Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel

ilustraciones, diagramas

Autores:
Díaz Herrera, Cristian Camilo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86300
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86300
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Estrés abiótico
Estrés biótico
Fusarium oxysporum
Espectroscopia
drought stress
abiotic stress
biotic stress
Fusarium oxysporum
spectroscopy
Detección temprana
VIS / NIR
Clasificación
Estrés hídrico
Fusarium oxysporum
Ralstonia solanacearum
Early detection
VIS/NIR
Classification
Water stress
Fusarium oxysporum
Ralstonia solanacearum
Banana
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f481dabaed3a30290467883a34ab25d8
oai_identifier_str oai:repositorio.unal.edu.co:unal/86300
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
dc.title.translated.eng.fl_str_mv Early detection of biotic and abiotic stress using classification models of VIS/NIR reflectance spectroscopy data: Application in Gros Michel banana plants
title Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
spellingShingle Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Estrés abiótico
Estrés biótico
Fusarium oxysporum
Espectroscopia
drought stress
abiotic stress
biotic stress
Fusarium oxysporum
spectroscopy
Detección temprana
VIS / NIR
Clasificación
Estrés hídrico
Fusarium oxysporum
Ralstonia solanacearum
Early detection
VIS/NIR
Classification
Water stress
Fusarium oxysporum
Ralstonia solanacearum
Banana
title_short Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
title_full Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
title_fullStr Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
title_full_unstemmed Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
title_sort Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel
dc.creator.fl_str_mv Díaz Herrera, Cristian Camilo
dc.contributor.advisor.spa.fl_str_mv Botero Fernandez, Veronica Catalina
dc.contributor.author.spa.fl_str_mv Díaz Herrera, Cristian Camilo
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Estrés abiótico
Estrés biótico
Fusarium oxysporum
Espectroscopia
drought stress
abiotic stress
biotic stress
Fusarium oxysporum
spectroscopy
Detección temprana
VIS / NIR
Clasificación
Estrés hídrico
Fusarium oxysporum
Ralstonia solanacearum
Early detection
VIS/NIR
Classification
Water stress
Fusarium oxysporum
Ralstonia solanacearum
Banana
dc.subject.agrovoc.spa.fl_str_mv Estrés de sequia
Estrés abiótico
Estrés biótico
Fusarium oxysporum
Espectroscopia
dc.subject.agrovoc.eng.fl_str_mv drought stress
abiotic stress
biotic stress
Fusarium oxysporum
spectroscopy
dc.subject.proposal.spa.fl_str_mv Detección temprana
VIS / NIR
Clasificación
Estrés hídrico
Fusarium oxysporum
Ralstonia solanacearum
dc.subject.proposal.eng.fl_str_mv Early detection
VIS/NIR
Classification
Water stress
Fusarium oxysporum
Ralstonia solanacearum
Banana
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-25T20:07:23Z
dc.date.available.none.fl_str_mv 2024-06-25T20:07:23Z
dc.date.issued.none.fl_str_mv 2024-06-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86300
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86300
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv [Abdulridha et al., 2016] Abdulridha, J., Ehsani, R., and De Castro, A. (2016). Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture, 6(4):56.
[Abu-Khalaf, 2015] Abu-Khalaf, N. (2015). Sensing tomato’s pathogen using visible/near infrared (vis/nir) spectroscopy and multivariate data analysis (mvda). Palest. Tech. Univ. Res. J., 3(1):12–22.
[Anderson and Gupta, 2009] Anderson, H. S. and Gupta, M. R. (2009). Classifying linear system outputs by robust local bayesian quadratic discriminant analysis on linear estimators. In 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pages 789–792. IEEE.
[Balakrishnama and Ganapathiraju, 1998] Balakrishnama, S. and Ganapathiraju, A. (1998). Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, 18(1998):1–8.
[Basa, 2022] Basa, J. (2022). Big data para quimiometría: Distribución asintótica del estimador pls en alta dimensión.
[Berrar, 2019] Berrar, D. (2019). Bayes’ theorem and naive bayes classifier.
[Bienkowski et al., 2019] Bienkowski, D., Aitkenhead, M. J., Lees, A. K., Gallagher, C., and Neilson, R. (2019). Detection and differentiation between potato (solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data. Computers and Electronics in Agriculture, 167:105056.
[Bishop, 2006] Bishop, C. (2006). Pattern recognition and machine learning. Springer google schola, 2:531–537.
[Bishop et al., 1995] Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford university press.
[Box, 1953] Box, G. E. (1953). Non-normality and tests on variances. Biometrika, 40(3/4):318–335.
[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
[Brown et al., 2000] Brown, C. D., Vega-Montoto, L., and Wentzell, P. D. (2000). Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Applied Spectroscopy, 54(7):1055–1068.
[Buja et al., 1989] Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models. The Annals of Statistics, pages 453–510.
[Choi and Marron, 2019] Choi, H. Y. and Marron, J. (2019). Theory of high-dimensional outliers. arXiv preprint arXiv:1909.02139.
[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support vector machine. Machine learning, 20(3):273–297.
[de Carvalho et al., 2015] de Carvalho, G. G. A., Moros, J., Santos Jr, D., Krug, F. J., and Laserna, J. J. (2015). Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Analytica chimica acta, 876:26–38.
[Dupas et al., 2019] Dupas, E., Legendre, B., Olivier, V., Poliakoff, F., Manceau, C., and Cunty, A. (2019). Comparison of real-time pcr and droplet digital pcr for the detection of xylella fastidiosa in plants. Journal of microbiological methods, 162:86–95.
[el Financiero, 2019] el Financiero, P. (2019). Fusarium raza 4 tropical mantiene en vilo a los bananeros. Fecha de acceso: 02/07/2023.
[Espectador, 2019] Espectador, P. E. (2019). Ica firma acuerdos con asociaciones bananeras para controlar hongo fusarium. Fecha de acceso: 27/08/2023.
[FAO, 2017] FAO (2017). Manual de seguridad y salud en la industria bananera. Fecha de acceso: 01/10/2023.
[FAO, 2019] FAO (2019). La marchitez del banano por fusarium raza 4 tropical: ¿una creciente amenaza al mercado mundial del banano? Fecha de acceso: 20/10/2022.
[FAO, 2021] FAO (2021). Análisis del mercado del banano, resultados preliminares 2020. Fecha de acceso: 28/10/2022.
[Farber et al., 2019a] Farber, C., Mahnke, M., Sanchez, L., and Kurouski, D. (2019a). Advanced spectroscopic techniques for plant disease diagnostics. a review. TrAC Trends in Analytical Chemistry, 118:43–49.
[Farber et al., 2019b] Farber, C., Shires, M., Ong, K., Byrne, D., and Kurouski, D. (2019b). Raman spectroscopy as an early detection tool for rose rosette infection. Planta, 250(4):1247–1254.
[Fegan and Prior, 2006] Fegan, M. and Prior, P. (2006). Diverse members of the ralstonia solanacearum species complex cause bacterial wilts of banana. Australasian Plant Pathology, 35:93–101.
[Garc´ıa-Bastidas et al., 2020] Garc´ıa-Bastidas, F., Quintero-Vargas, J., Ayala-Vasquez, M., Schermer, T., Seidl, M., Santos-Paiva, M., Noguera, A., Aguilera-Galvez, C., Wittenberg, A., Hofstede, R., et al. (2020). First report of fusarium wilt tropical race 4 in cavendish bananas caused by fusarium odoratissimum in colombia. Plant disease, 104(3):994–994.
[Gazalba et al., 2017] Gazalba, I., Reza, N. G. I., et al. (2017). Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. In 2017 2nd international conferences on information technology, information systems and electrical engineering (ICITISEE), pages 294–298. IEEE.
[Genin and Denny, 2012] Genin, S. and Denny, T. P. (2012). Pathogenomics of the ralstonia solanacearum species complex. Annual review of phytopathology, 50:67–89.
[Gold and Sollich, 2003] Gold, C. and Sollich, P. (2003). Model selection for support vector machine classification. Neurocomputing, 55(1-2):221–249.
[Gomez et al., 2008] Gomez, C., Rossel, R. A. V., and McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An australian case study. Geoderma, 146(3-4):403–411.
[Gull et al., 2019] Gull, A., Lone, A. A., and Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, pages 1–19.
[Guo et al., 2003] Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). Knn modelbased approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings, pages 986–996. Springer.
[Hanusz et al., 2018] Hanusz, Z., Enomoto, R., Seo, T., and Koizumi, K. (2018). A monte carlo comparison of jarque–bera type tests and henze–zirkler test of multivariate normality. Communications in Statistics-Simulation and Computation, 47(5):1439–1452.
[Hou et al., 2022] Hou, B., Hu, Y., Zhang, P., and Hou, L. (2022). Potato late blight severity and epidemic period prediction based on vis/nir spectroscopy. Agriculture, 12(7):897.
[(ICA), 2020] (ICA), I. C. A. (2020). Fusarium r4t. Fecha de acceso: 27/08/2023.
[Ignat et al., 2022] Ignat, T., Shavit, Y., Rachmilevitch, S., and Karnieli, A. (2022). Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 217:26–40.
[Jie et al., 2009] Jie, L., Zifeng, W., Lixiang, C., Hongming, T., Patrik, I., Zide, J., and Shining, Z. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biological control, 51(3):427–434.
[Kaliramesh et al., 2013] Kaliramesh, S., Chelladurai, V., Jayas, D., Alagusundaram, K., White, N., and Fields, P. (2013). Detection of infestation by callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. Journal of Stored Products Research, 52:107–111.
[Khaled et al., 2018a] Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., and Seman, I. A. (2018a). Spectral features selection and classification of oil palm leaves infected by basal stem rot (bsr) disease using dielectric spectroscopy. Computers and Electronics in Agriculture, 144:297–309.
[Khaled et al., 2018b] Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., and Onwude, D. I. (2018b). Early detection of diseases in plant tissue using spectroscopy– applications and limitations. Applied Spectroscopy Reviews, 53(1):36–64.
[Kira and Rendell, 1992] Kira, K. and Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new algorithm. In Proceedings of the tenth national conference on Artificial intelligence, pages 129–134.
[Klap et al., 2020] Klap, C., Luria, N., Smith, E., Bakelman, E., Belausov, E., Laskar, O., Lachman, O., Gal-On, A., and Dombrovsky, A. (2020). The potential risk of plant-virus disease initiation by infected tomatoes. Plants, 9(5):623.
[Koc et al., 2020] Koc, G., Fidan, H., Sari, N., and C¸ALIS¸, O. (2020). A comparative study on apple chlorotic leafspot virus (aclsv) isolates from different hosts in the east mediterranean region of turkey. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 18(1):141–157.
[Kononenko, 1994] Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In European conference on machine learning, pages 171–182. Springer.
[Learning, 1997] Learning, M. (1997). Tom mitchell. Publisher: McGraw Hill.
[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551.
[Li et al., 2014] Li, M.-H., Xie, X.-L., Lin, X.-F., Shi, J.-X., Ding, Z.-J., Ling, J.-F., Xi, P.-G., Zhou, J.-N., Leng, Y., Zhong, S., et al. (2014). Functional characterization of the gene fooch1 encoding a putative α-1, 6-mannosyltransferase in fusarium oxysporum f. sp. cubense. Fungal Genetics and Biology, 65:1–13.
[Li et al., 2008] Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., and Kinard, G. (2008). A reliable and inexpensive method of nucleic acid extraction for the pcr-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2):48–55.
[Lipton et al., 2014] Lipton, Z. C., Elkan, C., and Narayanaswamy, B. (2014). Thresholding classifiers to maximize f1 score. arXiv preprint arXiv:1402.1892.
[Luana et al., 2015] Luana, G., Fabiano, S., Fabio, G., and Paolo, G. (2015). Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi. Forestry: An International Journal of Forest Research, 88(4):465–470.
[Macias-Echeverri et al., 2022] Macias-Echeverri, E., Hoyos-Carvajal, L. M., Botero- Fernández, V., Zapata-Henao, S., and Marín-Ortiz, J. C. (2022). Spectral behavior of banana with foc r1 infection: Analysis of williams and gros michel clones. Agronomía Colombiana, 40(3).
[Madihah et al., 2014] Madihah, A., Idris, A., and Rafidah, A. (2014). Polyclonal antibodies of ganoderma boninense isolated from malaysian oil palm for detection of basal stem rot disease. African Journal of Biotechnology, 13(34).
[Manzo-Sánchez et al., 2014] Manzo-Sánchez, G., Orozco-Santos, M., Martínez-Bolaños, L., Garrido-Ramírez, E., and Canto-Canche, B. (2014). Enfermedades de importancia cuarentenaria y económica del cultivo de banano (musa sp.) en México. Revista mexicana de fitopatología, 32(2):89–107.
[Mar´ın-Ortiz et al., 2020] Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., and Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1):88–99.
[Martens et al., 1983] Martens, H., Jensen, S., and Geladi, P. (1983). Multivariate linearity transformation for near-infrared reflectance spectrometry. In Proceedings of the Nordic symposium on applied statistics, pages 205–234. Stokkand Forlag Publishers Stavanger, Norway.
[Monroy and Rivera, 2012] Monroy, L. G. D. and Rivera, M. A. M. (2012). Análisis estadístico de datos multivariados. Universidad Nacional de Colombia.
[Montoya Rios et al., 2022] Montoya Rios, D. P., Molano Prieto, O. J., et al. (2022). Análisis de producción, rendimiento y exportación de banano en los principales países afectados por el hongo fusarium oxysporum f. sp. cubense (foc r4t) y recomendaciones para Colombia.
[Morellos et al., 2020] Morellos, A., Tziotzios, G., Orfanidou, C., Pantazi, X. E., Sarantaris, C., Maliogka, V., Alexandridis, T. K., and Moshou, D. (2020). Non-destructive early detection and quantitative severity stage classification of tomato chlorosis virus (tocv) infection in young tomato plants using vis–nir spectroscopy. Remote Sensing, 12(12):1920.
[Mosa et al., 2017] Mosa, K. A., Ismail, A., and Helmy, M. (2017). Introduction to plant stresses. In Plant stress tolerance, pages 1–19. Springer.
[Müller and Guido, 2016] Müller, A. C. and Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. .O’Reilly Media, Inc.”.
[Muncan et al., 2022] Muncan, J., Jinendra, B. M. S., Kuroki, S., and Tsenkova, R. (2022). Aquaphotomics research of cold stress in soybean cultivars with different stress tolerance ability: Early detection of cold stress response. Molecules, 27(3):744.
[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
[Newey and Powell, 1987] Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society, pages 819–847.
[Pal, 2005] Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1):217–222.
[Pavia et al., 2014] Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. A. (2014). Introduction to spectroscopy. Cengage learning.
[Ploetz, 2006] Ploetz, R. C. (2006). Fusarium wilt of banana is caused by several pathogens referred to as fusarium oxysporum f. sp. cubense. Phytopathology, 96(6):653–656.
[Ploetz, 2015] Ploetz, R. C. (2015). Fusarium wilt of banana. Phytopathology, 105(12):1512– 1521.
[R. Beghi and Guidetti, 2017] R. Beghi, V. Giovenzana, L. B. and Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204:46–54.
[Ramsay and Silverman, 2002] Ramsay, J. O. and Silverman, B. W. (2002). Applied functional data analysis: methods and case studies. Springer.
[Reyes-Matamoros et al., 2014] Reyes-Matamoros, J., Mart´ınez-Moreno, D., Rueda-Luna, R., and Rodr´ıguez-Ram´ırez, T. (2014). Efecto del estr´es h´ıdrico en plantas de frijol (phaseolus vulgaris l.) en condiciones de invernadero. Revista Iberoamericana de Ciencias, 1(2):191–203.
[Rinnan et al., 2009] Rinnan, A., Van Den Berg, F., and Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10):1201–1222.
[Roa Martínez and Loaiza Correa, 2011] Roa Martínez, S. M. and Loaiza Correa, H. (2011). Evaluation of techniques for relevance analysis of radiological images using filters. Revista Ingeniería Biomédica, 5(9):26–34.
[Rousseeuw et al., 1999] Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999). The bagplot: a bivariate boxplot. The American Statistician, 53(4):382–387.
[Rumpf et al., 2010] Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., and Pl¨umer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and electronics in agriculture, 74(1):91–99.
[Salazar et al., 2014] Salazar, E., Trujillo, I., Macías, M. P., Gutiérrez, M. A., Castro, L., Vallejo, E., and Torrealba, M. (2014). Respuesta fisiológica al estrés hídrico de plantas de banano cv.pineo gigante’(musa aaa) regeneradas a partir de yemas irradiadas. Biotecnología Vegetal, 14(3).
[Sankaran et al., 2010] Sankaran, S., Mishra, A., Ehsani, R., and Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and electronics in agriculture, 72(1):1–13.
[Savitzky and Golay, 1964] Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.
[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
[Shin et al., 2023] Shin, M.-Y., Viejo, C. G., Tongson, E., Wiechel, T., Taylor, P. W., and Fuentes, S. (2023). Early detection of verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204:107567.
[Sun and Wu, 2008] Sun, Y. and Wu, D. (2008). A relief based feature extraction algorithm. In Proceedings of the 2008 SIAM International Conference on Data Mining, pages 188– 195. SIAM.
[Svanberg, 2012] Svanberg, S. (2012). Atomic and molecular spectroscopy: basic aspects and practical applications, volume 6. Springer Science & Business Media.
[Tjandra Nugraha et al., 2021] Tjandra Nugraha, D., Zinia Zaukuu, J.-L., Aguinaga B´osquez, J. P., Bodor, Z., Vitalis, F., and Kovacs, Z. (2021). Near-infrared spectroscopy and aquaphotomics for monitoring mung bean (vigna radiata) sprout growth and validation of ascorbic acid content. Sensors, 21(2):611.
[Tu et al., 2022] Tu, Y.-K., Kuo, C.-E., Fang, S.-L., Chen, H.-W., Chi, M.-K., Yao, M.-H., and Kuo, B.-J. (2022). A 1d-sp-net to determine early drought stress status of tomato (solanum lycopersicum) with imbalanced vis/nir spectroscopy data. Agriculture, 12(2):259.
[Tunsagool et al., 2019] Tunsagool, P., Jutidamrongphan, W., Phaonakrop, N., Jaresitthikunchai, J., Roytrakul, S., and Leelasuphakul, W. (2019). Insights into stress responses in mandarins triggered by bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon penicillium digitatum infection. Plant cell reports, 38(5):559–575.
[Urbanowicz et al., 2018] Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., and Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of biomedical informatics, 85:189–203.
[Visa et al., 2011] Visa, S., Ramsay, B., Ralescu, A. L., and Van Der Knaap, E. (2011). Confusion matrix-based feature selection. Maics, 710(1):120–127.
[Walsh et al., 2020] Walsh, K. B., Blasco, J., Zude-Sasse, M., and Sun, X. (2020). Visiblenir ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biology and Technology, 168:111246.
[Wang et al., 2020] Wang, D., Peng, C., Zheng, X., Chang, L., Xu, B., and Tong, Z. (2020). Secretome analysis of the banana fusarium wilt fungi foc r1 and foc tr4 reveals a new effector oastl required for full pathogenicity of foc tr4 in banana. Biomolecules, 10(10):1430.
[Yu et al., 2021] Yu, K., Fang, S., and Zhao, Y. (2021). Heavy metal hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245:118917.
[Zahir et al., 2022] Zahir, S. A. D. M., Omar, A. F., Jamlos, M. F., Azmi, M. A. M., and Muncan, J. (2022). A review of visible and near-infrared (vis-nir) spectroscopy application in plant stress detection. Sensors and Actuators A: Physical, page 113468.
[Zhang et al., 2019] Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., and Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165:104943.
[Zhang et al., 2012] Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., and Wang, J. (2012). Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134:165–174.
[Zhang et al., 2021] Zhang, W., Zhang, W., Yang, Y., Hu, G., Ge, D., Liu, H., Cao, H., et al. (2021). A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress. Computers and Electronics in Agriculture, 181:105966.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 85 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86300/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86300/4/1019036345.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86300/5/1019036345.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a950adcc98f2c848348b7ec5a391f43b
3b8d03a71659f8fee22c0dfb1d63d9ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090180283334656
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Botero Fernandez, Veronica Catalina97557c995747ce6e6d560ac9f59d802dDíaz Herrera, Cristian Camilo6bfa3dc8bd6fbd179c05737171e1b6936002024-06-25T20:07:23Z2024-06-25T20:07:23Z2024-06-24https://repositorio.unal.edu.co/handle/unal/86300Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa detección temprana de enfermedades y estrés hídrico (EH) en las plantas es crucial para la agricultura y la soberanía alimentaria de los países latinoamericanos. En este contexto, se han utilizado métodos de espectroscopía de reflectancia electromagnética visible (VIS) e infrarroja (NIR), que son no invasivos y han demostrado ser prometedores para identificar el estrés biótico y abiótico en las plantas incluso en su fase asintomática. Un ejemplo relevante de esto es la infección de las plantas de banano por enfermedades devastadoras, como la marchitez vascular causada por el hongo Fusarium oxysporum f.sp. cubense Raza 1 (FOCR1) y por la bacteria Ralstonia solanacearum Raza 2 (RSR2), que pueden resultar en pérdidas de hasta el 100% en las plantaciones. Para abordar este desafío, se llevó a cabo un estudio en el que se analizaron datos de reflectancia de 240 plantas de banano en el municipio de Carepa, ubicado en el departamento de Antioquia, Colombia. Estos datos incluyeron plantas sanas, aquellas sometidas a EH, infectadas con FOCR1, contagiadas con RSR2 y sus interacciones. El análisis se realizó utilizando un espectrómetro portátil ASD FieldSpec. Inicialmente, se aplicaron diversas técnicas de preprocesamiento a los datos de reflectancia en el rango espectral de 350-2500 nm, estas incluyen 2 de tratamiento de datos atípicos y 5 de suavizamiento. Luego, se llevaron a cabo diferentes enfoques para la selección de características, identificando las longitudes de onda que mejor discriminaban entre los diferentes tratamientos mediante la metodología RELIEF. Se emplearon métodos de clasificación supervisada, como Análisis Lineal Discriminante (ALD), Análisis Cuadrático Discriminante (ACD), Bosques Aleatorios (BA), Bayes ingenuo (BI), Máquinas de Soporte Vectorial (MSV), K vecinos más cercanos (KVC) y Perceptrón Multicapa (PM) con el objetivo de optimizar la exactitud de clasificación de los tratamientos, para esta medición se tuvo en cuenta una división de las plantas en el 75\% de entrenamiento y 25\% de prueba. Los resultados mostraron que, a pesar de que el período asintomático de las plantas de banano es de 20 días, con el ALD se logró un porcentaje de clasificación correcto del 86\% en el día 3 con métodos de preprocesamiento de Mínimos Cuadrados Asimétricos (MCAS) y la gestión de datos atípicos mediante el Método de la Bolsa (MB). Sin tener en cuenta las interacciones, la mejor metodología se obtiene al emplear un ALD con una precisión similar. Al día 6 post-inoculación, se obtienen precisiones similares con el ALD, siendo el más óptimo al usar los métodos de preprocesamiento como el de Corrección de Dispersión Multiplicativa (CDM) al tratar los datos atípicos con el MB. Estos resultados sugieren que la detección temprana de FOCR1, RSR2 y el EH en plantas de banano, mediante el uso de la espectroscopía de reflectancia, puede mejorar significativamente con la elección adecuada de metodologías de preprocesamiento, selección de características y clasificación de datos. (Texto tomado de la fuente).The early detection of diseases and water stress (WS) in plants is crucial for the agriculture and food sovereignty of Latin American countries. In this context, non-invasive methods such as visible-near infrared (VIS) and infrared (NIR) reflectance spectroscopy have been employed and proven promising for identifying biotic and abiotic stress in plants, even in asymptomatic phases. A relevant example is the infection of banana plants by devastating diseases like vascular wilt caused by the fungus Fusarium oxysporum f.sp. cubense Race 1 (FOCR1) and bacterial wilt caused by Ralstonia solanacearum Race 2 (RSR2), which can lead to losses of up to 100 % in plantations. To address this challenge, a study was conducted analyzing reflectance data from 240 banana plants in municipality of Carepa, located in the department from Antioquia, Colombia. The data included healthy plants, those subjected to WS, plants infected with FOCR1, contaged plants with RSR2, and their interactions. The analysis was performed using a portable ASD FieldSpec spectrometer. Initially, various preprocessing techniques were applied to the reflectance data in the spectral range of 350-2500 nm, including two for outlier treatment and five for smoothing. Different approaches for feature selection were then employed, identifying the wavelengths that best discriminated between the different treatments using the RELIEF methodology. Supervised classification methods such as Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forests (RF), Na¨ıve Bayes (NB), Support Vector Machines (SVM), k-Nearest Neighbors (KNN) and Multilayer Perceptron (MLP) were employed to optimize the classification accuracy of treatments. For this, a division of plants into 75 % training and 25 % testing was considered. Results showed that despite the asymptomatic period of 20 days for banana plants, LDA achieved a correct classification rate of 86 % on day 3 with asymmetric least squares (ALS) preprocessing and outlier management using the Bag method. Excluding interactions, the best methodology was obtained using LDA with similar accuracy. On day 6 post-inoculation, similar accuracies were achieved with LDA being optimal when using preprocessing methodologies such as multiplicative scatter correction (MSC) and outlier treatment with the Bag method. These results suggest that early detection of FOCR1, RSR2, and WS in banana plants through reflectance spectroscopy can significantly improve with the appropriate choice of preprocessing, feature selection, and data classification methodologies.MaestríaMagíster en Ciencias - Estadísticaxxi, 85 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónEstrés de sequiaEstrés abióticoEstrés bióticoFusarium oxysporumEspectroscopiadrought stressabiotic stressbiotic stressFusarium oxysporumspectroscopyDetección tempranaVIS / NIRClasificaciónEstrés hídricoFusarium oxysporumRalstonia solanacearumEarly detectionVIS/NIRClassificationWater stressFusarium oxysporumRalstonia solanacearumBananaDetección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros MichelEarly detection of biotic and abiotic stress using classification models of VIS/NIR reflectance spectroscopy data: Application in Gros Michel banana plantsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovoc[Abdulridha et al., 2016] Abdulridha, J., Ehsani, R., and De Castro, A. (2016). Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture, 6(4):56.[Abu-Khalaf, 2015] Abu-Khalaf, N. (2015). Sensing tomato’s pathogen using visible/near infrared (vis/nir) spectroscopy and multivariate data analysis (mvda). Palest. Tech. Univ. Res. J., 3(1):12–22.[Anderson and Gupta, 2009] Anderson, H. S. and Gupta, M. R. (2009). Classifying linear system outputs by robust local bayesian quadratic discriminant analysis on linear estimators. In 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pages 789–792. IEEE.[Balakrishnama and Ganapathiraju, 1998] Balakrishnama, S. and Ganapathiraju, A. (1998). Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, 18(1998):1–8.[Basa, 2022] Basa, J. (2022). Big data para quimiometría: Distribución asintótica del estimador pls en alta dimensión.[Berrar, 2019] Berrar, D. (2019). Bayes’ theorem and naive bayes classifier.[Bienkowski et al., 2019] Bienkowski, D., Aitkenhead, M. J., Lees, A. K., Gallagher, C., and Neilson, R. (2019). Detection and differentiation between potato (solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data. Computers and Electronics in Agriculture, 167:105056.[Bishop, 2006] Bishop, C. (2006). Pattern recognition and machine learning. Springer google schola, 2:531–537.[Bishop et al., 1995] Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford university press.[Box, 1953] Box, G. E. (1953). Non-normality and tests on variances. Biometrika, 40(3/4):318–335.[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.[Brown et al., 2000] Brown, C. D., Vega-Montoto, L., and Wentzell, P. D. (2000). Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Applied Spectroscopy, 54(7):1055–1068.[Buja et al., 1989] Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models. The Annals of Statistics, pages 453–510.[Choi and Marron, 2019] Choi, H. Y. and Marron, J. (2019). Theory of high-dimensional outliers. arXiv preprint arXiv:1909.02139.[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support vector machine. Machine learning, 20(3):273–297.[de Carvalho et al., 2015] de Carvalho, G. G. A., Moros, J., Santos Jr, D., Krug, F. J., and Laserna, J. J. (2015). Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Analytica chimica acta, 876:26–38.[Dupas et al., 2019] Dupas, E., Legendre, B., Olivier, V., Poliakoff, F., Manceau, C., and Cunty, A. (2019). Comparison of real-time pcr and droplet digital pcr for the detection of xylella fastidiosa in plants. Journal of microbiological methods, 162:86–95.[el Financiero, 2019] el Financiero, P. (2019). Fusarium raza 4 tropical mantiene en vilo a los bananeros. Fecha de acceso: 02/07/2023.[Espectador, 2019] Espectador, P. E. (2019). Ica firma acuerdos con asociaciones bananeras para controlar hongo fusarium. Fecha de acceso: 27/08/2023.[FAO, 2017] FAO (2017). Manual de seguridad y salud en la industria bananera. Fecha de acceso: 01/10/2023.[FAO, 2019] FAO (2019). La marchitez del banano por fusarium raza 4 tropical: ¿una creciente amenaza al mercado mundial del banano? Fecha de acceso: 20/10/2022.[FAO, 2021] FAO (2021). Análisis del mercado del banano, resultados preliminares 2020. Fecha de acceso: 28/10/2022.[Farber et al., 2019a] Farber, C., Mahnke, M., Sanchez, L., and Kurouski, D. (2019a). Advanced spectroscopic techniques for plant disease diagnostics. a review. TrAC Trends in Analytical Chemistry, 118:43–49.[Farber et al., 2019b] Farber, C., Shires, M., Ong, K., Byrne, D., and Kurouski, D. (2019b). Raman spectroscopy as an early detection tool for rose rosette infection. Planta, 250(4):1247–1254.[Fegan and Prior, 2006] Fegan, M. and Prior, P. (2006). Diverse members of the ralstonia solanacearum species complex cause bacterial wilts of banana. Australasian Plant Pathology, 35:93–101.[Garc´ıa-Bastidas et al., 2020] Garc´ıa-Bastidas, F., Quintero-Vargas, J., Ayala-Vasquez, M., Schermer, T., Seidl, M., Santos-Paiva, M., Noguera, A., Aguilera-Galvez, C., Wittenberg, A., Hofstede, R., et al. (2020). First report of fusarium wilt tropical race 4 in cavendish bananas caused by fusarium odoratissimum in colombia. Plant disease, 104(3):994–994.[Gazalba et al., 2017] Gazalba, I., Reza, N. G. I., et al. (2017). Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. In 2017 2nd international conferences on information technology, information systems and electrical engineering (ICITISEE), pages 294–298. IEEE.[Genin and Denny, 2012] Genin, S. and Denny, T. P. (2012). Pathogenomics of the ralstonia solanacearum species complex. Annual review of phytopathology, 50:67–89.[Gold and Sollich, 2003] Gold, C. and Sollich, P. (2003). Model selection for support vector machine classification. Neurocomputing, 55(1-2):221–249.[Gomez et al., 2008] Gomez, C., Rossel, R. A. V., and McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An australian case study. Geoderma, 146(3-4):403–411.[Gull et al., 2019] Gull, A., Lone, A. A., and Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, pages 1–19.[Guo et al., 2003] Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). Knn modelbased approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings, pages 986–996. Springer.[Hanusz et al., 2018] Hanusz, Z., Enomoto, R., Seo, T., and Koizumi, K. (2018). A monte carlo comparison of jarque–bera type tests and henze–zirkler test of multivariate normality. Communications in Statistics-Simulation and Computation, 47(5):1439–1452.[Hou et al., 2022] Hou, B., Hu, Y., Zhang, P., and Hou, L. (2022). Potato late blight severity and epidemic period prediction based on vis/nir spectroscopy. Agriculture, 12(7):897.[(ICA), 2020] (ICA), I. C. A. (2020). Fusarium r4t. Fecha de acceso: 27/08/2023.[Ignat et al., 2022] Ignat, T., Shavit, Y., Rachmilevitch, S., and Karnieli, A. (2022). Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 217:26–40.[Jie et al., 2009] Jie, L., Zifeng, W., Lixiang, C., Hongming, T., Patrik, I., Zide, J., and Shining, Z. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biological control, 51(3):427–434.[Kaliramesh et al., 2013] Kaliramesh, S., Chelladurai, V., Jayas, D., Alagusundaram, K., White, N., and Fields, P. (2013). Detection of infestation by callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. Journal of Stored Products Research, 52:107–111.[Khaled et al., 2018a] Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., and Seman, I. A. (2018a). Spectral features selection and classification of oil palm leaves infected by basal stem rot (bsr) disease using dielectric spectroscopy. Computers and Electronics in Agriculture, 144:297–309.[Khaled et al., 2018b] Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., and Onwude, D. I. (2018b). Early detection of diseases in plant tissue using spectroscopy– applications and limitations. Applied Spectroscopy Reviews, 53(1):36–64.[Kira and Rendell, 1992] Kira, K. and Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new algorithm. In Proceedings of the tenth national conference on Artificial intelligence, pages 129–134.[Klap et al., 2020] Klap, C., Luria, N., Smith, E., Bakelman, E., Belausov, E., Laskar, O., Lachman, O., Gal-On, A., and Dombrovsky, A. (2020). The potential risk of plant-virus disease initiation by infected tomatoes. Plants, 9(5):623.[Koc et al., 2020] Koc, G., Fidan, H., Sari, N., and C¸ALIS¸, O. (2020). A comparative study on apple chlorotic leafspot virus (aclsv) isolates from different hosts in the east mediterranean region of turkey. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 18(1):141–157.[Kononenko, 1994] Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In European conference on machine learning, pages 171–182. Springer.[Learning, 1997] Learning, M. (1997). Tom mitchell. Publisher: McGraw Hill.[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551.[Li et al., 2014] Li, M.-H., Xie, X.-L., Lin, X.-F., Shi, J.-X., Ding, Z.-J., Ling, J.-F., Xi, P.-G., Zhou, J.-N., Leng, Y., Zhong, S., et al. (2014). Functional characterization of the gene fooch1 encoding a putative α-1, 6-mannosyltransferase in fusarium oxysporum f. sp. cubense. Fungal Genetics and Biology, 65:1–13.[Li et al., 2008] Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., and Kinard, G. (2008). A reliable and inexpensive method of nucleic acid extraction for the pcr-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2):48–55.[Lipton et al., 2014] Lipton, Z. C., Elkan, C., and Narayanaswamy, B. (2014). Thresholding classifiers to maximize f1 score. arXiv preprint arXiv:1402.1892.[Luana et al., 2015] Luana, G., Fabiano, S., Fabio, G., and Paolo, G. (2015). Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi. Forestry: An International Journal of Forest Research, 88(4):465–470.[Macias-Echeverri et al., 2022] Macias-Echeverri, E., Hoyos-Carvajal, L. M., Botero- Fernández, V., Zapata-Henao, S., and Marín-Ortiz, J. C. (2022). Spectral behavior of banana with foc r1 infection: Analysis of williams and gros michel clones. Agronomía Colombiana, 40(3).[Madihah et al., 2014] Madihah, A., Idris, A., and Rafidah, A. (2014). Polyclonal antibodies of ganoderma boninense isolated from malaysian oil palm for detection of basal stem rot disease. African Journal of Biotechnology, 13(34).[Manzo-Sánchez et al., 2014] Manzo-Sánchez, G., Orozco-Santos, M., Martínez-Bolaños, L., Garrido-Ramírez, E., and Canto-Canche, B. (2014). Enfermedades de importancia cuarentenaria y económica del cultivo de banano (musa sp.) en México. Revista mexicana de fitopatología, 32(2):89–107.[Mar´ın-Ortiz et al., 2020] Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., and Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1):88–99.[Martens et al., 1983] Martens, H., Jensen, S., and Geladi, P. (1983). Multivariate linearity transformation for near-infrared reflectance spectrometry. In Proceedings of the Nordic symposium on applied statistics, pages 205–234. Stokkand Forlag Publishers Stavanger, Norway.[Monroy and Rivera, 2012] Monroy, L. G. D. and Rivera, M. A. M. (2012). Análisis estadístico de datos multivariados. Universidad Nacional de Colombia.[Montoya Rios et al., 2022] Montoya Rios, D. P., Molano Prieto, O. J., et al. (2022). Análisis de producción, rendimiento y exportación de banano en los principales países afectados por el hongo fusarium oxysporum f. sp. cubense (foc r4t) y recomendaciones para Colombia.[Morellos et al., 2020] Morellos, A., Tziotzios, G., Orfanidou, C., Pantazi, X. E., Sarantaris, C., Maliogka, V., Alexandridis, T. K., and Moshou, D. (2020). Non-destructive early detection and quantitative severity stage classification of tomato chlorosis virus (tocv) infection in young tomato plants using vis–nir spectroscopy. Remote Sensing, 12(12):1920.[Mosa et al., 2017] Mosa, K. A., Ismail, A., and Helmy, M. (2017). Introduction to plant stresses. In Plant stress tolerance, pages 1–19. Springer.[Müller and Guido, 2016] Müller, A. C. and Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. .O’Reilly Media, Inc.”.[Muncan et al., 2022] Muncan, J., Jinendra, B. M. S., Kuroki, S., and Tsenkova, R. (2022). Aquaphotomics research of cold stress in soybean cultivars with different stress tolerance ability: Early detection of cold stress response. Molecules, 27(3):744.[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.[Newey and Powell, 1987] Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society, pages 819–847.[Pal, 2005] Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1):217–222.[Pavia et al., 2014] Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. A. (2014). Introduction to spectroscopy. Cengage learning.[Ploetz, 2006] Ploetz, R. C. (2006). Fusarium wilt of banana is caused by several pathogens referred to as fusarium oxysporum f. sp. cubense. Phytopathology, 96(6):653–656.[Ploetz, 2015] Ploetz, R. C. (2015). Fusarium wilt of banana. Phytopathology, 105(12):1512– 1521.[R. Beghi and Guidetti, 2017] R. Beghi, V. Giovenzana, L. B. and Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204:46–54.[Ramsay and Silverman, 2002] Ramsay, J. O. and Silverman, B. W. (2002). Applied functional data analysis: methods and case studies. Springer.[Reyes-Matamoros et al., 2014] Reyes-Matamoros, J., Mart´ınez-Moreno, D., Rueda-Luna, R., and Rodr´ıguez-Ram´ırez, T. (2014). Efecto del estr´es h´ıdrico en plantas de frijol (phaseolus vulgaris l.) en condiciones de invernadero. Revista Iberoamericana de Ciencias, 1(2):191–203.[Rinnan et al., 2009] Rinnan, A., Van Den Berg, F., and Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10):1201–1222.[Roa Martínez and Loaiza Correa, 2011] Roa Martínez, S. M. and Loaiza Correa, H. (2011). Evaluation of techniques for relevance analysis of radiological images using filters. Revista Ingeniería Biomédica, 5(9):26–34.[Rousseeuw et al., 1999] Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999). The bagplot: a bivariate boxplot. The American Statistician, 53(4):382–387.[Rumpf et al., 2010] Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., and Pl¨umer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and electronics in agriculture, 74(1):91–99.[Salazar et al., 2014] Salazar, E., Trujillo, I., Macías, M. P., Gutiérrez, M. A., Castro, L., Vallejo, E., and Torrealba, M. (2014). Respuesta fisiológica al estrés hídrico de plantas de banano cv.pineo gigante’(musa aaa) regeneradas a partir de yemas irradiadas. Biotecnología Vegetal, 14(3).[Sankaran et al., 2010] Sankaran, S., Mishra, A., Ehsani, R., and Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and electronics in agriculture, 72(1):1–13.[Savitzky and Golay, 1964] Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.[Shin et al., 2023] Shin, M.-Y., Viejo, C. G., Tongson, E., Wiechel, T., Taylor, P. W., and Fuentes, S. (2023). Early detection of verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204:107567.[Sun and Wu, 2008] Sun, Y. and Wu, D. (2008). A relief based feature extraction algorithm. In Proceedings of the 2008 SIAM International Conference on Data Mining, pages 188– 195. SIAM.[Svanberg, 2012] Svanberg, S. (2012). Atomic and molecular spectroscopy: basic aspects and practical applications, volume 6. Springer Science & Business Media.[Tjandra Nugraha et al., 2021] Tjandra Nugraha, D., Zinia Zaukuu, J.-L., Aguinaga B´osquez, J. P., Bodor, Z., Vitalis, F., and Kovacs, Z. (2021). Near-infrared spectroscopy and aquaphotomics for monitoring mung bean (vigna radiata) sprout growth and validation of ascorbic acid content. Sensors, 21(2):611.[Tu et al., 2022] Tu, Y.-K., Kuo, C.-E., Fang, S.-L., Chen, H.-W., Chi, M.-K., Yao, M.-H., and Kuo, B.-J. (2022). A 1d-sp-net to determine early drought stress status of tomato (solanum lycopersicum) with imbalanced vis/nir spectroscopy data. Agriculture, 12(2):259.[Tunsagool et al., 2019] Tunsagool, P., Jutidamrongphan, W., Phaonakrop, N., Jaresitthikunchai, J., Roytrakul, S., and Leelasuphakul, W. (2019). Insights into stress responses in mandarins triggered by bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon penicillium digitatum infection. Plant cell reports, 38(5):559–575.[Urbanowicz et al., 2018] Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., and Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of biomedical informatics, 85:189–203.[Visa et al., 2011] Visa, S., Ramsay, B., Ralescu, A. L., and Van Der Knaap, E. (2011). Confusion matrix-based feature selection. Maics, 710(1):120–127.[Walsh et al., 2020] Walsh, K. B., Blasco, J., Zude-Sasse, M., and Sun, X. (2020). Visiblenir ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biology and Technology, 168:111246.[Wang et al., 2020] Wang, D., Peng, C., Zheng, X., Chang, L., Xu, B., and Tong, Z. (2020). Secretome analysis of the banana fusarium wilt fungi foc r1 and foc tr4 reveals a new effector oastl required for full pathogenicity of foc tr4 in banana. Biomolecules, 10(10):1430.[Yu et al., 2021] Yu, K., Fang, S., and Zhao, Y. (2021). Heavy metal hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245:118917.[Zahir et al., 2022] Zahir, S. A. D. M., Omar, A. F., Jamlos, M. F., Azmi, M. A. M., and Muncan, J. (2022). A review of visible and near-infrared (vis-nir) spectroscopy application in plant stress detection. Sensors and Actuators A: Physical, page 113468.[Zhang et al., 2019] Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., and Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165:104943.[Zhang et al., 2012] Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., and Wang, J. (2012). Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134:165–174.[Zhang et al., 2021] Zhang, W., Zhang, W., Yang, Y., Hu, G., Ge, D., Liu, H., Cao, H., et al. (2021). A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress. Computers and Electronics in Agriculture, 181:105966.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86300/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1019036345.2024.pdf1019036345.2024.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf955128https://repositorio.unal.edu.co/bitstream/unal/86300/4/1019036345.2024.pdfa950adcc98f2c848348b7ec5a391f43bMD54THUMBNAIL1019036345.2024.pdf.jpg1019036345.2024.pdf.jpgGenerated Thumbnailimage/jpeg5491https://repositorio.unal.edu.co/bitstream/unal/86300/5/1019036345.2024.pdf.jpg3b8d03a71659f8fee22c0dfb1d63d9ecMD55unal/86300oai:repositorio.unal.edu.co:unal/863002024-08-25 23:11:58.706Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=