Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia

ilustraciones, diagramas, fotografías

Autores:
Granados Moreno, Edwin Giovanni
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85372
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85372
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Resistencia a los herbicidas
Erigeron
Agroquímicos
herbicide resistance
Erigeron
agrochemicals
Dose-response
Hairy fleabane
Log-logistic
Rama negra
Hormesis
Venadillo
Herbicida
Dosis-respuesta
Buva
Conyza
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_f4553dd5197c75e5164e68b985a99642
oai_identifier_str oai:repositorio.unal.edu.co:unal/85372
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
dc.title.translated.eng.fl_str_mv Widespread occurrence of glyphosate-resistant hairy fleabane (Erigeron bonariensis L.) in Colombia and weed control alternatives
title Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
spellingShingle Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Resistencia a los herbicidas
Erigeron
Agroquímicos
herbicide resistance
Erigeron
agrochemicals
Dose-response
Hairy fleabane
Log-logistic
Rama negra
Hormesis
Venadillo
Herbicida
Dosis-respuesta
Buva
Conyza
title_short Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
title_full Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
title_fullStr Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
title_full_unstemmed Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
title_sort Erigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
dc.creator.fl_str_mv Granados Moreno, Edwin Giovanni
dc.contributor.advisor.spa.fl_str_mv Zelaya, Ian Alexei
Plaza Trujillo, Guido Armando
dc.contributor.author.spa.fl_str_mv Granados Moreno, Edwin Giovanni
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-3474-8039
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Resistencia a los herbicidas
Erigeron
Agroquímicos
herbicide resistance
Erigeron
agrochemicals
Dose-response
Hairy fleabane
Log-logistic
Rama negra
Hormesis
Venadillo
Herbicida
Dosis-respuesta
Buva
Conyza
dc.subject.agrovoc.spa.fl_str_mv Resistencia a los herbicidas
Erigeron
Agroquímicos
dc.subject.agrovoc.eng.fl_str_mv herbicide resistance
Erigeron
agrochemicals
dc.subject.proposal.eng.fl_str_mv Dose-response
Hairy fleabane
Log-logistic
dc.subject.proposal.spa.fl_str_mv Rama negra
Hormesis
Venadillo
Herbicida
Dosis-respuesta
dc.subject.proposal.por.fl_str_mv Buva
dc.subject.proposal.other.fl_str_mv Conyza
description ilustraciones, diagramas, fotografías
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-06
dc.date.accessioned.none.fl_str_mv 2024-01-19T12:45:04Z
dc.date.available.none.fl_str_mv 2024-01-19T12:45:04Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85372
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85372
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Aho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: the worldviews of AIC and BIC. Ecology, 95(3), 631–636. https://doi.org/10.1890/13-1452.1
Ahsan, N., Lee, D.-G., Lee, K.-W., Alam, I., Lee, S.-H., Bahk, J. D., & Lee, B.-H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46(12), 1062–1070. https://doi.org/https://doi.org/10.1016/j.plaphy.2008.07.002
Amaro-Blanco, I., Fernández-Moreno, P. T., Osuna-Ruiz, M. D., Bastida, F., & De Prado, R. (2018). Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Management Science, 74(8), 1925–1937. https://doi.org/10.1002/ps.4896
Amaro-Blanco, I., Osuna, M. D., Romano, Y., Roldán-Gómez, R., Palma-Bautista, C., Portugal, J., & De Prado, R. (2019). Selection for glyphosate resistance in conyza spp. Occurring in the railway network of Southern Spain. Canadian Journal of Plant Science, 99(4), 413–419. https://doi.org/10.1139/cjps-2018-0254
Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694–24710. https://doi.org/10.1007/s11356-016-7794-7
Belz, R., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726 Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726
Benedetti, L., Rangani, G., Viana, V. E., Carvalho-Moore, P., Merotto, A., Camargo, E. R., de Avila, L. A., & Roma-Burgos, N. (2020). Rapid reduction of herbicide susceptibility in junglerice by recurrent selection with sublethal dose of herbicides and heat stress. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111761
Beres, Z. T., Ernst, E. E., Ackley, B. A., Loux, M. M., Owen, M. D. K., & Snow, A. A. (2018). High levels of glyphosate resistance in conyza canadensis from agricultural and non-agricultural sites in Ohio and Iowa. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-28163-w
Brain, P., & Cousens, R. (1989). An equation to describe dose responses where there is stimulation of growth at low doses. Weed Research, 29(2), 93–96. https://doi.org/10.1111/j.1365-3180.1989.tb00845.x
Brito, I. P. F. S., Tropaldi, L., Carbonari, C. A., & Velini, E. D. (2018). Hormetic effects of glyphosate on plants. Pest Management Science, 74(5), 1064–1070. https://doi.org/10.1002/ps.4523
Burgos, N. R., Tranel, P. J., Streibig, J. C., Davis, V. M., Shaner, D., Norsworthy, J. K., & Ritz, C. (2013). Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Science, 61(1), 4–20. https://doi.org/10.1614/ws-d-12-00032.1
Cobb, A. H., & Reade, J. P. H. (2010). Herbicides and Plant Physiology: Second Edition. In Herbicides and Plant Physiology: Second Edition. https://doi.org/10.1002/9781444327793
Davis, V. M., Kruger, G. R., Hallett, S. G., Tranel, P. J., & Johnson, W. G. (2010). Heritability of Glyphosate Resistance in Indiana Horseweed ( Conyza canadensis ) Populations . Weed Science, 58(1), 30–38. https://doi.org/10.1614/ws-09-055.1
de Mendiburu, F. (2017). agricolae: Statistical Procedures for Agricultural Research (R package version 1.2-8). https://cran.r-project.org/package=agricolae
Duke, S. O. (2018). The history and current status of glyphosate. Pest Management Science, 74(5), 1027–1034. https://doi.org/10.1002/ps.4652
Dyer, W. E. (2018). Stress-induced evolution of herbicide resistance and related pleiotropic effects. In Pest Management Science (Vol. 74, Issue 8, pp. 1759–1768). https://doi.org/10.1002/ps.5043
Fuentes, C., Eraso, E., Sequeda, O., & Piedrahita, W. (2011). Flora arvense del altiplano Cundiboyacense de Colombia. Universidad Nacional de Colombia. Facultad de Agronomía Bayer CropScience.
Ge, X., d’Avignon, D. A., Ackerman, J. J. H., Duncan, B., Spaur, M. B., & Sammons, R. D. (2011). Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science, 67(10), 1215–1221. https://doi.org/10.1002/ps.2169
Ge, X., D’Avignon, D. A., Ackerman, J. J. H., & Sammons, R. D. (2010). Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science, 66(4), 345–348. https://doi.org/10.1002/ps.1911
Gomes, G. L. (2014). Caracterização bioquímica e morfofisiológica de populações de buva ( Conyza spp .) resistentes ao Botucatu – SP Dezembro – 2014.
González-Torralva, F., Cruz-Hipolito, H., Bastida, F., Mülleder, N., Smeda, R. J., & De Prado, R. (2010). Differential susceptibility to glyphosate among the conyza weed species in Spain. Journal of Agricultural and Food Chemistry, 58(7), 4361–4366. https://doi.org/10.1021/jf904227p
González-Torralva, F., Gil-Humanes, J., Barro, F., Domínguez-Valenzuela, J. A., & De Prado, R. (2014). First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agronomy for Sustainable Development, 34(2), 553–560. https://doi.org/10.1007/s13593-013-0163-8
González-Torralva, F., Rojano-Delgado, A. M., Luque de Castro, M. D., Mülleder, N., & De Prado, R. (2012). Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology, 169(17), 1673–1679. https://doi.org/10.1016/j.jplph.2012.06.014
Håkansson, S. (2003). Weeds and Weed Management on Arable Land: an Ecological Approach. In Journal of Weed Science and Technology. CABI Publishing. https://doi.org/10.3719/weed.45.131
Heap, I. (2005). Criteria for Confirmation of Herbicide-Resistant Weeds - with specific emphasis on confirming low level resistance. www.weedscience.com
Heap, I. (2014). Global perspective of herbicide-resistant weeds. Pest Management Science, 70(9), 1306–1315. https://doi.org/10.1002/ps.3696
Heap, I. (2021). The International Herbicide-Resistant Weed Database. Online. Saturday, April 11, 2020 . Available www.weedscience.org.
Heap, I., & Duke, S. O. (2017). Overview of glyphosate-resistant weeds worldwide. October. https://doi.org/10.1002/ps.4760
Hereward, J. P., Werth, J. A., Thornby, D. F., Keenan, M., Chauhan, B. S., & Walter, G. H. (2018). Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis) – glyphosate death response and candidate resistance genes. Pest Management Science, 74(10), 2346–2355. https://doi.org/10.1002/ps.4804
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425
Ideam. (2020). Promedios climatológicos 1981-2010. http://www.ideam.gov.co/web/tiempo-y-clima/clima
Kaushansky, A., Hedstrom, L., Goldman, A., Singh, J., Yang, P. L., Rathod, P. K., Cynamon, M., Wodarz, D., Mahadevan, D., Tomaras, A., Navia, M. A., & Schiffer, C. A. (2018). A call to arms: Unifying the fight against resistance. Science Signaling, 11(553), eaav0442. https://doi.org/10.1126/scisignal.aav0442
Kendig, E. L., Le, H. H., & Belcher, S. M. (2010). Defining hormesis: Evaluation of a complex concentration response phenomenon. International Journal of Toxicology, 29(3), 235–246. https://doi.org/10.1177/1091581810363012
Kleinman, Z., & Rubin, B. (2017). Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Management Science, 73(1), 246–253. https://doi.org/10.1002/ps.4293
Knezevic, S. Z., Streibig, J. C., & Ritz, C. (2007). Utilizing R Software Package for Dose-Response Studies: The Concept and Data Analysis. Weed Technology, 21(3), 840–848. https://doi.org/10.1614/wt-06-161.1
Mendes, R. R., Takano, H. K., Netto, A. G., Junior, G. J. P., Cavenaghi, A. L., Silva, V. F. V., Nicolai, M., Christoffoleti, P. J., Junior, R. S. D. oliveira, DE MELO, M. S. C., & Ovejero, R. F. L. (2021). Monitoring glyphosate-and chlorimuron-resistant conyza spp. Populations in brazil. Anais Da Academia Brasileira de Ciencias, 93(1). https://doi.org/10.1590/0001-3765202120190425
Menza-Franco, H. D., & Salazar-Gutierrez, L. F. (2006). Estudios de resistencia al glifosato en tres arvenses de la zona cafetera colombiana y alternativas para su manejo. Avances Técnicos Cenicafé, 350. http://biblioteca.cenicafe.org/handle/10778/344 Montealegre, F. A. (2011). Morfología de plántulas de malezas de clima cálido. Produmedios.
Mora, D. A., Cheimona, N., Palma-Bautista, C., Rojano-Delgado, A. M., Osuna-Ruiz, M. D., Alcántara de la Cruz, R., & De Prado, R. (2019). Physiological, biochemical and molecular bases of resistance to tribenuron-methyl and glyphosate in Conyza canadensis from olive groves in southern Spain. Plant Physiology and Biochemistry, 144(May), 14–21. https://doi.org/10.1016/j.plaphy.2019.09.023
Morell, H., Clark, M. J., Knowles, P. F., & Sprinson, D. B. (1967). The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate. The Journal of Biological Chemistry, 242(1), 82–90.
Moretti, M., Bobadilla, L., & Hanson, B. (2021). Cross-resistance to diquat in glyphosate/paraquat-resistant hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis) and confirmation of 2,4-D resistance in Conyza bonariensis. Weed Technology, 35(4), 554–559. https://doi.org/DOI: 10.1017/wet.2021.11
Moretti, M. L., & Hanson, B. D. (2017). Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research, 57(1), 25–34. https://doi.org/10.1111/wre.12230
Moretti, M., Sosnoskie, L., Shrestha, A., Wright, S., Hembree, K., Jasieniuk, M., & Hanson, B. (2016). Distribution of Conyza sp. in Orchards of California and Response to Glyphosate and Paraquat. Weed Science, 64(2), 339–347. https://doi.org/10.1614/ws-d-15-00174.1
Okumu, M. N., Vorster, B. J., & Reinhardt, C. F. (2019). Growth-stage and temperature influence glyphosate resistance in Conyza bonariensis (L.) Cronquist. South African Journal of Botany, 121, 248–256. https://doi.org/10.1016/j.sajb.2018.10.034
Owen, M. D. K., Beckie, H. J., Leeson, J. Y., Norsworthy, J. K., & Steckel, L. E. (2015). Integrated pest management and weed management in the United States and Canada. Pest Management Science, 71(3), 357–376. https://doi.org/10.1002/ps.3928
Owen, M. D. K., & Zelaya, I. A. (2005). Herbicide-resistant crops and weed resistance to herbicides. Pest Management Science, 61(3), 301–311. https://doi.org/10.1002/ps.1015
Palma-Bautista, C., Vázquez-García, J. G., Domínguez-Valenzuela, J. A., Ferreira Mendes, K., Alcántara de la Cruz, R., Torra, J., & De Prado, R. (2021). Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. Journal of Agricultural and Food Chemistry, 69(49), 14792–14801. https://doi.org/10.1021/acs.jafc.1c04279
Panozzo, S., Scarabel, L., Collavo, A., & Sattin, M. (2015). Protocols for Robust Herbicide Resistance Testing in Different Weed Species. Journal of Visualized Experiments : JoVE, 101, e52923. https://doi.org/10.3791/52923
Petersen, J., Neser, J.-M., & Dresbach-Runkel, M. (2008). Resistant factors of target-site and metabolic resistant black-grass (Alopecurus myosuroides Huds.) biotypes against different ACC-ase-inhibitors. Journal of Plant Diseases and Proctection, Supplement, 25–29.
Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V., & Walsh, M. J. (2018). The challenge of herbicide resistance around the world: a current summary. Pest Management Science, 74(10), 2246–2259. https://doi.org/10.1002/ps.4821
Pinheiro, J., & Bates, D. (2020). Package ‘ nlme .’
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Schafer, D., Bohn, J., Krueger, R., Cullis, K., & Schafer, D. (1999). Resistance to Glyphosate in Lolium rigidum . 47(4), 405–411.
Puricelli, E., Faccini, D., Metzler, M., & Torres, P. (2015). Differential Susceptibility of Conyza bonariensis Biotypes to Glyphosate and ALS-Inhibiting Herbicides in Argentina. Agricultural Sciences, 06(01), 22–30. https://doi.org/10.4236/as.2015.61003
Quintero-Pértuz, I., & Carbonó-DelaHoz, E. (2016). Panorama del manejo de malezas en cultivos de banano en el departamento del Magdalena, Colombia. Revista Colombiana de Ciencias Hortícolas, 9(2), 329. https://doi.org/10.17584/rcch.2015v9i2.4188
Quintero-Pertuz, I., Hoyos, V., Carbonó-Delahoz, E., & Plaza, G. (2021). Susceptibility of weed populations to glyphosate in banana plantations of the Department of Magdalena, Colombia. Chilean Journal of Agricultural Research, 81(2), 172–181. https://doi.org/10.4067/s0718-58392021000200172
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R. PLOS ONE, 10(12), e0146021.
Ritz, Christian, & Strebig, J. C. (2016). Package “drc”: Analysis of Dose-Response Curves. R Project, 149. https://cran.r-project.org/web/packages/drc/drc.pdf
Sammons, R. D., & Gaines, T. A. (2014). Glyphosate resistance: State of knowledge. Pest Management Science, 70(9), 1367–1377. https://doi.org/10.1002/ps.3743
Seefeldt, S. S., Jensen, J. E., & Fuerst, E. P. (1995). Log-Logistic Analysis of Herbicide Dose-Response Relationships. Weed Technology, 9(2), 218–227. http://www.jstor.org/stable/3987736
Tahmasebi, B. K., Alebrahim, M. T., Roldán-Gómez, R. A., Silveira, H. M. da, Carvalho, L. B. de, Alcántara-de la Cruz, R., & De Prado, R. (2018). Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Protection, 112(December 2017), 350–355. https://doi.org/10.1016/j.cropro.2018.06.021
Tani, E., Chachalis, D., & Travlos, I. S. (2015). A Glyphosate Resistance Mechanism in Conyza canadensis Involves Synchronization of EPSPS and ABC-transporter Genes. Plant Molecular Biology Reporter, 33(6), 1721–1730. https://doi.org/10.1007/s11105-015-0868-8
Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286(September 2020). https://doi.org/10.1016/j.jenvman.2021.112141
Wu, H., Walker, S., Robinson, G., & Coombes, N. (2010). Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 24(2), 102–107. http://www.jstor.org/stable/40801088
Zabala, D., Carranza, N., Darghan, A., & Plaza, G. (2019). Spatial distribution of multiple herbicide resistance in Echinochloa colona (L.) link. Chilean Journal of Agricultural Research, 79(4), 576–585. https://doi.org/10.4067/S0718-58392019000400576
Zelaya, I., Owen, M. D. K., & VanGessel, M. J. (2007). Transfer of glyphosate resistance: Evidence of hybridization in Conyza (Asteraceae). American Journal of Botany, 94(4), 660–673.
Zhu, X. W., Liu, S. S., Qin, L. T., Chen, F., & Liu, H. L. (2013). Modeling non-monotonic dose-response relationships: Model evaluation and hormetic quantities exploration. Ecotoxicology and Environmental Safety, 89, 130–136. https://doi.org/10.1016/j.ecoenv.2012.11.022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 44 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000050
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85372/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85372/6/2950095219-2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/85372/7/2950095219-2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c2934d6ac4acdf6fe37a8ec472405b77
fcb0196fc517f68933c89da589c120a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089885323100160
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zelaya, Ian Alexei6677e11a0952bfdea954cb8ab97f67b8Plaza Trujillo, Guido Armando4e6fe1baa3c2eca508605f125f4a0604Granados Moreno, Edwin Giovanni549c1dd2ed6007a7397aa9114000bee9https://orcid.org/0000-0002-3474-80392024-01-19T12:45:04Z2024-01-19T12:45:04Z2022-06https://repositorio.unal.edu.co/handle/unal/85372Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEffective weed management is essential in modern agriculture. Currently, glyphosate is the most used herbicide globally, offering non-selective and post-emergence weed control by inhibiting the EPSP synthase in chloroplasts. Ubiquitous and recurrent use of the same herbicidal mode of action may concurrently select herbicide-resistant biotypes and thus result in loss of efficacy. Hairy fleabane (Erigeron bonariensis L.) is a native South American species that has invaded many agroecosystems worldwide, commonly reported as a glyphosate-resistant weed. In Colombia, E. bonariensis is adapted to many ecological niches, including essential crop systems. Putative hairy fleabane resistance to glyphosate was purported since the late ’90s but eventually confirmed in Colombia’s coffee plantations in 2006. Consequently, anecdotal accounts by farmers suggest a prevalence of glyphosate-resistant fleabane in several crop systems in Colombia and consistent with the dispersion of glyphosate-resistance hairy fleabane reported for this species in other countries. Objective in this investigation was to detect the resistance to glyphosate, also to estimate the levels of that resistance and to propose effective chemical options to control E. bonariensis in Colombia. We conducted a resistance profile test under a greenhouse to evaluate ten hairy fleabane populations collected from different agricultural systems in Colombia. We confirmed that all populations were glyphosate-resistant, with at least 80% survival to the recommended field rate of 1080 g ae ha-1. Importantly, in 90% of populations, at least 80% of individuals survived to the double glyphosate field rate, suggesting high levels of glyphosate resistance in E. bonariensis from Colombia. As a reference, five pristine E. bonariensis populations collected from areas devoid of exposure to glyphosate were effectively controlled at the recommended rate, confirming that susceptibility still exists in non-sprayed areas. Characterization based on relative biomass through glasshouse dose-response studies identified one population with a low resistance factor (P10 with 3.15-fold) and a second, with a high resistance factor (P15 with 22.3-fold) when compared with the most sensitive population (P7), which had an ED50 of 109 g ae ha-1. Interestingly, both populations displayed hormesis at recommended glyphosate doses during this assessment. Finally, five herbicides with different modes of action were tested, identifying pyraflufen-ethyl as the most effective, followed by mesotrione; paraquat and glufosinate were the least effective. Our findings confirmed the prevalence of high glyphosate-resistant E. bonariensis in key crops throughout Colombia (i.e., plantain, banana, cassava, passionfruit, papaya, and red beans). Effective weed management strategies need to be implemented by Colombian farmers to mitigate the evolution of glyphosate resistance, combining mechanical and cultural control. Chemical alternatives include PPO and HPPD herbicides as part of the integrated weed management program.El manejo efectivo de malezas es esencial en la agricultura moderna. Actualmente, glifosato es el herbicida más utilizado en el mundo, ofreciendo control efectivo de malezas, no-selectivo en post-emergencia al inhibir la enzima EPSP sintasa en los cloroplastos. El recurrente uso de un mismo modo de acción herbicida puede seleccionar biotipos resistentes al herbicida y resultar en la pérdida de eficacia. Erigeron bonariensis L. comúnmente llamada venadillo es una planta nativa de Sudamerica que ha invadido muchos ecosistemas en el mundo y que ha sido reportada como maleza resistente a glifosato en Colombia. E. bonariensis está adaptada a muchos nichos ecológicos, incluyendo agroecosistemas de cultivos esenciales. Se ha tenido sospecha de resistencia a glifosato en esta especie desde los años 90 y se confirmó resistencia desde 2006. El objetivo del presente estudio consistió en detectar la resistencia a glifosato en poblaciones de E. bonariensis en Colombia, estimar los niveles de resistencia y proponer medidas de control con herbicidas que fueran eficaces. En ensayos en invernadero, se confirmó que todas las poblaciones provenientes de agroecosistemas donde su había utilizado glifosato son resistentes a este herbicida, presentan porcentaje de supervivencia >80% a la dosis recomendada (1080 g ea ha-1). Además el 90% de las poblaciones sobrevivió un 80% de las plantas al usar el doble de esta dosis. En dos poblaciones caracterizadas los factores de resistencia fueron de 3,15 y 22,3 veces la dosis necesaria para controlar la población más sensible. Ésta población presentó un ED50 en base a biomasa de 109 g ea ha-1. Cinco herbicidas con diferente modo de acción fueron evaluados resultando pyraflufen-etyl y mesotrione los más efectivos y sugiriendo posibles casos resistencia múltiple con paraquat y a 2-4,D. (Texto tomado de la fuente).Contiene mapa de distribución de la resistencia en las poblaciones evaluadasTexto en inglésMaestríaMagíster en Ciencias AgrariasMuestreo intencional, bioensayos en invernadero, estadística bayesianaFitoprotección IntegradaPrueba discriminatoria, modelado de datos log-logistic, ensayos en invernadero44 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesResistencia a los herbicidasErigeronAgroquímicosherbicide resistanceErigeronagrochemicalsDose-responseHairy fleabaneLog-logisticRama negraHormesisVenadilloHerbicidaDosis-respuestaBuvaConyzaErigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en ColombiaWidespread occurrence of glyphosate-resistant hairy fleabane (Erigeron bonariensis L.) in Colombia and weed control alternativesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiahttp://vocab.getty.edu/page/tgn/1000050AgrosaviaAgrovocAho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: the worldviews of AIC and BIC. Ecology, 95(3), 631–636. https://doi.org/10.1890/13-1452.1Ahsan, N., Lee, D.-G., Lee, K.-W., Alam, I., Lee, S.-H., Bahk, J. D., & Lee, B.-H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46(12), 1062–1070. https://doi.org/https://doi.org/10.1016/j.plaphy.2008.07.002Amaro-Blanco, I., Fernández-Moreno, P. T., Osuna-Ruiz, M. D., Bastida, F., & De Prado, R. (2018). Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Management Science, 74(8), 1925–1937. https://doi.org/10.1002/ps.4896Amaro-Blanco, I., Osuna, M. D., Romano, Y., Roldán-Gómez, R., Palma-Bautista, C., Portugal, J., & De Prado, R. (2019). Selection for glyphosate resistance in conyza spp. Occurring in the railway network of Southern Spain. Canadian Journal of Plant Science, 99(4), 413–419. https://doi.org/10.1139/cjps-2018-0254Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694–24710. https://doi.org/10.1007/s11356-016-7794-7Belz, R., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726 Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726Benedetti, L., Rangani, G., Viana, V. E., Carvalho-Moore, P., Merotto, A., Camargo, E. R., de Avila, L. A., & Roma-Burgos, N. (2020). Rapid reduction of herbicide susceptibility in junglerice by recurrent selection with sublethal dose of herbicides and heat stress. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111761Beres, Z. T., Ernst, E. E., Ackley, B. A., Loux, M. M., Owen, M. D. K., & Snow, A. A. (2018). High levels of glyphosate resistance in conyza canadensis from agricultural and non-agricultural sites in Ohio and Iowa. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-28163-wBrain, P., & Cousens, R. (1989). An equation to describe dose responses where there is stimulation of growth at low doses. Weed Research, 29(2), 93–96. https://doi.org/10.1111/j.1365-3180.1989.tb00845.xBrito, I. P. F. S., Tropaldi, L., Carbonari, C. A., & Velini, E. D. (2018). Hormetic effects of glyphosate on plants. Pest Management Science, 74(5), 1064–1070. https://doi.org/10.1002/ps.4523Burgos, N. R., Tranel, P. J., Streibig, J. C., Davis, V. M., Shaner, D., Norsworthy, J. K., & Ritz, C. (2013). Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Science, 61(1), 4–20. https://doi.org/10.1614/ws-d-12-00032.1Cobb, A. H., & Reade, J. P. H. (2010). Herbicides and Plant Physiology: Second Edition. In Herbicides and Plant Physiology: Second Edition. https://doi.org/10.1002/9781444327793Davis, V. M., Kruger, G. R., Hallett, S. G., Tranel, P. J., & Johnson, W. G. (2010). Heritability of Glyphosate Resistance in Indiana Horseweed ( Conyza canadensis ) Populations . Weed Science, 58(1), 30–38. https://doi.org/10.1614/ws-09-055.1de Mendiburu, F. (2017). agricolae: Statistical Procedures for Agricultural Research (R package version 1.2-8). https://cran.r-project.org/package=agricolaeDuke, S. O. (2018). The history and current status of glyphosate. Pest Management Science, 74(5), 1027–1034. https://doi.org/10.1002/ps.4652Dyer, W. E. (2018). Stress-induced evolution of herbicide resistance and related pleiotropic effects. In Pest Management Science (Vol. 74, Issue 8, pp. 1759–1768). https://doi.org/10.1002/ps.5043Fuentes, C., Eraso, E., Sequeda, O., & Piedrahita, W. (2011). Flora arvense del altiplano Cundiboyacense de Colombia. Universidad Nacional de Colombia. Facultad de Agronomía Bayer CropScience.Ge, X., d’Avignon, D. A., Ackerman, J. J. H., Duncan, B., Spaur, M. B., & Sammons, R. D. (2011). Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science, 67(10), 1215–1221. https://doi.org/10.1002/ps.2169Ge, X., D’Avignon, D. A., Ackerman, J. J. H., & Sammons, R. D. (2010). Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science, 66(4), 345–348. https://doi.org/10.1002/ps.1911Gomes, G. L. (2014). Caracterização bioquímica e morfofisiológica de populações de buva ( Conyza spp .) resistentes ao Botucatu – SP Dezembro – 2014.González-Torralva, F., Cruz-Hipolito, H., Bastida, F., Mülleder, N., Smeda, R. J., & De Prado, R. (2010). Differential susceptibility to glyphosate among the conyza weed species in Spain. Journal of Agricultural and Food Chemistry, 58(7), 4361–4366. https://doi.org/10.1021/jf904227pGonzález-Torralva, F., Gil-Humanes, J., Barro, F., Domínguez-Valenzuela, J. A., & De Prado, R. (2014). First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agronomy for Sustainable Development, 34(2), 553–560. https://doi.org/10.1007/s13593-013-0163-8González-Torralva, F., Rojano-Delgado, A. M., Luque de Castro, M. D., Mülleder, N., & De Prado, R. (2012). Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology, 169(17), 1673–1679. https://doi.org/10.1016/j.jplph.2012.06.014Håkansson, S. (2003). Weeds and Weed Management on Arable Land: an Ecological Approach. In Journal of Weed Science and Technology. CABI Publishing. https://doi.org/10.3719/weed.45.131Heap, I. (2005). Criteria for Confirmation of Herbicide-Resistant Weeds - with specific emphasis on confirming low level resistance. www.weedscience.comHeap, I. (2014). Global perspective of herbicide-resistant weeds. Pest Management Science, 70(9), 1306–1315. https://doi.org/10.1002/ps.3696Heap, I. (2021). The International Herbicide-Resistant Weed Database. Online. Saturday, April 11, 2020 . Available www.weedscience.org.Heap, I., & Duke, S. O. (2017). Overview of glyphosate-resistant weeds worldwide. October. https://doi.org/10.1002/ps.4760Hereward, J. P., Werth, J. A., Thornby, D. F., Keenan, M., Chauhan, B. S., & Walter, G. H. (2018). Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis) – glyphosate death response and candidate resistance genes. Pest Management Science, 74(10), 2346–2355. https://doi.org/10.1002/ps.4804Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425Ideam. (2020). Promedios climatológicos 1981-2010. http://www.ideam.gov.co/web/tiempo-y-clima/climaKaushansky, A., Hedstrom, L., Goldman, A., Singh, J., Yang, P. L., Rathod, P. K., Cynamon, M., Wodarz, D., Mahadevan, D., Tomaras, A., Navia, M. A., & Schiffer, C. A. (2018). A call to arms: Unifying the fight against resistance. Science Signaling, 11(553), eaav0442. https://doi.org/10.1126/scisignal.aav0442Kendig, E. L., Le, H. H., & Belcher, S. M. (2010). Defining hormesis: Evaluation of a complex concentration response phenomenon. International Journal of Toxicology, 29(3), 235–246. https://doi.org/10.1177/1091581810363012Kleinman, Z., & Rubin, B. (2017). Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Management Science, 73(1), 246–253. https://doi.org/10.1002/ps.4293Knezevic, S. Z., Streibig, J. C., & Ritz, C. (2007). Utilizing R Software Package for Dose-Response Studies: The Concept and Data Analysis. Weed Technology, 21(3), 840–848. https://doi.org/10.1614/wt-06-161.1Mendes, R. R., Takano, H. K., Netto, A. G., Junior, G. J. P., Cavenaghi, A. L., Silva, V. F. V., Nicolai, M., Christoffoleti, P. J., Junior, R. S. D. oliveira, DE MELO, M. S. C., & Ovejero, R. F. L. (2021). Monitoring glyphosate-and chlorimuron-resistant conyza spp. Populations in brazil. Anais Da Academia Brasileira de Ciencias, 93(1). https://doi.org/10.1590/0001-3765202120190425Menza-Franco, H. D., & Salazar-Gutierrez, L. F. (2006). Estudios de resistencia al glifosato en tres arvenses de la zona cafetera colombiana y alternativas para su manejo. Avances Técnicos Cenicafé, 350. http://biblioteca.cenicafe.org/handle/10778/344 Montealegre, F. A. (2011). Morfología de plántulas de malezas de clima cálido. Produmedios.Mora, D. A., Cheimona, N., Palma-Bautista, C., Rojano-Delgado, A. M., Osuna-Ruiz, M. D., Alcántara de la Cruz, R., & De Prado, R. (2019). Physiological, biochemical and molecular bases of resistance to tribenuron-methyl and glyphosate in Conyza canadensis from olive groves in southern Spain. Plant Physiology and Biochemistry, 144(May), 14–21. https://doi.org/10.1016/j.plaphy.2019.09.023Morell, H., Clark, M. J., Knowles, P. F., & Sprinson, D. B. (1967). The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate. The Journal of Biological Chemistry, 242(1), 82–90.Moretti, M., Bobadilla, L., & Hanson, B. (2021). Cross-resistance to diquat in glyphosate/paraquat-resistant hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis) and confirmation of 2,4-D resistance in Conyza bonariensis. Weed Technology, 35(4), 554–559. https://doi.org/DOI: 10.1017/wet.2021.11Moretti, M. L., & Hanson, B. D. (2017). Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research, 57(1), 25–34. https://doi.org/10.1111/wre.12230Moretti, M., Sosnoskie, L., Shrestha, A., Wright, S., Hembree, K., Jasieniuk, M., & Hanson, B. (2016). Distribution of Conyza sp. in Orchards of California and Response to Glyphosate and Paraquat. Weed Science, 64(2), 339–347. https://doi.org/10.1614/ws-d-15-00174.1Okumu, M. N., Vorster, B. J., & Reinhardt, C. F. (2019). Growth-stage and temperature influence glyphosate resistance in Conyza bonariensis (L.) Cronquist. South African Journal of Botany, 121, 248–256. https://doi.org/10.1016/j.sajb.2018.10.034Owen, M. D. K., Beckie, H. J., Leeson, J. Y., Norsworthy, J. K., & Steckel, L. E. (2015). Integrated pest management and weed management in the United States and Canada. Pest Management Science, 71(3), 357–376. https://doi.org/10.1002/ps.3928Owen, M. D. K., & Zelaya, I. A. (2005). Herbicide-resistant crops and weed resistance to herbicides. Pest Management Science, 61(3), 301–311. https://doi.org/10.1002/ps.1015Palma-Bautista, C., Vázquez-García, J. G., Domínguez-Valenzuela, J. A., Ferreira Mendes, K., Alcántara de la Cruz, R., Torra, J., & De Prado, R. (2021). Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. Journal of Agricultural and Food Chemistry, 69(49), 14792–14801. https://doi.org/10.1021/acs.jafc.1c04279Panozzo, S., Scarabel, L., Collavo, A., & Sattin, M. (2015). Protocols for Robust Herbicide Resistance Testing in Different Weed Species. Journal of Visualized Experiments : JoVE, 101, e52923. https://doi.org/10.3791/52923Petersen, J., Neser, J.-M., & Dresbach-Runkel, M. (2008). Resistant factors of target-site and metabolic resistant black-grass (Alopecurus myosuroides Huds.) biotypes against different ACC-ase-inhibitors. Journal of Plant Diseases and Proctection, Supplement, 25–29.Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V., & Walsh, M. J. (2018). The challenge of herbicide resistance around the world: a current summary. Pest Management Science, 74(10), 2246–2259. https://doi.org/10.1002/ps.4821Pinheiro, J., & Bates, D. (2020). Package ‘ nlme .’Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Schafer, D., Bohn, J., Krueger, R., Cullis, K., & Schafer, D. (1999). Resistance to Glyphosate in Lolium rigidum . 47(4), 405–411.Puricelli, E., Faccini, D., Metzler, M., & Torres, P. (2015). Differential Susceptibility of Conyza bonariensis Biotypes to Glyphosate and ALS-Inhibiting Herbicides in Argentina. Agricultural Sciences, 06(01), 22–30. https://doi.org/10.4236/as.2015.61003Quintero-Pértuz, I., & Carbonó-DelaHoz, E. (2016). Panorama del manejo de malezas en cultivos de banano en el departamento del Magdalena, Colombia. Revista Colombiana de Ciencias Hortícolas, 9(2), 329. https://doi.org/10.17584/rcch.2015v9i2.4188Quintero-Pertuz, I., Hoyos, V., Carbonó-Delahoz, E., & Plaza, G. (2021). Susceptibility of weed populations to glyphosate in banana plantations of the Department of Magdalena, Colombia. Chilean Journal of Agricultural Research, 81(2), 172–181. https://doi.org/10.4067/s0718-58392021000200172R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R. PLOS ONE, 10(12), e0146021.Ritz, Christian, & Strebig, J. C. (2016). Package “drc”: Analysis of Dose-Response Curves. R Project, 149. https://cran.r-project.org/web/packages/drc/drc.pdfSammons, R. D., & Gaines, T. A. (2014). Glyphosate resistance: State of knowledge. Pest Management Science, 70(9), 1367–1377. https://doi.org/10.1002/ps.3743Seefeldt, S. S., Jensen, J. E., & Fuerst, E. P. (1995). Log-Logistic Analysis of Herbicide Dose-Response Relationships. Weed Technology, 9(2), 218–227. http://www.jstor.org/stable/3987736Tahmasebi, B. K., Alebrahim, M. T., Roldán-Gómez, R. A., Silveira, H. M. da, Carvalho, L. B. de, Alcántara-de la Cruz, R., & De Prado, R. (2018). Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Protection, 112(December 2017), 350–355. https://doi.org/10.1016/j.cropro.2018.06.021Tani, E., Chachalis, D., & Travlos, I. S. (2015). A Glyphosate Resistance Mechanism in Conyza canadensis Involves Synchronization of EPSPS and ABC-transporter Genes. Plant Molecular Biology Reporter, 33(6), 1721–1730. https://doi.org/10.1007/s11105-015-0868-8Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286(September 2020). https://doi.org/10.1016/j.jenvman.2021.112141Wu, H., Walker, S., Robinson, G., & Coombes, N. (2010). Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 24(2), 102–107. http://www.jstor.org/stable/40801088Zabala, D., Carranza, N., Darghan, A., & Plaza, G. (2019). Spatial distribution of multiple herbicide resistance in Echinochloa colona (L.) link. Chilean Journal of Agricultural Research, 79(4), 576–585. https://doi.org/10.4067/S0718-58392019000400576Zelaya, I., Owen, M. D. K., & VanGessel, M. J. (2007). Transfer of glyphosate resistance: Evidence of hybridization in Conyza (Asteraceae). American Journal of Botany, 94(4), 660–673.Zhu, X. W., Liu, S. S., Qin, L. T., Chen, F., & Liu, H. L. (2013). Modeling non-monotonic dose-response relationships: Model evaluation and hormetic quantities exploration. Ecotoxicology and Environmental Safety, 89, 130–136. https://doi.org/10.1016/j.ecoenv.2012.11.022Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85372/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL2950095219-2022.pdf2950095219-2022.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf10594189https://repositorio.unal.edu.co/bitstream/unal/85372/6/2950095219-2022.pdfc2934d6ac4acdf6fe37a8ec472405b77MD56THUMBNAIL2950095219-2022.pdf.jpg2950095219-2022.pdf.jpgGenerated Thumbnailimage/jpeg4846https://repositorio.unal.edu.co/bitstream/unal/85372/7/2950095219-2022.pdf.jpgfcb0196fc517f68933c89da589c120a0MD57unal/85372oai:repositorio.unal.edu.co:unal/853722024-08-17 00:01:17.159Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=