A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values

Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the s...

Full description

Autores:
Sarria, Humberto
Martínez, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/61874
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/61874
http://bdigital.unal.edu.co/60686/
Palabra clave:
51 Matemáticas / Mathematics
Chebyshev's inequality
Homand-Weiland's inequality
eigenvalues perturbation
singular value perturbation.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.