Alzheimer ’ s disease hypothesis and related therapies. 1–7. https://doi.org/10.1186/s40035-018-0107-yDumont, M., & Beal, M. F. (2011). Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology and Medicine, 51(5), 1014–1026. https://doi.org/10.1016/j.freeradbiomed.2010.11.026Edwards, A. M. (2014). Chromones. Chemical Immunology and Allergy, 100, 317–322. https://doi.org/10.1159/000359986Ekert, J. O., Gould, R. L., Reynolds, G., & Howard, R. J. (2018). TNF alpha inhibitors in Alzheimer ’ s disease : A systematic review. September 2017, 688–694. https://doi.org/10.1002/gps.4871Espino, E. M. (2018). Evaluación fitoquímica y perfil cromatográfico de las hojas de la Shapilloja (Zanthoxylum fagara). https://doi.org/10.1103/PhysRevA.76.032109Fatima, M., Graq, D. A. S., Fernandes, A. S., Silva, D. A., & Gottlieb, O. R. (1988). Chemosystematics of the Rutaceae : suggestions for a more natural taxonomy and evolutionary interpretation of the family. 161(1978), 97–134.FDA. (2002). Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Final rule. Federal Register, 73(159), 47828–47829.Fernández-viadero, C., Rodríguez, E., & Combarros, O. (2013). Genética y enfermedad de Alzheimer : población en riesgo. Revista Española de Geriatría y Gerontología, 48(1), 39–44.Garro, A., Wilson, C., Benjamin, R., M, R. S., & Fernando, A. (2015). Actividad antioxidante y citotóxica de extractos de Pilea dauciodora Wedd ( Urticaceae ) Antioxidant and cytotoxic activity of extracts of Pilea. Revista Cubana de Plantas Medicinales, 20(1), 88–97.Garzon-Rodriguez, W., Vega, A., Sepulveda-Becerra, M., Milton, S., Johnson, D. A., Yatsimirsky, A. K., & Glabe, C. G. (2000). A conformation change in the carboxyl terminus of Alzheimer’s Aβ(1-40) accompanies the transition from dimer to fibril as revealed by fluorescence quenching analysis. Journal of Biological Chemistry, 275(30), 22645–22649. https://doi.org/10.1074/jbc.M000756200Geldenhuys, W. J., & Schyf, C. J. Van Der. (2013). Designing drugs with multi-target activity : the next step in the treatment of neurodegenerative disorders. 115–129.Giacobini, E., & Gold, G. (2013). Alzheimer disease therapy - Moving from amyloid-β to tau. Nature Reviews Neurology, 9(12), 677–686. https://doi.org/10.1038/nrneurol.2013.223Goodman & Gilman. (2006). Las bases farmacológicas de la terapéutica (M. G. Hill (ed.)).Goozee, K. G., Shah, T. M., Sohrabi, H. R., Brown, B., Verdile, G., & Martins, R. N. (2016). Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer ’ s disease. 1, 449–465. https://doi.org/10.1017/S0007114515004687Goure, W. F., Krafft, G. A., Jerecic, J., & Hefti, F. (2014). Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimer’s Research and Therapy, 6(4), 1–15. https://doi.org/10.1186/alzrt272Gray, I., & Waterman, P. G. (1978). Review coumarins in the rutaceae*. 17(1976), 845–864.Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102Guleria, S., Tiku, A. K., Koul, A., Gupta, S., Singh, G., & Razdan, V. K. (2013). Antioxidant and antimicrobial properties of the essential oil and extracts of zanthoxylum alatum grown in North-Western Himalaya. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/790580Guo, R., Li, J., Gu, Y., Li, Y., Li, S., Gao, X., Zhu, Z., & Tu, P. (2019). GYF-21, an epoxide 2‐(2‐phenethyl)‐chromone derivative, suppresses dysfunction of B cells mainly via inhibiting BAFF activated signaling pathways. International Immunopharmacology, 67(11), 473–482. https://doi.org/10.1016/j.intimp.2018.12.048Hamouda, A. K., Kimm, T., & Cohen, J. B. (2013). Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. Journal of Neuroscience, 33(2), 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013Hampel, H., Caraci, F., Cuello, A. C., Caruso, G., Nisticò, R., Corbo, M., Baldacci, F., Toschi, N., Garaci, F., Chiesa, P. A., Verdooner, S. R., Akman-Anderson, L., Hernández, F., Ávila, J., Emanuele, E., Valenzuela, P. L., Lucía, A., Watling, M., Imbimbo, B. P., … Lista, S. (2020). A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer’s Disease. Frontiers in Immunology, 11(March). https://doi.org/10.3389/fimmu.2020.00456Haque, M. M., Murale, D. P., Kim, Y. K., & Lee, J. S. (2019). Crosstalk between oxidative stress and tauopathy. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081959Hardy, J., & Selkoe, D. J. (2002). The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics. 297(July).Hassanein, R. A., Hashem, H. A., & Khalil, R. R. (2012). Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant OMICS, 5(5), 476–485.Hee, D., Gim, J., Hyeon, S., & Kim, H. (2017). Integrated late onset Alzheimer ’ s disease ( LOAD ) susceptibility genes : Cholesterol metabolism and traf fi cking perspectives. Gene, 597, 10–16. https://doi.org/10.1016/j.gene.2016.10.022Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5Hepler, R. W., Grimm, K. M., Nahas, D. D., Breese, R., Dodson, E. C., Acton, P., Keller, P. M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., & Joyce, J. G. (2006). Solution state characterization of amyloid β-derived diffusible ligands. Biochemistry, 45(51), 15157–15167. https://doi.org/10.1021/bi061850fHieda, Y., Anraku, M., Choshi, T., Tomida, H., Fujioka, H., Hatae, N., Hori, O., Hirose, J., & Hibino, S. (2014). Antioxidant effects of the highly-substituted carbazole alkaloids and their related carbazoles. Bioorganic and Medicinal Chemistry Letters, 24(15), 3530–3533. https://doi.org/10.1016/j.bmcl.2014.05.050Hozoji, M., Munehira, Y., Ikeda, Y., Makishima, M., Matsuo, M., Kioka, N., & Ueda, K. (2008). Direct Interaction of Nuclear Liver X Receptor-B with ABCA1 Modulates Cholesterol Efflux. 283(44), 30057–30063. https://doi.org/10.1074/jbc.M804599200Hughes, R. E., Nikolic, K., Ramsay, R. R., & Ramsay, R. R. (2016). One for All ? Hitting Multiple Alzheimer ’ s Disease Targets with One Drug. 10(April), 1–10. https://doi.org/10.3389/fnins.2016.00177Ikeda, K., Yamaguchi, T., Fukunaga, S., Hoshino, M., & Matsuzaki, K. (2011). Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry, 50(29), 6433–6440. https://doi.org/10.1021/bi200771mIlyina, I. V., Patrusheva, O. S., Zarubaev, V. V., Misiurina, M. A., Slita, A. V., Esaulkova, I. L., Korchagina, D. V., Gatilov, Y. V., Borisevich, S. S., Volcho, K. P., & Salakhutdinov, N. F. (2021). Influenza antiviral activity of F- and OH-containing isopulegol-derived octahydro-2H-chromenes. Bioorganic and Medicinal Chemistry Letters, 31(November), 127677. https://doi.org/10.1016/j.bmcl.2020.127677Imbimbo, B. P., Lombard, J., & Pomara, N. (2005). Pathophysiology of Alzheimer ’ s Disease Pathophysiology of Alzheimer ’ s Disease. December. https://doi.org/10.1016/j.nic.2005.09.009Invitrogen. (2006). Transfecting Plasmid DNA into PC12 Cells Using. Invitrogen Corporation, November, 9–10.Iqbal, K., Del C. Alonso, A., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., & Grundke-Iqbal, I. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1739(2), 198–210. https://doi.org/10.1016/j.bbadis.2004.09.008Jalili-Baleh, L., Nadri, H., Forootanfar, H., Küçükkılınç, T. T., Ayazgök, B., Sharifzadeh, M., Rahimifard, M., Baeeri, M., Abdollahi, M., Foroumadi, A., & Khoobi, M. (2021). Chromone–lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. DARU, Journal of Pharmaceutical Sciences, 29(1), 23–38. https://doi.org/10.1007/s40199-020-00378-1Ji, H. F., & Shen, L. (2011). Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules, 16(8), 6732–6740. https://doi.org/10.3390/molecules16086732Johnson, G. V. W., & Stoothoff, W. H. (2004). Tau phosphorylation in neuronal cell function and dysfunction. Journal of Cell Science, 117, 5271–5279. https://doi.org/10.1242/jcs.01558Kametani, F., & Hasegawa, M. (2018). Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer ’ s Disease. 12(January). https://doi.org/10.3389/fnins.2018.00025Kang, & Rivest. (2012). Lipid Metabolism and Neuroinflammation in Alzheimer ’ s Disease : A Role for Liver X Receptors. 33(October), 715–746. https://doi.org/10.1210/er.2011-1049Kang, S., Ha, S., Park, H., Nam, E., Suh, W. H., Suh, Y. H., & Chang, K. A. (2018). Effects of a dehydroevodiamine-derivative on synaptic destabilization and memory impairment in the 5xFAD, Alzheimer’s disease mouse model. Frontiers in Behavioral Neuroscience, 12(November 2018), 2–12. https://doi.org/10.3389/fnbeh.2018.00273Karch, C. M., & Goate, A. M. (2015). Review Alzheimer ’ s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biological Psychiatry, 77(1), 43–51. https://doi.org/10.1016/j.biopsych.2014.05.006Katan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T., & Paoletti, R. (2003). Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clinic Proceedings, 78(8), 965–978. https://doi.org/10.4065/78.8.965Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., & Glabel, C. G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300(5618), 486–489. https://doi.org/10.1126/science.1079469Keil, U., Bonert, A., Marques, C. A., Scherping, I., Weyermann, J., Strosznajder, J. B., Müller-Spahn, F., Haass, C., Czech, C., Pradier, L., Müller, W. E., & Eckert, A. (2004). Amyloid β-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. Journal of Biological Chemistry, 279(48), 50310–50320. https://doi.org/10.1074/jbc.M405600200Kepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer ’ s DiseaseKhatana, K., & Gupta, A. (2020). An Update on Natural Occurrence and Biological Activity of Benzofurans. Acta Scientific Medical Sciences, 4(10), 114–123. https://doi.org/10.31080/asms.2020.04.0748Kim, H. J., Fan, X., Gabbi, C., Yakimchuk, K., Parini, P., Warner, M., & Gustafsson, J. Å. (2008). Liver X receptor β (LXRβ): A link between β-sitosterol and amyotrophic lateral sclerosis-Parkinson’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2094–2099. https://doi.org/10.1073/pnas.0711599105Kim, Kim, Rhie, & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology, 27(3), 325–340. https://doi.org/10.5607/en.2015.24.4.325Kim, Li, H., Ruberu, K., Chan, S., Elliott, D. A., Low, J. K., Cheng, D., Karl, T., & Garner, B. (2013). Deletion of Abca7 Increases Cerebral Amyloid- ␣ Accumulation in the J20 Mouse Model of Alzheimer ’ s Disease. 33(10), 4387–4394. https://doi.org/10.1523/JNEUROSCI.4165-12.2013Kocahan, S., & Do, Z. (2017). Mechanisms of Alzheimer ’ s Disease Pathogenesis and Prevention : The Brain , Neural Pathology , N-methyl-D-aspartate Receptors , Tau Protein and Other Risk Factors. 15(1), 1–8.Komati, R., Spadoni, D., Zheng, S., Sridhar, J., Riley, K. E., & Wang, G. (2017). Ligands of therapeutic utility for the liver X Receptors. Molecules, 22(1), 1–24. https://doi.org/10.3390/molecules22010088Konrath, E. L., Passos, C. D. S., Klein-Júnior, L. C., & Henriques, A. T. (2013). Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. Journal of Pharmacy and Pharmacology, 65(12), 1701–1725. https://doi.org/10.1111/jphp.12090Kovalevich, J., & Abstract, D. L. (2013). Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Neuronal Cell Culture: Methods and Protocols, 1078, 35–44. https://doi.org/10.1007/978-1-62703-640-5Krane, B. D., Fagbule, M. O., & Shamm, M. (1985). Benzophenanthridine Alkaloids. Alkaloids: Chemistry and Pharmacology, 26(C), 185–240. https://doi.org/10.1016/S0099-9598(08)60195-9Kumar, A., Srivastava, S., Tripathi, S., Singh, S. K., Srikrishna, S., & Sharma, A. (2015). Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4- one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34(6), 1252–1263. https://doi.org/10.1080/07391102.2015.1074943Kumar, Sandhir, R., & Ojha, S. (2014). Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7(1), 1–9. https://doi.org/10.1186/1756-0500-7-560Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., FREED, R., LIOSATOS, M., MORGAN, T. E., ROZOVSKY, I., TROMMER, B., K.L.VIOLA, WALS, P., ZHANG, C., FINCH, C. E., G.A.KRAFFT, & KLEIN, W. L. (1998). Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.pdf. Frontiers in Aging Neuroscience, 7(1), 6448–6453. http://dx.doi.org/10.1038/s41467-020-18024Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., FREED, R., LIOSATOS, M., MORGAN, T. E., ROZOVSKY, I., TROMMER, B., K.L.VIOLA, WALS, P., ZHANG, C., FINCH, C. E., G.A.KRAFFT, & KLEIN, W. L. (1998). Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.pdf. Frontiers in Aging Neuroscience, 7(1), 6448–6453. http://dx.doi.org/10.1038/s41467-020-18024-Lara, D. S. J. G. de, Silva, P. F. G. da, Gorlin, T. A., Angeli, A. L. F., & Alves, D. S. (2020). Biological activities and phytochemical screening of leaf extracts from zanthoxylum caribaeum l. (rutaceae). Bioscience Journal, 36(1), 223–234. https://doi.org/10.14393/BJ-v36n1a2020-48051Laske, C., Stransky, E., Hoffmann, N., Maetzler, W., Straten, G., Eschweiler, G. W., & Leyhe, T. (2010). Macrophage Colony-Stimulating Factor (M-CSF) in Plasma and CSF of Patients with Mild Cognitive Impairment and Alzheimers Disease. Current Alzheimer Research, 7(5), 409–414. https://doi.org/10.2174/156720510791383813Lee, J., Weon, J. B., & Ma, C. J. (2014). Neuroprotective activity of phytosterols isolated from Artemisia apiacea. Korean Journal of Pharmacognosy, 45(3), 214–219.Lee, Pan, C. C., Peng, C. C., Kou, Y. R., Chen, C. Y., Ching, L. C., Tsai, T. H., Chen, S. F., Lyu, P. C., & Shyue, S. K. (2010). Anti-atherogenic effect of berberine on LXRα-ABCA1-dependent cholesterol efflux in macrophages. Journal of Cellular Biochemistry, 111(1), 104–110. https://doi.org/10.1002/jcb.22667Lees, A. M., Mok, H. Y. I., Lees, R. S., McCluskey, M. A., & Grundy, S. M. (1977). Plant sterols as cholesterol-lowering agents: Clinical trials in patients with hypercholesterolemia and studies of sterol balance. Atherosclerosis, 28(3), 325–338. https://doi.org/10.1016/0021-9150(77)90180-0Leon, C., & Reyes, P. (2017). Estandarización De La Técnica Blanqueamiento Del Betacaroteno Para La Evaluación De La Actividad Antioxidante De Extractos Lipofílicos: Plantas Medicinales, Frutos Y Microalgas.Lesné, S., Ming, T. K., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., & Ashe, K. H. (2006). A specific amyloid-β protein assembly in the brain impairs memory. Nature, 440(7082), 352–357. https://doi.org/10.1038/nature04533Li, C., & Wang, M.-H. (2014). Potential Biological Activities of Magnoflorine: A Compound from Aristolochia debilis Sieb. et Zucc. Korean Journal of Plant Resources, 27(3), 223–228. https://doi.org/10.7732/kjpr.2014.27.3.223Li, J. W., Ning, N., Ma, Y. Z., Zhang, R., Tan, F., & Chen, N. H. (2013). Claulansine F suppresses apoptosis induced by sodium nitroprusside in PC12 cells. Free Radical Research, 47(6–7), 488–497. https://doi.org/10.3109/10715762.2013.770150Liao, J. F., Chiou, W. F., Shen, Y. C., Wang, G. J., & Chen, C. F. (2011). Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chinese Medicine, 6(1), 6. https://doi.org/10.1186/1749-8546-6-6Lichtenthaler, S. F., & Haass, C. (2004). Amyloid at the cutting edge : activation of α -secretase prevents amyloidogenesis in an Alzheimer disease mouse model. 10, 11–14. https://doi.org/10.1172/JCI200420208.3.Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292Linse, S. (2019). Mechanism of amyloid protein aggregation and the role of inhibitors. Pure and Applied Chemistry, 91(2), 211–229. https://doi.org/10.1515/pac-2018-1017Liu, C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease : risk , mechanisms and therapy. Nature Reviews Neurology, 1–13. https://doi.org/10.1038/nrneurol.2012.263Liu, P., Reed, M. N., Kotilinek, L. A., Grant, M. K. O., Colleen, L., Qiang, W., Shapiro, S. L., Reichl, J. H., Chiang, A. C. A., Jankowsky, J. L., Wilmot, C. M., Cleary, J. P., Zahs, K. R., & Ashe, K. H. (2016). Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration Peng. 11(11), 1760–1771. https://doi.org/10.1016/j.celrep.2015.05.021.QuaternaryLiu, & Peterson, D. (1997). Mechanism of cellular 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) reduction. Journal of …, 69(2), 581–593. http://www.ncbi.nlm.nih.gov/pubmed/9231715%5Cnhttp://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1997.69020581.x/fullLiu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., & Wei, J. (2015). The Ambiguous Relationship of Oxidative Stress , Tau Hyperphosphorylation , and Autophagy Dysfunction in Alzheimer ’ s Disease. 2015.Lladó, A., Rey, M. J., Mercadal, P., Almenar, C., Fortea, J., & Molinuevo, J. L. (2010). Nueva mutación en el gen PSEN1 (E120G) asociada a enfermedad de Alzheimer de inicio precoz. Neurología, 25(1), 13–16. https://doi.org/10.1016/S0213-4853(10)70017-7Lue, L. F., Rydel, R., Brigham, E. F., Yang, L. B., Hampel, H., Murphy, G. M., Brachova, L., Yan, S. Du, Walker, D. G., Shen, Y., & Rogers, J. (2001). Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia, 35(1), 72–79. https://doi.org/10.1002/glia.1072Ma, Y. Z., Ning, N., He, W. Bin, Ll, J. W., Hu, J. F., Chu, S. F., & Chen, N. H. (2013). Claulansine F promotes neuritogenesis in PC12 cells via the ERK signaling pathway. Acta Pharmacologica Sinica, 34(12), 1499–1507. https://doi.org/10.1038/aps.2013.95Macías, N. P. (2016). Ligandos multidiana, una estrategia alternativa para el tratamiento de la enfermedad de alzheimer.Macias Villamizar, V., Cuca Suárez, L., & Jiménez, K. (2007). Usos en medicina folclórica, actividad biológica y fitoquímica de metabolitos secundarios de algunas especies del género Zanthoxylum. Duazary, 4(2), 140–159. https://doi.org/10.21676/2389783X.655Mandelkow, E., & Mandelkow, E. (2012). Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration. 1–26.Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxidative Medicine and Cellular Longevity, 2016, 1–15. https://doi.org/10.1155/2016/8590578Marston, A., Kissling, J., & Hostettmann, K. (2002). A Rapid TLC Bioautographic Method for the Detection of Acetylcholinesterase and Butyrylcholinesterase Inhibitors in Plants. PHYTOCHEMICAL ANALYSIS, 54(July 2001), 51–54.Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M., Yardin, C., & Terro, F. (2013). Tau protein kinases : Involvement in Alzheimer ’ s disease. Ageing Research Reviews, 12(1), 289–309. https://doi.org/10.1016/j.arr.2012.06.003Mata, R., Macías, M. L., Rojas, I. S., Lotina-Hennsen, B., Toscano, R. A., & Anaya, A. L. (1998). Phytotoxic compounds from Esenbeckia yaxhoob. Phytochemistry, 49(2), 441–449. https://doi.org/10.1016/S0031-9422(98)00110-1Menendez-Gonzalez, M., Capetillo-Zarate, E., Alvarez, G., Costa, A., Padilla-Zambrano, H. S., & Tomas-Zapico, C. (2018). Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10(April), 1–8. https://doi.org/10.3389/fnagi.2018.00100MinSalud, M. de S. (2017). Boletín de salud mental Demencia.Misrani, A., Tabassum, S., & Yang, L. (2021). Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 13(February), 1–20. https://doi.org/10.3389/fnagi.2021.617588Mojica, J. (2021). Estudio fitoquímico del extracto etanólico de raíz de Zanthoxylum caribaeum (Rutaceae) y obtención de metabolitos secundarios con posible actividad neuroprotectora aplicable en el tratamiento de la enfermedad de Alzheimer.Moreira, P. I., Carvalho, C., Zhu, X., Smith, M. A., & Perry, G. (2010). Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1802(1), 2–10. https://doi.org/10.1016/j.bbadis.2009.10.006Moriyasu, M., Ichimaru, M., Nishiyama, Y., Kato, A., Wang, J., Zhang, H., & Lu, G. B. (1997). (R)-(+)-isotembetarine, a quaternary alkaloid from Zanthoxylum nitidium. Journal of Natural Products, 60(3), 299–301. https://doi.org/10.1021/np960420vMouzat, K., Lobaccaro, J.-M., Baron, S., Dufour, J., Morel, L., & Viennois, E. (2011). Selective liver X receptor modulators (SLiMs): What use in human health? Molecular and Cellular Endocrinology, 351(2), 129–141. https://doi.org/10.1016/j.mce.2011.08.036Negi, J. S., Bisht, V. K., Bhandari, A. K., Singh, P., & Sundriyal, R. C. (2011). Chemical constituents and biological activities of the genus Zanthoxylum: A review. African Journal of Pure and Applied Chemistry, 5(12), 412–416. http://www.academicjournals.org/AJPACO’Brien, R. J., & Wong, P. C. (2011). Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu Rev Neurosci., 1987, 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.AmyloidO’Nuallain, B., Freir, D. B., Nicoll, A. J., Risse, E., Ferguson, N., Herron, C. E., Collinge, J., & Walsh, D. M. (2010). Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils. Journal of Neuroscience, 30(43), 14411–14419. https://doi.org/10.1523/JNEUROSCI.3537-10.2010Ortega Domínguez, B., Herrera-ramírez, M., Tecalco-cruz, A. C., Prgxodu, S., Suhvlyq, O. D. H., Vxv, G. H., Eodqfr, J., Od, H., Ghvgh, V., Fohr, H. O. Q., & Gh, D. F. (2015). RECEPTORES NUCLEARES : DEL NÚCLEO AL CITOPLASMA Bibiana Ortega-Domínguez, Marlene Herrera-Ramírez y Angeles C. Tecalco-Cruz*. 18(2), 131–143. https://doi.org/10.1016/j.recqb.2015.09.005Pagano, K., Tomaselli, S., Molinari, H., & Ragona, L. (2020). Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 14(December), 1–18. https://doi.org/10.3389/fnins.2020.619667Patel, N. S., Paris, D., Mathura, V., Quadros, A. N., Crawford, F. C., & Mullan, M. J. (2005). Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. Journal of Neuroinflammation, 2, 1–10. https://doi.org/10.1186/1742-2094-2-9Patil, S. A., Patil, R., Pfeffer, L. M., & Miller, D. D. (2013). Chromenes: Potential new chemotherapeutic agents for cancer. Future Medicinal Chemistry, 5(14), 1647–1660. https://doi.org/10.4155/fmc.13.126Patiño Ladino, O. J., & Cuca Suárez, L. E. (2010). Isoquinoline alkaloids of Zanthoxylum quinduense (Rutaceae). Biochemical Systematics and Ecology, 38(4), 853–856. https://doi.org/10.1016/j.bse.2010.07.016Patiño, O. J. (2010). AISLAMIENTO Y CARACTERIZACIÓN DE ALCALOIDES PRESENTES EN DOS ESPECIES DEL GÉNERO ZANTHOXYLUM (RUTACEAE), SÍNTESIS DE ANÁLOGOS BENZOFENANTRIDÍNICOS Y EVALUACIÓN DE ACTIVIDAD ANTIFUNGICA Y ANTIBACTERIAL.Patiño, O. J., & Cuca, L. E. (2004). ALCALOIDES BENZOFENANTRIDINICOS DE Zanthoxylum quinduensis BENZOPHENANTHRIDINE ALKALOIDS FROM Zanthoxylum quinduensis. 1, 13–20.Patiño, O. J., Rodríguez, J. A. P., Moreno, J. M. L., Sarmiento, L. L., & Suárez, L. E. C. (2011). Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género zanthoxylum (Rutaceae). Revista Cubana de Farmacia, 45(3), 431–438.Patten, D. A., Germain, M., Kelly, M. A., & Slack, R. S. (2010). Reactive oxygen species: Stuck in the middle of neurodegeneration. Journal of Alzheimer’s Disease, 20(SUPPL.2). https://doi.org/10.3233/JAD-2010-100498Paulini, H., Eilert, U., & Schimmer, O. (1987). Mutagenic compounds in an extract from Rutae Herba (Ruta graveolens L.). I. Mutagenicity is partially caused by furoquinoline alkaloids. Mutagenesis, 2(4), 271–273. https://doi.org/10.1093/mutage/2.4.271Perez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507. https://doi.org/10.1111/bph.14585Piazzi, L., Cavalli, A., Colizzi, F., Belluti, F., Bartolini, M., Mancini, F., Recanatini, M., Andrisano, V., & Rampa, A. (2008). Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorganic and Medicinal Chemistry Letters, 18(1), 423–426. https://doi.org/10.1016/j.bmcl.2007.09.100Picone, P., Nuzzo, D., Caruana, L., Scafidi, V., & Di Carlo, M. D. (2014). Mitochondrial dysfunction: Different routes to Alzheimer’s disease therapy. Oxidative Medicine and Cellular Longevity, 2014. https://doi.org/10.1155/2014/780179Plazas, E., Ávila, M., Delgado, W., Patiño, O., & Cuca, L. E. (2018). In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Journal of Medicinal Plants, 12(1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18Plazas, E., Casoti R, R., Murillo, M. A., Da Costa, F. B., & Cuca, L. E. (2019). Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. Phytochemistry, 168(April). https://doi.org/10.1016/j.phytochem.2019.112128Plazas, E., Hagenow, S., Murillo, M. A., Stark, H., & Suarez, L. C. (2020). Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorganic Chemistry, 98(January), 103722. https://doi.org/10.1016/j.bioorg.2020.103722Pontes, O., Costa, M., Santos, F., Sampaio-Marques, B., Dias, T., Ludovico, P., Baltazar, F., & Proença, F. (2018). Exploitation of new chalcones and 4H-chromenes as agents for cancer treatment. European Journal of Medicinal Chemistry, 157, 101–114. https://doi.org/10.1016/j.ejmech.2018.07.058Porat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chemical Biology and Drug Design, 67(1), 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.xPrashant, T., Dwivedi, S., Singh, M. P., Mishra, R., & Chandy, A. (2013). Basic and modern concepts on cholinergic receptor : A review. 3(5), 413–420. https://doi.org/10.1016/S2222-1808(13)60094-8Pratiwi, R., Nantasenamat, C., Ruankham, W., Suwanjang, W., Prachayasittikul, V., Prachayasittikul, S., & Phopin, K. (2021). Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Frontiers in Nutrition, 8(May), 1–12. https://doi.org/10.3389/fnut.2021.648995Queiroz, E. F., Hay, A. E., Chaaib, F., Van Diemen, D., Diallo, D., & Hostettmann, K. (2006). New and bioactive aromatic compounds from Zanthoxylum zanthoxyloides. Planta Medica, 72(8), 746–750. https://doi.org/10.1055/s-2006-941504Raj, V., & Lee, J. (2020). 2H/4H-Chromenes—A Versatile Biologically Attractive Scaffold. Frontiers in Chemistry, 8(August), 1–23. https://doi.org/10.3389/fchem.2020.00623Rappold, P. M., Cui, M., Chesser, A. S., Tibbett, J., Grima, J. C., Duan, L., Sen, N., Javitch, J. A., & Tieua, K. (2011). Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20766–20771. https://doi.org/10.1073/pnas.1115141108Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Publishing Group, 7(3), 137–152. https://doi.org/10.1038/nrneurol.2011.2Rienzo, A., Proft, M., Pascual, A., & Giner, A. (2009). Estudio de la regulación dinámica de la expresión génica en respuesta a estrés osmótico en levadura. TESIS DOCTORAL.Robinson-rechavi, M. (2003). The nuclear receptor superfamily. 585–586. https://doi.org/10.1242/jcs.00247Rodríguez, J. A. P. (2012). Estudio fitoquímico de Compsoneura capitellata (Myristicaceae), Zanthoxylum (Lauraceae) y evaluación de su posible rigidum (Rutaceae) y Ocotea longifolia aplicación como biocontroladores de Sitophilus sp.Romero, S. J., Vargas González, J. C., Pardo Turriago, R., Eslava- Schmalbach, J. H., & Moreno Angarita, M. (2021). El Sistema de Salud Colombiano y el reconocimiento de la enfermedad de Alzheimer. Revista de Salud Pública, 23(2), 1–9. https://doi.org/10.15446/rsap.v23n2.88369Ross, S. A., Krishnaven, K., Radwan, M. M., Takamatsu, S., & Burandt, C. L. (2008). Constituents of Zanthoxylum flavum and their antioxidant and antimalarial activities. Natural Product Communications, 3(5), 791–794. https://doi.org/10.1177/1934578x0800300521Ruan, H., Zhan, Y. Y., Hou, J., Xu, B., Chen, B., Tian, Y., Wu, D., Zhao, Y., Zhang, Y., Chen, X., Mi, P., Zhang, L., Zhang, S., Wang, X., Cao, H., Zhang, W., Wang, H., Li, H., Su, Y., … Hu, T. (2017). Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene, 36(50), 6906–6918. https://doi.org/10.1038/onc.2017.296Ruiz, J. C. G. (2021). Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer.Sabbagh, J. J., & Dickey, C. A. (2016). The Metamorphic Nature of the Tau Protein : Dynamic Flexibility Comes at a Cost. 10(January), 1–5. https://doi.org/10.3389/fnins.2016.00003Sakono, M., & Zako, T. (2010). Amyloid oligomers : formation and toxicity of A b oligomers. 277, 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.xSanabria-Castro, A., & Monge-Bonilla, I. A.-E. C. (2017). Molecular Pathogenesis of Alzheimer ’ s Disease : An Update. 10103, 46–54. https://doi.org/10.1159/000464422Sánchez-Gloria, J. L., Osorio-Alonso, H., Arellano-Buendía, A. S., Carbó, R., Hernández-Díazcouder, A., Guzmán-Martín, C. A., Rubio-Gayosso, I., & Sánchez-Muñoz, F. (2020). Nutraceuticals in the treatment of pulmonary arterial hypertension. International Journal of Molecular Sciences, 21(14), 1–35. https://doi.org/10.3390/ijms21144827Sandoval, A. G., Buitrago, L., & Moreno, H. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 1–24. https://doi.org/10.1371/journal.pone.0145467Sandoval Hernández, A. G., Hernández, H. G., Restrepo, A., Arboleda, H., & Arboled, G. H. (2015). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer ’ s Disease. Jones 2012. https://doi.org/10.1007/s12031-015-0665-8Sayre, L. M., Smith, M. A., & Perry, G. (2001). Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. 721–738.Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2), 555–563. https://doi.org/10.1016/j.bbr.2010.11.058Selkoe, D. J., Hardy, J., Selkoe, D., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer ’ s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. (2020). Health benefits of chromones: common ingredients of our daily diet. Phytochemistry Reviews, 19(4), 761–785. https://doi.org/10.1007/s11101-020-09681-wSengupta, U., Nilson, A. N., & Kayed, R. (2016). The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine, 6, 42–49. https://doi.org/10.1016/j.ebiom.2016.03.035Serrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer: Aproximaciones terapéuticas.Sever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors ER ER OFF ON. 1–4.Sharma, N., Tan, M. A., & An, S. S. A. (2021). Phytosterols: Potential metabolic modulators in neurodegenerative diseases. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212255Shaw, Kenneth R., Zhang, M. (2015). Benzo[c]fenantridinas pseudobásicas con eficacia, estabilidad y seguridad mejoradas.Sheen, W. S., Tsai, I. L., Teng, C. M., Ko, F. N., & Chen, I. S. (1996). Indolopyridoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifoliolum. Planta Medica, 62(2), 175–176. https://doi.org/10.1055/s-2006-957846Sheng, M., Sabatini, B. L., & Su, T. C. (2015). Synapses and Alzheimer ’ s Disease.Shestopalov, A. M., Litvinov, Y. M., Rodinovskaya, L. A., Malyshev, O. R., Semenova, M. N., & Semenov, V. V. (2012). Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity. ACS Combinatorial Science, 14(8), 484–490. https://doi.org/10.1021/co300062eShi, C., Wu, F., Zhu, X., & Xu, J. (2013). Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling. Biochimica et Biophysica Acta - General Subjects, 1830(3), 2538–2544. https://doi.org/10.1016/j.bbagen.2012.12.012Shipley, M. M., Mangold, C. A., & Szpara, M. L. (2016). Differentiation of the SH-SY5Y human neuroblastoma cell line. Journal of Visualized Experiments, 2016(108), 1–11. https://doi.org/10.3791/53193Smale, S. T. (2010). Luciferase assay. Cold Spring Harbor Protocols, 5(5), 2010–2013. https://doi.org/10.1101/pdb.prot5421Sodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 1–7. https://doi.org/10.1016/j.phrs.2013.03.008Solomon, A., Kivipelto, M., Wolozin, B., Zhou, J., & Whitmer, R. A. (2009). Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dementia and Geriatric Cognitive Disorders, 28(1), 75–80. https://doi.org/10.1159/000231980Sonboli, A., Mojarrad, M., Ebrahimi, S. N., & Enayat, S. (2010). Free radical scavenging activity and total phenolic content of methanolic extracts from male inflorescence of Salix aegyptiaca grown in Iran. Iranian Journal of Pharmaceutical Research, 9(3), 293–296. https://doi.org/10.22037/ijpr.2010.869Songsiang, U., Thongthoom, T., Zeekpudsa, P., Kukongviriyapan, V., Boonyarat, C., Wangboonskul, J., & Yenjai, C. (2012). Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. ScienceAsia, 38(1), 75–81. https://doi.org/10.2306/scienceasia1513-1874.2012.38.075Sonkusare, S. K., Kaul, C. L., & Ramarao, P. (2005). Dementia of Alzheimer ’ s disease and other neurodegenerative disorders — memantine , a new hope. 51, 1–17. https://doi.org/10.1016/j.phrs.2004.05.005Steffensen, K. R., Jakobsson, T., & Treuter, E. (2012). Liver X receptor biology and pharmacology : new pathways , challenges and opportunities. 33(7). https://doi.org/10.1016/j.tips.2012.03.013Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 114(8), 785–796. https://doi.org/10.1016/j.acthis.2012.01.006Stoothoff, W. H., & Johnson, G. V. W. (2005). Tau phosphorylation : physiological and pathological consequences. Biochimica et Biophysica Acta, 1739, 280–297. https://doi.org/10.1016/j.bbadis.2004.06.017Suárez, L. E. C., Barrera, C. A. C., Barrera, E. D. C., & Moreno, J. M. L. (2011). Actividad antibacteriana de terpenoides y alcaloides aislados de tres plantas colombianas. Revista Cubana de Farmacia, 45(2), 275–282.Subbareddy, C. V., Subashini, R., & Sumathi, S. (2017). Synthesis of substituted 2H-chromenes by a three-component reaction as potential antioxidants. Molecular Diversity, 21(4), 841–848. https://doi.org/10.1007/s11030-017-9758-3Sugino, H., Watanabe, A., Yamamoto, M., Kostic, D., Ohgi, Y., Amada, N., & Sanchez, R. (2015). Global Trends in Alzheimer Disease Clinical Development: Increasing the Probability of Success. Clinical Therapeutics, 37(8), 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006Supino, R. (1995). MTT assays. Methods in Molecular Biology (Clifton, N.J.), 43, 137–149. https://doi.org/10.1385/0-89603-282-5:137Swerdlow, R. H. (2007). Pathogenesis of Alzheimer ’ s disease. 2(3), 347–359.Tachibana, Y., Kikuzaki, H., Lajis, N. H., & Nakatani, N. (2003). Comparison of Antioxidative Properties of Carbazole Alkaloids from Murraya koenigii Leaves. Journal of Agricultural and Food Chemistry, 51(22), 6461–6467. https://doi.org/10.1021/jf034700+Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M. A., Danni, O., Smith, M. A., Perry, G., & Tabaton, M. (2002). Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiology of Disease, 10(3), 279–288. https://doi.org/10.1006/nbdi.2002.0515Tao, L. xue, Ji, S. sha, Szalóki, D., Kovács, T., Mándi, A., Antus, S., Ding, X., Kurtán, T., & Zhang, H. yan. (2021). An optically active isochroman-2H-chromene conjugate potently suppresses neuronal oxidative injuries associated with the PI3K/Akt and MAPK signaling pathways. Acta Pharmacologica Sinica, 42(1), 36–44. https://doi.org/10.1038/s41401-020-0391-9Tarkowski, E., Andreasen, N., Tarkowski, A., & Blennow, K. (2003). Intrathecal inflammation precedes development of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 74(9), 1200–1205. https://doi.org/10.1136/jnnp.74.9.1200Tchinda, A. T., Fuendjiep, V., Sajjad, A., Matchawe, C., Wafo, P., Khan, S., Tane, P., & Choudhary, M. I. (2009). Bioactive compounds from the fruits of Zanthoxylum Leprieurii. Pharmacologyonline, 1(January), 406–415.Thomas, P., & Smart, T. G. (2005). HEK293 cell line: A vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods, 51(3 SPEC. ISS.), 187–200. https://doi.org/10.1016/j.vascn.2004.08.014Tian, K. ming, Li, J. jie, & Xu, S. wen. (2019). Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacological Research, 141(November 2018), 541–550. https://doi.org/10.1016/j.phrs.2018.12.019Tsukamoto, K. (2015). Development of Novel Pharmaceutical Agents for Alzheimer’s Disease: The Impact of Regulatory Initiatives in Japan and the United States. Clinical Therapeutics, 37(8), 1652–1660. https://doi.org/10.1016/j.clinthera.2015.02.024Valencia Rincón, E. (2017). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales , obtenidos de plantas de las familias de Lauráceas y Miristicáceas , sobre los receptores X del hígado ( LXRs ) Generación de un modelo in vitro para evaluar la ac.Veal, E., & Day, A. (2011). Hydrogen peroxide as a signaling molecule. Antioxidants and Redox Signaling, 15(1), 147–151. https://doi.org/10.1089/ars.2011.3968Vega, G. P. G. (2021). EVALUACIÓN DEL POTENCIAL FITOTERAPÉUTICO DE DOS EXTRATOS DE Zanthoxylum EN EL MODELO MURINO TRIPLE TRANSGÉNICO DE LA ENFERMEDAD DE ALZHEIMER (3xTg-AD).Viola, K. L., & Klein, W. L. (2015). Amyloid β oligomers in Alzheimer ’ s disease pathogenesis , treatment , and diagnosis. https://doi.org/10.1007/s00401-015-1386-3Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers - A decade of discovery. Journal of Neurochemistry, 101(5), 1172–1184. https://doi.org/10.1111/j.1471-4159.2006.04426.xWang, & Michaelis, E. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2(MAR), 1–13. https://doi.org/10.3389/fnagi.2010.00012Wang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Molecular Neurodegeneration, 15(1), 1–22. https://doi.org/10.1186/s13024-020-00376-6Warren, M. (2008). Memory Loss, Dementia, and Stroke: Implications for Rehabilitation of Older Adults with Age-Related Macular Degeneration. Journal of Visual Impairment & Blindness, October, 611–615.Waterman, P. G. (1993). PHYTOCHEMICAL DIVERSITY IN THE ORDER RUTALES. In Phytochemical Potential of Tropical Plants (Issue Table 1).Whitehouse, P. J., & Au, K. I. N. S. (1986). CHOLINERGIC RECEPTORS IN AGING AND ALZHEIMER ’ S DISEASE and Kin Sin Au In AD , treatments. 10, 665–676.Williams, P., & Howes, M. R. (2011). Natural products as a source of Alzheimer ’ s drug leads. 28, 48–77. https://doi.org/10.1039/c0np00027bWolfender, J. L., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A, 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.10.091Woo, H. G., Lee, C. H., Noh, M., Lee, J. J., Jung, Y., & Baik, E. J. (2001). Rutaecarpine, a Quinazolinocarboline Alkaloid, Inhibits prostaglandin production in RAW264.7. Planta Med, 67, 505–509.Wright, C. W., ANDERSON, M. M., ALLEN, D., PHILLIPSON, J. D., KIRBY, G. C., WARHURST, D. C., & CHANG, H. R. (1993). Quassinoids Exhibit Greater Selectivity Against Plasmodium Falciparum Than Against Entamoeba Histolytica, Giardia Intestinalis Or Toxoplasma Gondii In Vitro. Journal of Eukaryotic Microbiology, 40(3), 244–246. https://doi.org/10.1111/j.1550-7408.1993.tb04910.xXiao, G. Q., Liang, B. X., Chen, S. H., Ou, T. M., Bu, X. Z., & Yan, M. (2012). 3-nitro-2H-chromenes as a new class of inhibitors against thioredoxin reductase and proliferation of cancer cells. Archiv Der Pharmazie, 345(10), 767–770. https://doi.org/10.1002/ardp.201200121Xing, S. H., Zhu, C. X., Zhang, R., & An, L. (2014). Huperzine A in the treatment of alzheimer’s disease and vascular dementia: A meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/363985Xu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2). https://doi.org/10.1111/j.1750-3841.2006.00260.xYang, W., Wong, Y., Ng, O. T. W., Bai, L. P., Kwong, D. W. J., Ke, Y., Jiang, Z. H., Li, H. W., Yung, K. K. L., & Wong, M. S. (2012). Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angewandte Chemie - International Edition, 51(8), 1804–1810. https://doi.org/10.1002/anie.201104150Yao, E. C., & Xue, L. (2014). Therapeutic Effects of Curcumin on Alzheimer ’ s Disease. December, 145–159.Ye, J. Y., Li, L., Hao, Q. M., Qin, Y., & Ma, C. S. (2020). β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice. Korean Journal of Physiology and Pharmacology, 24(1), 39–46. https://doi.org/10.4196/kjpp.2020.24.1.39Youdim, K. A., Shukitt-Hale, B., & Joseph, J. A. (2004). Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine, 37(11), 1683–1693. https://doi.org/10.1016/j.freeradbiomed.2004.08.002Zelcer, N. (2012). LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor Noam. 100(2009), 100–104. https://doi.org/10.1126/science.1168974Zhang, Chen, H., & Wang, Z. (2011). Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. 2010. https://doi.org/10.1007/s13197-011-0447-4Zhang, H. Y. (2012). New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 33(9), 1170–1175. https://doi.org/10.1038/aps.2012.128EstudiantesInvestigadoresPúblico generalORIGINALDOC TESIS AFBR VF 2022.pdfDOC TESIS AFBR VF 2022.pdfTesis de Maestría en Neurocienciasapplication/pdf3309136https://repositorio.unal.edu.co/bitstream/unal/81720/5/DOC%20TESIS%20AFBR%20VF%202022.pdf585ff3cc5327ef869f4f08c2cf0db746MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81720/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAILDOC TESIS AFBR VF 2022.pdf.jpgDOC TESIS AFBR VF 2022.pdf.jpgGenerated Thumbnailimage/jpeg6686https://repositorio.unal.edu.co/bitstream/unal/81720/6/DOC%20TESIS%20AFBR%20VF%202022.pdf.jpgb4c3aa207b9184e4bf5d735126322130MD56unal/81720oai:repositorio.unal.edu.co:unal/817202023-08-05 23:04:19.203Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |