A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values

Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the s...

Full description

Autores:
Sarria, Humberto
Martínez, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/61874
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/61874
http://bdigital.unal.edu.co/60686/
Palabra clave:
51 Matemáticas / Mathematics
Chebyshev's inequality
Homand-Weiland's inequality
eigenvalues perturbation
singular value perturbation.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f4992f42f0d4dae88d2f666b63443341
oai_identifier_str oai:repositorio.unal.edu.co:unal/61874
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarria, Humberto9db56867-efa9-4cec-a00c-449a13c9ea96300Martínez, Juan Carlosd9304f48-7c15-4818-b6a5-0fb690c10d3b3002019-07-02T20:46:46Z2019-07-02T20:46:46Z2016-07-01ISSN: 2357-6529https://repositorio.unal.edu.co/handle/unal/61874http://bdigital.unal.edu.co/60686/Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticashttps://revistas.unal.edu.co/index.php/bolma/article/view/62218Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasSarria, Humberto and Martínez, Juan Carlos (2016) A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values. Boletín de Matemáticas, 23 (2). pp. 105-114. ISSN 2357-652951 Matemáticas / MathematicsChebyshev's inequalityHomand-Weiland's inequalityeigenvalues perturbationsingular value perturbation.A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular valuesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL62218-316296-1-SM.pdfapplication/pdf289895https://repositorio.unal.edu.co/bitstream/unal/61874/1/62218-316296-1-SM.pdf21bb2e643a3cebd87167eedaeccff084MD51THUMBNAIL62218-316296-1-SM.pdf.jpg62218-316296-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5607https://repositorio.unal.edu.co/bitstream/unal/61874/2/62218-316296-1-SM.pdf.jpga275eed6c3fdc9a3075ffee5a7dd1723MD52unal/61874oai:repositorio.unal.edu.co:unal/618742024-04-20 23:26:14.367Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
title A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
spellingShingle A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
51 Matemáticas / Mathematics
Chebyshev's inequality
Homand-Weiland's inequality
eigenvalues perturbation
singular value perturbation.
title_short A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
title_full A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
title_fullStr A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
title_full_unstemmed A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
title_sort A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
dc.creator.fl_str_mv Sarria, Humberto
Martínez, Juan Carlos
dc.contributor.author.spa.fl_str_mv Sarria, Humberto
Martínez, Juan Carlos
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Chebyshev's inequality
Homand-Weiland's inequality
eigenvalues perturbation
singular value perturbation.
dc.subject.proposal.spa.fl_str_mv Chebyshev's inequality
Homand-Weiland's inequality
eigenvalues perturbation
singular value perturbation.
description Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T20:46:46Z
dc.date.available.spa.fl_str_mv 2019-07-02T20:46:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-6529
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/61874
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/60686/
identifier_str_mv ISSN: 2357-6529
url https://repositorio.unal.edu.co/handle/unal/61874
http://bdigital.unal.edu.co/60686/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/bolma/article/view/62218
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.references.spa.fl_str_mv Sarria, Humberto and Martínez, Juan Carlos (2016) A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values. Boletín de Matemáticas, 23 (2). pp. 105-114. ISSN 2357-6529
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/61874/1/62218-316296-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/61874/2/62218-316296-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv 21bb2e643a3cebd87167eedaeccff084
a275eed6c3fdc9a3075ffee5a7dd1723
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089635811295232