Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío

ilustraciones, diagramas, fotografías

Autores:
Hurtado Amézquita, Xavier Fernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86873
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86873
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Secciones compuestas
Perfiles CFS
Conectores de cortante
Ensayos Pry-out
Acción parcialmente compuesta
Formulación de diseño
Composite sections
CFS shapes
Shear connectors
Pry-out tests
Partial-interaction
Design formulation
Elemento estructural (construcción)
Ingeniería de la construcción
Materiales de construcción
Structural elements (buildings)
Construction engineering
Building materials
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f4212f1f6cff8013da81983fff448c99
oai_identifier_str oai:repositorio.unal.edu.co:unal/86873
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
dc.title.translated.eng.fl_str_mv Shear connectors in CFS-concrete composite sections
title Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
spellingShingle Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Secciones compuestas
Perfiles CFS
Conectores de cortante
Ensayos Pry-out
Acción parcialmente compuesta
Formulación de diseño
Composite sections
CFS shapes
Shear connectors
Pry-out tests
Partial-interaction
Design formulation
Elemento estructural (construcción)
Ingeniería de la construcción
Materiales de construcción
Structural elements (buildings)
Construction engineering
Building materials
title_short Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
title_full Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
title_fullStr Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
title_full_unstemmed Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
title_sort Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío
dc.creator.fl_str_mv Hurtado Amézquita, Xavier Fernando
dc.contributor.advisor.spa.fl_str_mv Molina Herrera, Maritzabel
dc.contributor.author.spa.fl_str_mv Hurtado Amézquita, Xavier Fernando
dc.contributor.researchgroup.spa.fl_str_mv Análisis, Diseño y Materiales Gies
dc.contributor.orcid.spa.fl_str_mv Hurtado Amézquita, Xavier Fernando [0000-0002-2950-6019]
dc.contributor.cvlac.spa.fl_str_mv Hurtado Amézquita, Xavier Fernando [https://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/inicio.do]
dc.contributor.googlescholar.spa.fl_str_mv Hurtado Amézquita, Xavier Fernando [https://scholar.google.es/citations?user=OgNZJaEAAAAJ&hl=es]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Secciones compuestas
Perfiles CFS
Conectores de cortante
Ensayos Pry-out
Acción parcialmente compuesta
Formulación de diseño
Composite sections
CFS shapes
Shear connectors
Pry-out tests
Partial-interaction
Design formulation
Elemento estructural (construcción)
Ingeniería de la construcción
Materiales de construcción
Structural elements (buildings)
Construction engineering
Building materials
dc.subject.proposal.spa.fl_str_mv Secciones compuestas
Perfiles CFS
Conectores de cortante
Ensayos Pry-out
Acción parcialmente compuesta
Formulación de diseño
dc.subject.proposal.eng.fl_str_mv Composite sections
CFS shapes
Shear connectors
Pry-out tests
Partial-interaction
Design formulation
dc.subject.unesco.spa.fl_str_mv Elemento estructural (construcción)
Ingeniería de la construcción
Materiales de construcción
dc.subject.unesco.eng.fl_str_mv Structural elements (buildings)
Construction engineering
Building materials
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-27T01:04:03Z
dc.date.available.none.fl_str_mv 2024-09-27T01:04:03Z
dc.date.issued.none.fl_str_mv 2024-09-25
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86873
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86873
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1]. Ahn, J., Kim, S., Choi, K. & Jung, C. (2010). EXPERIMENTAL EVALUATION OF THE SHEAR RESISTANCE OF CORRUGATED PERFOBOND RIB SHEAR CONNECTIONS. Advances in Structural Engineering, Vol.14 (2), 249-263.
[2]. Al-Darzi, S.Y.K., Chen, A.R. & Liu, Y.Q. (2007). FINITE ELEMENT SIMULATION AND PARAMETRIC STUDIES OF PERFOBOND RIB CONNECTOR. American Journal of Applied Science, 4 (3), 122-127.
[3]. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC 360-16). SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS. USA.
[4]. AMERICAN IRON AND STEEL INSTITUTE (AISI S100-16). NORTH AMERICAN SPECFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS. USA.
[5]. Alenezi, K., Tahir, M., Alhajri, T., Badr, M., & Mirza, J. (2015). BEHAVIOR OF SHEAR CONNECTORS IN COMPOSITE COLUMN OF COLD-FORMED STEEL WITH LIPPED C-CHANNEL ASSEMBLED WITH FERRO-CEMENT JACKET. Construction and Building Materials, 84, 39-45.
[6]. Alenezi, K., Tahir, M., Alhajri, T., Badr, M., Mirza, J., Lawan, M., & Hosseinpour, E. (2015). PUSH-OUT TESTS OF INNOVATIVE SHEAR CONNECTORS BETWEEN COLD-FORMED STEEL SECTION INTEGRATED WITH FERROCEMENT JACKET. Jurnal Teknologi, 74(4, SI), 67–72.
[7]. Alhajri, T., Tahir, M., Azimi, M., Mirza, J., Lawan, M., Alenezi, K., & Ragaee, M. (2016). BEHAVIOR OF PRE-CAST U-SHAPED COMPOSITE BEAM INTEGRATING COLD-FORMED STEEL WITH FERRO-CEMENT SLAB. Thin-Walled Structures, 102, 18–29.
[8]. Anderson, N. & Meinheit, D. (2000). DESIGN CRITERIA FOR HEADED STUDS GROUPS IN SHEAR. PCI Journal 46-75.
[9]. Anderson, N. & Meinheit, D. (2005). PRY-OUT CAPACITY OF CAST-IN HEADED STUDS ANCHORS. PCI Journal 90-112.
[10]. Arroyo, R. & Jullien, J. (1997). A NEW SHEAR STUD CONNECTOR PROPOSAL. In ASCE conference. 298-311.
[11]. ASOCIACIÓN DE INGENIERIA SÍSMICA (NSR10). NORMA COLOMBIANA DE DISEÑO Y CNSTRUCCIÓN ISMO RESISTENTE. Bogotá.
[12]. ASSOCIAḈAO BRASILEIRA DE NORMAS TECNICAS (NBR 8800/2008). NORMA BRASILEIRA – PROJETO DE ESTRUTURAS DE AḈO E CONCRETO DE EDIFICIOS. Brasil.
[13]. Avelar, I., Beck, A. & Malite, M. (2010). RELIABILITY-BASED EVATUALTION OF DESIGN GUIDELINES FOR COLD-FORMED STEEL-CONCRETE COMPOSITE BEAMS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol XXXII No. 5, 442-449.
[14]. Bamaga, S., Tahir, M., Tan, T., Mohammad, S., Yahya, N., Saleh, A., Rahman, A. (2013). FEASIBILITY OF DEVELOPING COMPOSITE ACTION BETWEEN CONCRETE AND COLD-FORMED STEEL BEAM. Journal Of Central South University, 20(12), 3689–3696.
[15]. Bamaga, S., Tahir, M., & Tan, C. S. (2012). PUSH TESTS ON INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construction, 325–337.
[16]. Bamaga, S., & Tahir, M. (2013). TOWARDS LIGHT-WEIGHT COMPOSITE CONSTRUCTION: INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAMS. Applied Mechanics and Materials, 351–352, 427–433.
[17]. BRITISH STANDARDS (BS 5950-3-1/2010). BRITISH STANDARD – STRUCTURAL USE OF STEELWORK IN BUILDING. Inglaterra.
[18]. CANADIAN STÁNDARDS ASSOCIATION. (CSA-S136/07). NORTH AMERICAN SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS. Canadá.
[19]. Candido-Martins, J., Costa-Neves, L. & da S.Vellasco, P. (2010). EXPERIMENTAL EVALUATION OF THE STRUCTURAL RESPONSE OF PERFOBOND SHEAR CONNECTORS. Engineering Structures, 32, 1976-1985.
[20]. Chinn, J. (1965). PUSH-OUT TESTS ON LIGHTWEIGHT COMPOSITE SLABS. Engineering Journal AISC, 129-134.
[21]. Costa-Neves, L.F., Figueiredo, J.P., da S. Vellasco, P.C.G. & da Cruz, J. (2013). PERFORATED SHEAR CONNECTORS ON COMPOSITE GIRDERS UNDER MONOTONIC LOADING: AN EXPERIMENTAL APPROACH. Engineering Structures, 56, 721-737.
[22]. Crisinel, Michel. (1990). PARTIAL-INTERACTION ANALYSIS OF COMPOSITE BEAMS WITH PROFILED SHEETING AND NON-WELDED SHEAR CONNECTORS. Journal of Constructional Steel Research, 15, 65-98.
[23]. Derlatka, A., Lacki, P., Nawrot, J. & Winowiecka J. (2019). NUMERICAL AND EXPERIMENTAL TEST OF STEEL-CONCRETE COMPOSITE BEAM WITH THE CONNECTOR MADE OF TOP-HAT PROFILE. Composite Structures, 211, 244-253.
[24]. Dubey, A., Nayak, A., & Bhattacharyya, S. (1999). STRENGTH OF THIN-WALLED STEEL-CONCRETE COMPOSITE BEAMS: EXPERIMENTAL STUDY. Journal of the Institution of Engineers (India): Civil Engineering Division, 80(1), 37-41.
[25]. Easterling, W. (2005). NEW SHEAR STUD PROVISIONS FOR COMPOSITE BEAM DESIGN. In Proceedings of the Structures Congress and Exposition, 1211-1212.
[26]. Eom, T.S., Chung, L., Lim, J.J. & Hwang, H.J. (2016). REVIEW OF DESIGN FLEXURAL STRENGTHS OF STEEL-CONCRETE COMPOSITE BEAMS FOR BUILDINGS STRUCTURES. International Journal of Concrete Structures and Materials, Vol. 10(3), 109-121.
[27]. Erazo, L. & Molina, M. (2017). COMPORTAMIENTO DE CONECTORES DE CORTANTE TIPO TORNILLO EN SECCIONES COMPUESTAS CON LÁMINA COLABORANTE. Tesis de maestría Universidad Nacional de Colombia.
[28]. Erdélyi, S., & Dunai, L. (2004). BEHAVIOUR OF A NEW TYPE OF COMPOSITE CONNECTION. Periodica Polytechnica Civil Engineering, 48(1–2), 89–100.
[29]. EUROPEAN COMMITTEE FOR STANDARIZATION. EUROCÓDIGO 2. (1992). DESIGN OF CONCRETE STRUCTURES – CONCRETE BRIDGES – DESIGN AND DETAILING RULES.
[30]. EUROPEAN COMMITTEE FOR STANDARIZATION. EUROCÓDIGO 4. (1994). DESIGN OF COMPOSITE STEEL AND CONCRETE STRUCTURES.
[31]. Fontana, M., & Bärtschi, R. (2002). COMPOSITE FLOORS WITH NOVEL SHEAR CONNECTORS [Verbunddecken mit neuartigen Verbundmitteln]. Stahlbau, 71(8), 605–611.
[32]. GERDAU CORSA. (2010). CONSTRUCCIÓN COMPUESTA ACERO-CONCRETO. Instituto Mexicano de la Construcción en Acero. Mexico D. F. (Mexico).
[33]. Gizejowski M. & Marcinowski J. (2016). In 13th International Conference on Metal Structures, ICMS 2016, 1–577.
[34]. Hanaor, A. (2000). TESTS OF COMPOSITE BEAMS WITH COLD-FORMED SECTIONS. Journal of Constructional Steel Research, 54(2), 245–264.
[35]. Hancock, G. (2003). COLD-FORMED STEEL STRUCTURES. Journal of Constructional Steel Research, 59, 473-487.
[36]. Hamidi, B. (2013). DESIGN OF COMPOSITE BEAMS USING LIGHT STEEL CONSTRUCTIONS. Machines, technologies, materials. Issue 12/2013, 50–52.
[37]. Hancock, G. (2003). COLD-FORMED STEEL STRUCTURES. Journal of Constructional Steel Research, 59, 473-487.
[38]. Hosaka, T., Mitsuki, K., Hiragi, H., Ushijima, Y., Tachibana, Y. & Wantabe, H. (2000). AN EXPERIMENTAL STUDY ON SHEAR CHARACTERISTICS OF PERFOBOND STRIP AND ITS RATIONAL STRENGTH. Journal of Structural Engineering JSCE 46A, 1593-1604.
[39]. Hossain, A. (2005). DESIGNING THIN-WALLED COMPOSITE-FILLED BEAMS. Proceedings of the Institution of Civil Engineers. Structures & Buildings, 158, 267-278.
[40]. Hurtado, X.F. & Molina, M. (2020). ALTERNATIVE FASTENING MECHANISM FOR SHEAR CONNECTORS WITH COLD-FORMED STEEL SHAPES INVOLVED IN COMPOSITE SECTIONS. Athens Journal of Technology and Engineering 7(2), 133-156.
[41]. Hurtado, X.F. & Molina, M. (2021). BEHAVIOR OF SCS-TYPE SHEAR CONNECTORS UNDER PRY-OUT SHEAR TEST: ANALYTICAL STUDY. Materials Science Forum Vol. 1046, 45-58.
[42]. Hurtado, X. (2007). COMPORTAMIENTO DE CONECTORES DE CORTANTE TIPO TORNILLO DE RESISTENCIA GRADO 2 (DOS) PARA UN SISTEMA DE SECCIÓN COMPUESTA CON CONCRETO DE 21 MPa ANTE SOLICITACIÓN DE CORTE DIRECTO. Tesis de maestría Universidad Nacional de Colombia.
[43]. Hurtado, X.F. & Molina, M. (2023). FLEXURAL BEHAVIOR OF CFS-CONCRETE COMPOSITE SYSTEMS INVOLVING CSC-TYPE SHEAR CONNECTORS. Athens Journal of Technology and Engineering 7(2), 133-156.
[44]. Hurtado, X. & Molina, M. (2020). GEOMETRICAL AND MECHANICAL OPTIMIZATION OF SHEAR CONNECTORS FOR CFS-CONCRETE COMPOSITE SYSTEMS. In The 2020 Structures Congress 25-28.
[45]. Hurtado, X.F. & Molina, M. (2023). EXPERIMENTAL ANALYSIS OF CSC-TYPE SHEAR CONNECTORS CAPACITY UNDER DIRECT SHEAR: PRY-OUT TEST. Athens Journal of Technology and Engineering 7(2), 133-156.
[46]. Hsu, T., Munoz, R., Punurai, S., Majdi, Y., & Punurai, W. (2012). BEHAVIOR OF COMPOSITE BEAMS WITH COLD-FORMED STEEL JOISTS AND CONCRETE SLAB. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construcción, 339–353.
[47]. Ipe, T., Bai, S., & Vani, K. (2016). AN EXPERIMENTAL STUDY ON BEHAVIOUR OF THIN-WALLED COLD FORMED STEEL-CONCRETE COMPOSITE BEAMS UNDER SHEAR. Indian Concrete Journal, 90(6), 20–29.
[48]. Ipe, T., Bai, H., Vani, K., & Iqbal, M. (2013). FLEXURAL BEHAVIOR OF COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Steel and Composite Structures, 14(2), 105–120.
[49]. Irwan, J., Hanizah, A., Azmi, I., & Koh, H.. (2011). LARGE-SCALE TEST OF SYMMETRIC COLD-FORMED STEEL (CFS)-CONCRETE COMPOSITE BEAMS WITH BTTST ENHANCEMENT. Journal Of Constructional Steel Research, 67(4), 720–726.
[50]. Irvwan, J., & Hanizah, A. (2009). TEST OF SHEAR TRANSFER ENHANCEMENT IN SYMMETRIC COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Journal of Constructional Steel Research, 65, 2087-2098.
[51]. Jeong, Y.J., Kim, H.Y. & Kim, S.H. (2005). PARTIAL-INTERACTION ANALYSIS WITH PUSH-OUT TEST. Journal of Constructional Steel Research 61, 1318-1331.
[52]. Johnson, R. P., & Buckby, R. J. (1994). COMPOSITE STRUCTURES OF STEEL AND CONCRETE. Blackwell Scientific Publications. Oxford (England).
[53]. JAPAN SOCIETY OF CIVIL ENGINEERS (JSCE-09). STANDARD SPECIFICATIONS FOR STEEL AND COMPOSITE STRUCTURES. Japon.
[54]. Jung, c.H., Kim, S.H., Choi, K.T., Park, S.J. & Park, S.M. (2013). EXPERIMENTAL SHEAR RESISTANCE EVALUATION OF Y-TYPE PERFOBOND RIB SHEAR CONNECTOR. Journal of Constructional Steel Research, 82, 1-18.
[55]. Khadavi, & Tahir, M. M. (2017). PREDICTION ON FLEXURAL STRENGTH OF ENCASED COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In V. B. F. Borgan W.R. Saloma (Ed.), AIP Conference Proceedings (Vol. 1903). American Institute of Physics Inc.
[56]. Kim, S., Choi, K., Park, S.J., Park, S.M. & Jung, C.. (2013). EXPERIMENTAL SHEAR RESISTANCE EVALUATION OF Y-TYPE PERFOBOND RIB SHEAR CONNECTOR. Journal of Constructional Steel Research, 82, 1-18.
[57]. Klansek, U., & Kravanja, S. (2006). COST ESTIMATION, OPTIMIZATION AND COMPETITIVENESS OF DIFFERENT COMPOSITE FLOOR SYSTEMS - PART 1: SELF-MANUFACTURING COST ESTIMATION OF COMPOSITE AND STEEL STRUCTURES. Journal of Constructional Steel Research, 62(5), 434–448.
[58]. Kraus, D. & Wurzer, O. (1997). NON-LINEAR FINITE ELEMENT ANALYSIS OF CONCRETE DOWELS. Computers & Structures. 64, 1271-1279.
[59]. Kyvelou, P., Gardner, L. & Nethercot, D.A. (2018). FINITE ELEMENT MODELLING OF COMPOSITE COLD-FORMED STEEL FLOORING SYSTEMS. Engineering Structures, 158, 28-42.
[60]. Lakkavalli, B. & Liu, Y. (2006). EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION FLOOR JOIST. Journal of Constructional Steel Research, 62, 995-1006.
[61]. Lawan, M., Tahir, M., & Mirza, J. (2016). BOLTED SHEAR CONNECTORS PERFORMANCE IN SELF-COMPACTING CONCRETE INTEGRATED WITH COLD-FORMED STEEL SECTION. Latin American Journal of Solids And Structures, 13(4), 731–749.
[62]. Lawan, M., Tahir, M., & Osman, M. (2015). COMPOSITE CONSTRUCTION OF COLD-FORMED STEEL (CFS) SECTION WITH HIGH STRENGTH BOLTED SHEAR CONNECTOR. Jurnal Teknologi, 77(16), 171–179.
[63]. Lawan, M., Tahir, M., & Hosseinpour, E. (2016). FEASIBILITY OF USING BOLTED SHEAR CONNECTOR WITH COLD-FORMED STEEL IN COMPOSITE CONSTRUCTION. Jurnal Teknologi, 78(6–12), 7–13.
[64]. Lawan, M., & Tahir, M. (2015). STRENGTH CAPACITY OF BOLTED SHEAR CONNECTORS WITH COLD-FORMED STEEL SECTION INTEGRATED AS COMPOSITE BEAM IN SELF-COMPACTING CONCRETE. Jurnal Teknologi, 77(16), 105–112.
[65]. Lawan, M., Tahir, M., Ngian, S. & Sulaiman, A. (2015). STRUCTURAL PERFORMANCE OF COLD-FORMED STEEL SECTION IN COMPOSITE STRUCTURES: A REVIEW. Jurnal Teknologi, 74:4, 165-175.
[66]. Lawson, R., Popo-Ola, S. & Varley, D. (2001). INNOVATIVE DEVELOPMENT OF LIGHT STEEL COMPOSITES IN BUILDINGS. In International union of laboratories and experts in construction materials and structures (RILEM). International symposium on connections between steel and concrete.
[67]. Lemes, D. (2007). ANÁLISE TEÓRICA E EXPERIMENTAL DE CONECTORES DE CISALHAMENTO E VIGAS MISTAS CONSTITUIDAS POR PERFIS DE AḈO FORMADOS A FRIO E LAJE DE VIGOTAS PRÉ-MOLDADAS. Tesis doctoral Universidad de Sao Paulo.
[68]. Liu, Y., Zheng, S., Yoda, T. & Lin, W. (2016). PARAMETRIC STUDY ON SHEAR CAPACITY OF CIRCULAR-HOLE AND LONG-HOLE PERFOBONF SHEAR CONNECTOR. Journal of Constructional Steel Research, 117, 64-80.
[69]. Luo, Y., Li, A. & Kang, Z. (2012). PARAMETRIC STUDY OF BONDED STEEL-CONCRETE COMPOSITE BEAMS BY USING FINITE ELEMENT ANALYSIS. Engineering Structures, 34, 40–51.
[70]. PUSH TESTS ON INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construction, 325–337.
[71]. Majdi, Y., Hsu, C., & Zarei, M. (2014). FINITE ELEMENT ANALYSIS OF NEW COMPOSITE FLOORS HAVING COLD-FORMED STEEL AND CONCRETE SLAB. Engineering Structures, 77, 65–83.
[72]. Majdi, Y., Hsu, C., & Zarei, M. (2014). FINITE ELEMENT MODELING OF NEW COMPOSITE FLOORS HAVING COLD-FORMED STEEL AND CONCRETE SLAB. In Y. W.-W. LaBoube R.A. (Ed.), 22nd International Specialty Conference on Recent Research and Developments in Cold-Formed Steel Design and Construction, 463-477.
[73]. Malite, M., Nimir, W., De Sales, J., Goncalves, R., Dubey, A., Nayak, A., Malathy, R. (2016). COMPOSITE CONSTRUCTION OF COLD-FORMED STEEL (CFS) SECTION WITH HIGH STRENGTH BOLTED SHEAR CONNECTOR. Jurnal Teknologi, 67(1), 67–72.
[74]. Malite, M., Nimir, W., Goncalves, R. & de Sales, J. (2000). ON THE STRUCTURAL BEHAVIOR OF COMPOSITE BEAMS USING COLD-FORMED SHAPES. In 15th International Specialty Conference on Cold-Formed Steel Structures, 307-319.
[75]. Malite, M., Nimir, W., Goncalves, R. & de Sales, J. (1998). COLD-FORMED SHEAR CONNECTORS FOR COMPOSITE CONSTRUCTIONS. In 14th International Specialty Conference on Cold-Formed Steel Structures, 409-421.
[76]. Medberry, S.B. & Shahrooz, B.M. (2002). PERFOBOND SHEAR CONNECTOR FOR COMPOSITE CONSTRUCTION. Engineering Journal AISC, 39(1), 2-12.
[77]. Merryfield, G., El-Ragaby, A., & Ghrib, F. (2016). NEW SHEAR CONNECTOR FOR OPEN WEB STEEL JOIST WITH METAL DECK AND CONCRETE SLAB FLOOR SYSTEM. Construction And Building Materials, 125, 1-11.
[78]. Montgomery, D. (2013). DESIGN AND ANALYSIS OF EXPERIMENTS, 8th ed., Wiley, New Jesey,
[79]. Ñurinda, F., Bermudez, R. & Monge, G. (2008). REVISIÓN DEL DISEÑO ESTRUCTURAL DEL HOSPITAL MONTE ESPAÑA VILLA FONTANA. ANÁLISIS Y DISEÑO DE SECCIONE COMPUESTAS DE ACERO Y CONCRETO POR EL MÉTODO LRFD. Nicaragua.
[80]. Ollgaard, J., Slutter, R., & Fisher, J. (1971). SHEAR STRENGTH OF STUD CONNECTORS IN LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE. AISC Engineering Journal, 55-64.
[81]. Oguejiofor E.C & Hosain MU. (1994). A PARAMETRIC STUDY OF PERFOBOND RIB SHEAR CONNECTORS. Canadian Journal of Civil Engineering, 21, 614-625.
[82]. Oguejiofor E.C & Hosain MU. (1997). NUMERICAL ANALYSIS OF PUSH-OUT SPECIMENES WITH PERFOBOND RIB CONNECTORS. Computers & Structures, 64 (4), 617-624.
[83]. Ollgaard, J. Slutter, R. & Fisher, J. (1971). SHEAR STRENGTH OF STUD CONNECTORS IN LIGHTWEIGHT AND NORMAL-WEIGTH CONCRETE. AISC Engineering journal, 55-64.
[84]. Papastergiou, D. & Lebet, J. (2014). EXPERIMENTAL INVESTIGATION AND MODELLING OF THE STRUCTURAL BEHAVIOR OF CONFINED GROUTED INTERFACES FOR A NEW STEEL-CONCRETE CONNECTION. Engineering Structures, 74, 180-192.
[85]. Pathirana, S., Uy, B., Mirza, O. & Zhu, X.. (2016). FLEXURAL BEHAVIOUR OF COMPOSITE STEEL-CONCRETE BEAMS UTILISING BLIND BOLT SHEAR CONNECTORS. Engineering Structures, 114, 181-194.
[86]. Queiroz, F.D., Nethercot, D.A. & Vellazco, P.C. (2007). FINITE ELEMENT MODELLING OF COMPOSITE BEAMS WITH FULL AND PARTIAL SHEAR CONNECTION. Journal of Constructional Steel Research, 63, 505-521.
[87]. Queiroz, G., Rodrigues, F., Pereira, S., Pfeil, M. Oliveira, C. & da Mata, L. (2010). In. International Colloquium on Stability and Ductility of Steel Structures 2006, Vol. 1.
[88]. Raj, P.V. & Sathiya B.P. (2017). AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF SHEAR CONNECTORS IN COMPOSITE SECTIONS. International Research Journal of Engineering and Technology (IRJET), Vol 04 (6), 991-999.
[89]. Saggaff, A., Tahir, M., Azimi, M., & Alhajri, T. (2017). STRUCTURAL ASPECTS OF COLD-FORMED STEEL SECTION DESIGNED AS U-SHAPE COMPOSITE BEAM. In V. B. F. Borgan W.R. Saloma (Ed.), AIP Conference Proceedings (Vol. 1903). American Institute of Physics Inc.
[90]. Saggaff, A., Alhajri, T., Alenezi, K., Tahir, M., Zin, R., Ngian, S., & Ragaee, M. (2016). EXPERIMENTAL STUDY ON BOLTED SHEAR CONNECTOR ENHANCEMENT IN PRECAST COLD-FORMED STEEL-FERRO CEMENT FOR COMPOSITE BEAM SYSTEM. Iioab Journal, 7(1), 446–452.
[91]. Saggaff, A., Tahir, M., Azimi, M., & Lawan, M. (2016). IMPACT OF BOLTED SHEAR CONNECTOR SPACING IN COMPOSITE BEAM INCORPORATING COLD-FORMED STEEL OF CHANNEL LIPPED SECTION. Iioab Journal, 7(1), 441–445.
[92]. Saggaff, A., Tahir, M. M., Azimi, M., & Lawan, M. M. (2016). INFLUENCE OF BOLTED SHEAR CONNECTOR SIZE IN PUSH-OUT TEST FOR COMPOSITE CONSTRUCTION WITH COLD-FORMED STEEL SECTION. Iioab Journal, 7(1), 521–526.
[93]. Sara, B.M. & Bahram, M.S. (2002). PERFOBOND SHEAR CONNECTORS FOR COMPOSITE CONSRUCTION. Engineering Journal, First Quarter, 2-12.
[94]. Shahabi, S., Sulong, N., Shariati, M., & Shah, S. (2016). PERFORMANCE OF SHEAR CONNECTORS AT ELEVATED TEMPERATURES-A REVIEW. Steel And Composite Structures, 20(1), 185–203.
[95]. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M., & Shah, S. (2016). NUMERICAL ANALYSIS OF CHANNEL CONNECTORS UNDER FIRE AND A COMPARISON OF PERFORMANCE WITH DIFFERENT TYPES OF SHEAR CONNECTORS SUBJECTED TO FIRE. Steel And Composite Structures, 20(3), 651–669.
[96]. Shankar, B., Liu, Y. (2006). EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION FLOOR JOISTS. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 62, 995-1006.
[97]. Shariati, M., Ramli, N., Suhatril, M., Shariati,A., Arabnejad, M. & Sinaei, H. (2012). BEHAVIOUR OF C-SHAPED ANGLE SHEAR CONNECTORS UNDER MONOTONIC AND FULLY REVERSED CYCLIC LOADING: AN EXPERIMENTAL STUDY. Materials and Design, 41, 67-73.
[98]. Shariati, M., Khorramian, K., Maleki, S., Jalali, A. & Tahir, M.M. (2017). NUMERICAL ANALYSIS OF TILTED ANGLE SHEAR CONNECTORS IN STEEL-CONCRETE COMPOSITE SYSTEMS. Steel and Composite Structures, Vol.23(1), 67-85.
[99]. Shi, Y., Zhou, X., Xu, L., Yao, X. & Wang, W. (2019). A SIMPLIFIED METHOD TO EVALUATE THE FLEXURAL CAPACITY OF LIGHTWEIGHT COLD-FORMED STEEL FLOOR SYSTEM WITH ORIENTED STRAND BOARD SUBFLOOR. Thin-Walled Structures, 134, 40-51.
[100]. Shi, Y., Yang, K., Guan, Y., Yao, X., Xu, L. & Zhang, H. (2020). THE FLEXURAL BEHAVIOR OF COLD-FORMED STEEL COMPOSITE BEAMS. Thin-Walled Structures, 218, 1-15.
[101]. Shi, Y., Yang, K., Guan, Y., Yao, X., Xu, L. & Zhang, H. (2020). THE FLEXURAL BEHAVIOR OF COLD-FORMED STEEL COMPOSITE BEAMS. Thin-Walled Structures, 218, 1-15.
[102]. Slutter, R., & Driscoll, G. (1963). FLEXURAL STRENGTH OF STEEL AND CONCRETE COMPOSITE BEAMS. Final report of an investigation of composite beams for buildings sponsored by the American Institute of Steel Construction, 1-57.
[103]. Sotelino, E. & Chung, W. (2006). THREE-DIMENSIONAL FINITE ELEMENT MODELING OF COMPOSITE GIRDER BRIDGES. Engineering Structures, 28, 63-71.
[104]. STANDARDS AUSTRALIA – STANDARDS NEW ZELAND.(AS/NZS 4600/2005). COLD FORMED STEEL STRUCTURES. Australia.
[105]. Tahir, M., Saggaff, A., Azimi, M. & Lawan, M. (2016). IMPACT OF BOLTED SHEAR CONNECTOR SPACING IN COMPOSITE BEAM INCORPORATING COLD FORMED STEEL OF CHANNEL LIPPED SECTION. IIOAB Journal, 7, 441-445.
[106]. Tahir, M.M., Bamaga, S.O., Tan, C.S., Shek, P.N. & Aghlara, R. (2019). PUSH-OUT TEST ON THREE INNOVATIVE SHEAR CONNECTORS FOR COMPOSITE COLD-FORMED STEEL CONCRETE BEAMS. Construction and Building Materials, 223, 288-298.
[107]. Tahir, M., Bamaga, S., Ngian, S., Mohamad, S., Sulaiman, A., & Aghlara, R. (2019). STRUCTURAL BEHAVIOUR OF COLD-FORMED STEEL OF DOUBLE C-LIPPED CHANNEL SECTIONS INTEGRATED WITH CONCRETE SLABS AS COMPOSITE BEAMS. Latin American Journal of Solids and Structures, 16(5), 1–15.
[108]. Tan, C., Lee, Y., Mohammad, S., Lim, S., Lee, Y., & Lim, J. (2015). FLEXURAL BEHAVIOUR OF REINFORCED SLAB PANEL SYSTEM WITH EMBEDDED COLD-FORMED STEEL FRAMES AS REINFORCEMENT. Jurnal Teknologi, 74(4), 39–44.
[109]. Thivya, J., & Malathy, R. (2016). PERFORMANCE OF CONCRETE FILLED IN COLD FORM STEEL SHEET WITH SHEAR CONNECTOR UNDER PURE BENDING. Journal Of Scientific & Industrial Research, 75(3), 172–175.
[110]. Titoum, M., Mazoz, A., Benanane, A. & Ouinas, D. (2016). EXPERIMENTAL STUDY AND FINITE ELEMENT MODELLING OF PUSH-OUT TEST ON A NEW SHEAR CONNECTOR OF I-SHAPE. Advanced Steel Construction Vol.12, N°4, 487–506.
[111]. Valencia, G. (2010). DISEÑO BÁSICO DE ESTRUCTURAS DE ACERO DE ACUERDO CON NSR-10. 1° Edición. Editorial Escuela Colombiana de Ingenieria.
[112]. Valsa I., Sharada H., Manjula K., & Iqbal, M. (2013). FLEXURAL BEHAVIOR OF COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Steel and Composite Structures, 14(2), 105–120.
[113]. Verissimo, G.S. (2007). DEVELOPMENT OF A SHEAR CONNECTOR PLATE GEAR FOR COMPOSITE STRUCTURES OF STEEL AND CONCRETE AND STUDY THEIR BEHAVIOR (En Portugués). Tesis de Doctorado Universidad Federal de Minas Gerais Belo Horizonte.
[114]. Viest, I. M., Siess, C. P., Appleton, J. H. & Newmark N. M. (1952). FULL-SCALED TEST OF CHANNEL SHEAR CONNECTORS AND COMPOSITE T-BEAMS. Report of investigation. University of Illinois Bulletin N° 405.
[115]. Vinnakota, S., Foley, C., & Vinnakota, M. (2003). DESIGN OF PARTIALLY OR FULLY COMPOSITE BEAMS WITH RIBBED METAL DECK USING LRFD SPECIFICATIONS. Engineering Journal/American Institute of Steel Construction. 60-78.
[116]. Wehbe, N., Wehbe, A., Dayton, L. & Sigl, A. (2011). DEVELOPMENT OF CONCRETE/COLD FORMED STEEL COMPOSITE FLEXURAL MEMBERS. In ASCE Structures Congress 2011, 3099-3109.
[117]. Youns, M.A., Hassaneen, S.A., Badr, M.R. & Salem, E.S. (2016). COMPOSITE BEAMS OF COLD FORMED STEEL SECTIONS AND CONCRETE SLAB. International Journal of Engineering Development and Research, Vol. 4(4), 165-177.
[118]. Yu, J., Wang, L., & Chang, J. (2010). INTERFACE SHEARING FORCE ANALYSIS OF COMPOSITE BEAMS WITH COLD FORMED STEEL U SECTION BASED ON ENERGY THEORY. Journal of Shenyang Jianzhu University (Natural Science), 26(1), 108–111.
[119]. Yu, Wei-Wen & Laboube, R. (2010). COLD FORMED STEEL DESIGN. 4th Edition. John Wiley & Sons, Inc.
[120]. Zhao, C. & Liu, Y.Q. (2012). EXPERIMENTAL STUDY OF SHEAR CAPACITY OF PERFOBOND CONNECTOR. Journal of Engineering Mechanics, 29(12), 349-354.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxxi, 229 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86873/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86873/2/80098348.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86873/3/80098348.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2cc53095e7cba0e1e70add8f17afdd7a
6fa152f42e6bfe6b2c8fdd58f9203380
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169381738708992
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Molina Herrera, Maritzabel14233208c489a98ba0f0225ef4ae6d9aHurtado Amézquita, Xavier Fernando920fd0cb3d63719a70b4eb574fbd2d2f600Análisis, Diseño y Materiales GiesHurtado Amézquita, Xavier Fernando [0000-0002-2950-6019]Hurtado Amézquita, Xavier Fernando [https://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/inicio.do]Hurtado Amézquita, Xavier Fernando [https://scholar.google.es/citations?user=OgNZJaEAAAAJ&hl=es]2024-09-27T01:04:03Z2024-09-27T01:04:03Z2024-09-25https://repositorio.unal.edu.co/handle/unal/86873Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasDesde finales de los años 50’s, hay evidencia del uso de secciones compuestas en edificaciones, siendo Suiza el país pionero en aplicar esta alternativa constructiva. Dadas las ventajas de combinar los perfiles metálicos y elementos de concreto eficientemente, su implementación se difundió rápidamente en Europa y los Estados Unidos, siendo las principales potencias industriales de producción de acero. El adecuado desempeño de los sistemas compuestos depende, en parte, del mecanismo de transferencia de esfuerzos en la interfaz de los componentes, principalmente atribuido a los conectores de cortante. De acuerdo con la normatividad vigente, los únicos dispositivos avalados para tal fin son los espigos, canales, tornillos y placas perforadas, empleando fijación soldada en perfilería laminada en caliente (HRS), sin que esta sea una opción eficiente para perfiles de lámina delgada (CFS), dado que la aplicación de la soldadura puede afectar el perfil con quemaduras y/o perforaciones, reduciendo su capacidad estructural. Aun así, a la fecha, no existe ninguna referencia dentro de las normativas, que especifique el uso de un tipo de conector de cortante en secciones compuestas donde se incluyan perfiles CFS. Los perfiles CFS, provenientes de un proceso de doblado de láminas en frío, potencian la eficiencia de sistemas compuestos debido a su relación resistencia Vs. peso, facilidad de transporte e instalación, considerándose una alternativa sostenible en la construcción. En esta investigación se proponen los conectores de cortante tipo CSC (Confined Shear Connectors), para la adecuada transferencia de esfuerzos en sistemas de entrepiso compuestos, empleando losas de concreto y perfiles en lámina delgada CFS. La configuración del conector CSC propuesta, es el resultado de un análisis de optimización geométrica, basada en el comportamiento mecánico de la sección compuesta, así como la facilidad tanto en la fabricación e instalación del conector como en la construcción del sistema compuesto. El comportamiento del sistema con perfiles CFS y conectores tipo CSC, fue caracterizado a través de los ensayos experimentales alternativos de corte directo (Pry-Out), y ensayos de vigas a flexión, donde se tuvieron como principales variables de estudio la resistencia del concreto, altura de la losa, espesores de los perfiles metálicos y espaciamiento entre conectores. Paralelamente, el comportamiento no lineal del sistema compuesto fue evaluado analíticamente por medio de simulaciones numéricas de los ensayos realizados por el método de elementos finitos (MEF), con las cuales se logró obtener información complementaria del comportamiento de los elementos componentes del sistema, y sus mecanismos de falla. Por último, por medio de análisis estadístico, se plantean las formulaciones de diseño que permiten estimar tanto la resistencia nominal de los conectores de cortante tipo CSC, como el grado de acción compuesta del sistema, condiciones a ser tenidas en cuenta en ámbitos normativos para el diseño entrepisos en sección compuesta por losas de concreto y perfilería CFS. (Texto tomado de la fuente).Since the late 1950's, evidence of the use of composite sections in buildings was made, with Switzerland as the pioneer country to apply this construction alternative. Because of the advantages of efficiently combining steel sections with concrete elements, the application of steel-concrete composite structures was extended in Europe and the United States, becoming leaders in world steel industry at that time. The performance of composite systems depends on the stress transfer mechanism at the interface of the components, directed to the shear connectors. According to current design codes, studs, steel channels, screws, and perfobond plates are approved to act as shear connectors, by applying welding to join to Hot-Rolled Steel sections (HRS), without having a proposal for their use in Cold-Formed Steel sections (CFS). Thus, welding can burn and/or perforate the steel plates, by reducing their structural load-bearing capacity. Even so, nowadays, there is no normative that reference any type of shear connector for CFS-concrete composite systems. The efficiency of CFS-concrete composite systems is improved because of the resistance vs. weight ratio, ease of transport and installation, becoming a sustainable alternative in green construction. In this research, the CSC-Type shear connectors (Confined Shear Connectors) are proposed to transfer forces in composite flooring systems, by including concrete slabs and CFS steel sections in the composite system. The configuration of the CSC connector was obtained because of a geometric optimization analysis, based on the mechanical behavior of the composite section, as well as the ease of both the manufacture and installation of the shear connector. The behavior of the composite system was characterized through alternative experimental shear tests (Pry-Out), and full-scale beam tests. The main parameters studied were the compressive strength of the concrete, the thickness of the concrete slab, the thickness of steel shapes, and the spacing between connectors. Numerical simulations of the experimental tests were carried out, by applying the Finite Element Method (MEF), to evaluate the nonlinear behavior of the composite system. In this way, it was possible to tracking and assessment of the failure mechanisms in the system and to visualize the evolution of behavior of their components. Finally, design formulations were proposed, supported by statistical analysis, which allowed estimating both the nominal load resistance of the CSC-type shear connectors and the degree of composite action in the system.COMPORTAMIENTO DE CONECTORES DE CORTANTE PARA SECCIONES COMPUESTAS DE CONCRETO Y PERFILES DE ACERO DE LÁMINA DELGADA ANTE SOLICITACIONES DE CORTE DIRECTO de la CONVOCATORIA PARA EL APOYO A PROYECTOS DE INVESTIGACIÓN Y CREACIÓN ARTÍSTICA DE LA SEDE BOGOTÁ DE LA UNIVERSIDAD NACIONAL DE COLOMBIA – 2019 (Código QUIPU (203010027173) en el marco de la CONVOCATORIA PARA EL APOYO A PROYECTOS DE INVESTIGACIÓN Y CREACIÓN ARTÍSTICA DE LA SEDE BOGOTÁ DE LA UNIVERSIDAD NACIONAL DE COLOMBIA – 2019.DISPOSITIVO DE INTERACCIÓN MECÁNICA EN ELEMENTOS COMPUESTOS DE CONCRETO Y PERFILES ESTRUCTURALES DE ACERO DE LÁMINA DELGADA: CONECTOR DE CORTANTE TIPO CSC (Código QUIPU (208010035635) en el marco de la modalidad de propuestas de escalamiento de prototipos UN INNOVA: CONVOCATORIA DE PROYECTOS PARA EL FORTALECIMIENTO DE LA INNOVACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA A PARTIR DEL DESARROLLO DE PROTOTIPOS Y EXPERIENCIAS PILOTO 2019-2021 (SEGUNDA COHORTE).DoctoradoDoctor en IngenieríaMateriales compuestosSistema de conexión de elementos para implementar en sistemas de entrepisosxxxi, 229 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería CivilFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilSecciones compuestasPerfiles CFSConectores de cortanteEnsayos Pry-outAcción parcialmente compuestaFormulación de diseñoComposite sectionsCFS shapesShear connectorsPry-out testsPartial-interactionDesign formulationElemento estructural (construcción)Ingeniería de la construcciónMateriales de construcciónStructural elements (buildings)Construction engineeringBuilding materialsConectores de cortante para secciones compuestas de concreto y perfiles de acero formados en fríoShear connectors in CFS-concrete composite sectionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1]. Ahn, J., Kim, S., Choi, K. & Jung, C. (2010). EXPERIMENTAL EVALUATION OF THE SHEAR RESISTANCE OF CORRUGATED PERFOBOND RIB SHEAR CONNECTIONS. Advances in Structural Engineering, Vol.14 (2), 249-263.[2]. Al-Darzi, S.Y.K., Chen, A.R. & Liu, Y.Q. (2007). FINITE ELEMENT SIMULATION AND PARAMETRIC STUDIES OF PERFOBOND RIB CONNECTOR. American Journal of Applied Science, 4 (3), 122-127.[3]. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC 360-16). SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS. USA.[4]. AMERICAN IRON AND STEEL INSTITUTE (AISI S100-16). NORTH AMERICAN SPECFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS. USA.[5]. Alenezi, K., Tahir, M., Alhajri, T., Badr, M., & Mirza, J. (2015). BEHAVIOR OF SHEAR CONNECTORS IN COMPOSITE COLUMN OF COLD-FORMED STEEL WITH LIPPED C-CHANNEL ASSEMBLED WITH FERRO-CEMENT JACKET. Construction and Building Materials, 84, 39-45.[6]. Alenezi, K., Tahir, M., Alhajri, T., Badr, M., Mirza, J., Lawan, M., & Hosseinpour, E. (2015). PUSH-OUT TESTS OF INNOVATIVE SHEAR CONNECTORS BETWEEN COLD-FORMED STEEL SECTION INTEGRATED WITH FERROCEMENT JACKET. Jurnal Teknologi, 74(4, SI), 67–72.[7]. Alhajri, T., Tahir, M., Azimi, M., Mirza, J., Lawan, M., Alenezi, K., & Ragaee, M. (2016). BEHAVIOR OF PRE-CAST U-SHAPED COMPOSITE BEAM INTEGRATING COLD-FORMED STEEL WITH FERRO-CEMENT SLAB. Thin-Walled Structures, 102, 18–29.[8]. Anderson, N. & Meinheit, D. (2000). DESIGN CRITERIA FOR HEADED STUDS GROUPS IN SHEAR. PCI Journal 46-75.[9]. Anderson, N. & Meinheit, D. (2005). PRY-OUT CAPACITY OF CAST-IN HEADED STUDS ANCHORS. PCI Journal 90-112.[10]. Arroyo, R. & Jullien, J. (1997). A NEW SHEAR STUD CONNECTOR PROPOSAL. In ASCE conference. 298-311.[11]. ASOCIACIÓN DE INGENIERIA SÍSMICA (NSR10). NORMA COLOMBIANA DE DISEÑO Y CNSTRUCCIÓN ISMO RESISTENTE. Bogotá.[12]. ASSOCIAḈAO BRASILEIRA DE NORMAS TECNICAS (NBR 8800/2008). NORMA BRASILEIRA – PROJETO DE ESTRUTURAS DE AḈO E CONCRETO DE EDIFICIOS. Brasil.[13]. Avelar, I., Beck, A. & Malite, M. (2010). RELIABILITY-BASED EVATUALTION OF DESIGN GUIDELINES FOR COLD-FORMED STEEL-CONCRETE COMPOSITE BEAMS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol XXXII No. 5, 442-449.[14]. Bamaga, S., Tahir, M., Tan, T., Mohammad, S., Yahya, N., Saleh, A., Rahman, A. (2013). FEASIBILITY OF DEVELOPING COMPOSITE ACTION BETWEEN CONCRETE AND COLD-FORMED STEEL BEAM. Journal Of Central South University, 20(12), 3689–3696.[15]. Bamaga, S., Tahir, M., & Tan, C. S. (2012). PUSH TESTS ON INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construction, 325–337.[16]. Bamaga, S., & Tahir, M. (2013). TOWARDS LIGHT-WEIGHT COMPOSITE CONSTRUCTION: INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAMS. Applied Mechanics and Materials, 351–352, 427–433.[17]. BRITISH STANDARDS (BS 5950-3-1/2010). BRITISH STANDARD – STRUCTURAL USE OF STEELWORK IN BUILDING. Inglaterra.[18]. CANADIAN STÁNDARDS ASSOCIATION. (CSA-S136/07). NORTH AMERICAN SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS. Canadá.[19]. Candido-Martins, J., Costa-Neves, L. & da S.Vellasco, P. (2010). EXPERIMENTAL EVALUATION OF THE STRUCTURAL RESPONSE OF PERFOBOND SHEAR CONNECTORS. Engineering Structures, 32, 1976-1985.[20]. Chinn, J. (1965). PUSH-OUT TESTS ON LIGHTWEIGHT COMPOSITE SLABS. Engineering Journal AISC, 129-134.[21]. Costa-Neves, L.F., Figueiredo, J.P., da S. Vellasco, P.C.G. & da Cruz, J. (2013). PERFORATED SHEAR CONNECTORS ON COMPOSITE GIRDERS UNDER MONOTONIC LOADING: AN EXPERIMENTAL APPROACH. Engineering Structures, 56, 721-737.[22]. Crisinel, Michel. (1990). PARTIAL-INTERACTION ANALYSIS OF COMPOSITE BEAMS WITH PROFILED SHEETING AND NON-WELDED SHEAR CONNECTORS. Journal of Constructional Steel Research, 15, 65-98.[23]. Derlatka, A., Lacki, P., Nawrot, J. & Winowiecka J. (2019). NUMERICAL AND EXPERIMENTAL TEST OF STEEL-CONCRETE COMPOSITE BEAM WITH THE CONNECTOR MADE OF TOP-HAT PROFILE. Composite Structures, 211, 244-253.[24]. Dubey, A., Nayak, A., & Bhattacharyya, S. (1999). STRENGTH OF THIN-WALLED STEEL-CONCRETE COMPOSITE BEAMS: EXPERIMENTAL STUDY. Journal of the Institution of Engineers (India): Civil Engineering Division, 80(1), 37-41.[25]. Easterling, W. (2005). NEW SHEAR STUD PROVISIONS FOR COMPOSITE BEAM DESIGN. In Proceedings of the Structures Congress and Exposition, 1211-1212.[26]. Eom, T.S., Chung, L., Lim, J.J. & Hwang, H.J. (2016). REVIEW OF DESIGN FLEXURAL STRENGTHS OF STEEL-CONCRETE COMPOSITE BEAMS FOR BUILDINGS STRUCTURES. International Journal of Concrete Structures and Materials, Vol. 10(3), 109-121.[27]. Erazo, L. & Molina, M. (2017). COMPORTAMIENTO DE CONECTORES DE CORTANTE TIPO TORNILLO EN SECCIONES COMPUESTAS CON LÁMINA COLABORANTE. Tesis de maestría Universidad Nacional de Colombia.[28]. Erdélyi, S., & Dunai, L. (2004). BEHAVIOUR OF A NEW TYPE OF COMPOSITE CONNECTION. Periodica Polytechnica Civil Engineering, 48(1–2), 89–100.[29]. EUROPEAN COMMITTEE FOR STANDARIZATION. EUROCÓDIGO 2. (1992). DESIGN OF CONCRETE STRUCTURES – CONCRETE BRIDGES – DESIGN AND DETAILING RULES.[30]. EUROPEAN COMMITTEE FOR STANDARIZATION. EUROCÓDIGO 4. (1994). DESIGN OF COMPOSITE STEEL AND CONCRETE STRUCTURES.[31]. Fontana, M., & Bärtschi, R. (2002). COMPOSITE FLOORS WITH NOVEL SHEAR CONNECTORS [Verbunddecken mit neuartigen Verbundmitteln]. Stahlbau, 71(8), 605–611.[32]. GERDAU CORSA. (2010). CONSTRUCCIÓN COMPUESTA ACERO-CONCRETO. Instituto Mexicano de la Construcción en Acero. Mexico D. F. (Mexico).[33]. Gizejowski M. & Marcinowski J. (2016). In 13th International Conference on Metal Structures, ICMS 2016, 1–577.[34]. Hanaor, A. (2000). TESTS OF COMPOSITE BEAMS WITH COLD-FORMED SECTIONS. Journal of Constructional Steel Research, 54(2), 245–264.[35]. Hancock, G. (2003). COLD-FORMED STEEL STRUCTURES. Journal of Constructional Steel Research, 59, 473-487.[36]. Hamidi, B. (2013). DESIGN OF COMPOSITE BEAMS USING LIGHT STEEL CONSTRUCTIONS. Machines, technologies, materials. Issue 12/2013, 50–52.[37]. Hancock, G. (2003). COLD-FORMED STEEL STRUCTURES. Journal of Constructional Steel Research, 59, 473-487.[38]. Hosaka, T., Mitsuki, K., Hiragi, H., Ushijima, Y., Tachibana, Y. & Wantabe, H. (2000). AN EXPERIMENTAL STUDY ON SHEAR CHARACTERISTICS OF PERFOBOND STRIP AND ITS RATIONAL STRENGTH. Journal of Structural Engineering JSCE 46A, 1593-1604.[39]. Hossain, A. (2005). DESIGNING THIN-WALLED COMPOSITE-FILLED BEAMS. Proceedings of the Institution of Civil Engineers. Structures & Buildings, 158, 267-278.[40]. Hurtado, X.F. & Molina, M. (2020). ALTERNATIVE FASTENING MECHANISM FOR SHEAR CONNECTORS WITH COLD-FORMED STEEL SHAPES INVOLVED IN COMPOSITE SECTIONS. Athens Journal of Technology and Engineering 7(2), 133-156.[41]. Hurtado, X.F. & Molina, M. (2021). BEHAVIOR OF SCS-TYPE SHEAR CONNECTORS UNDER PRY-OUT SHEAR TEST: ANALYTICAL STUDY. Materials Science Forum Vol. 1046, 45-58.[42]. Hurtado, X. (2007). COMPORTAMIENTO DE CONECTORES DE CORTANTE TIPO TORNILLO DE RESISTENCIA GRADO 2 (DOS) PARA UN SISTEMA DE SECCIÓN COMPUESTA CON CONCRETO DE 21 MPa ANTE SOLICITACIÓN DE CORTE DIRECTO. Tesis de maestría Universidad Nacional de Colombia.[43]. Hurtado, X.F. & Molina, M. (2023). FLEXURAL BEHAVIOR OF CFS-CONCRETE COMPOSITE SYSTEMS INVOLVING CSC-TYPE SHEAR CONNECTORS. Athens Journal of Technology and Engineering 7(2), 133-156.[44]. Hurtado, X. & Molina, M. (2020). GEOMETRICAL AND MECHANICAL OPTIMIZATION OF SHEAR CONNECTORS FOR CFS-CONCRETE COMPOSITE SYSTEMS. In The 2020 Structures Congress 25-28.[45]. Hurtado, X.F. & Molina, M. (2023). EXPERIMENTAL ANALYSIS OF CSC-TYPE SHEAR CONNECTORS CAPACITY UNDER DIRECT SHEAR: PRY-OUT TEST. Athens Journal of Technology and Engineering 7(2), 133-156.[46]. Hsu, T., Munoz, R., Punurai, S., Majdi, Y., & Punurai, W. (2012). BEHAVIOR OF COMPOSITE BEAMS WITH COLD-FORMED STEEL JOISTS AND CONCRETE SLAB. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construcción, 339–353.[47]. Ipe, T., Bai, S., & Vani, K. (2016). AN EXPERIMENTAL STUDY ON BEHAVIOUR OF THIN-WALLED COLD FORMED STEEL-CONCRETE COMPOSITE BEAMS UNDER SHEAR. Indian Concrete Journal, 90(6), 20–29.[48]. Ipe, T., Bai, H., Vani, K., & Iqbal, M. (2013). FLEXURAL BEHAVIOR OF COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Steel and Composite Structures, 14(2), 105–120.[49]. Irwan, J., Hanizah, A., Azmi, I., & Koh, H.. (2011). LARGE-SCALE TEST OF SYMMETRIC COLD-FORMED STEEL (CFS)-CONCRETE COMPOSITE BEAMS WITH BTTST ENHANCEMENT. Journal Of Constructional Steel Research, 67(4), 720–726.[50]. Irvwan, J., & Hanizah, A. (2009). TEST OF SHEAR TRANSFER ENHANCEMENT IN SYMMETRIC COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Journal of Constructional Steel Research, 65, 2087-2098.[51]. Jeong, Y.J., Kim, H.Y. & Kim, S.H. (2005). PARTIAL-INTERACTION ANALYSIS WITH PUSH-OUT TEST. Journal of Constructional Steel Research 61, 1318-1331.[52]. Johnson, R. P., & Buckby, R. J. (1994). COMPOSITE STRUCTURES OF STEEL AND CONCRETE. Blackwell Scientific Publications. Oxford (England).[53]. JAPAN SOCIETY OF CIVIL ENGINEERS (JSCE-09). STANDARD SPECIFICATIONS FOR STEEL AND COMPOSITE STRUCTURES. Japon.[54]. Jung, c.H., Kim, S.H., Choi, K.T., Park, S.J. & Park, S.M. (2013). EXPERIMENTAL SHEAR RESISTANCE EVALUATION OF Y-TYPE PERFOBOND RIB SHEAR CONNECTOR. Journal of Constructional Steel Research, 82, 1-18.[55]. Khadavi, & Tahir, M. M. (2017). PREDICTION ON FLEXURAL STRENGTH OF ENCASED COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In V. B. F. Borgan W.R. Saloma (Ed.), AIP Conference Proceedings (Vol. 1903). American Institute of Physics Inc.[56]. Kim, S., Choi, K., Park, S.J., Park, S.M. & Jung, C.. (2013). EXPERIMENTAL SHEAR RESISTANCE EVALUATION OF Y-TYPE PERFOBOND RIB SHEAR CONNECTOR. Journal of Constructional Steel Research, 82, 1-18.[57]. Klansek, U., & Kravanja, S. (2006). COST ESTIMATION, OPTIMIZATION AND COMPETITIVENESS OF DIFFERENT COMPOSITE FLOOR SYSTEMS - PART 1: SELF-MANUFACTURING COST ESTIMATION OF COMPOSITE AND STEEL STRUCTURES. Journal of Constructional Steel Research, 62(5), 434–448.[58]. Kraus, D. & Wurzer, O. (1997). NON-LINEAR FINITE ELEMENT ANALYSIS OF CONCRETE DOWELS. Computers & Structures. 64, 1271-1279.[59]. Kyvelou, P., Gardner, L. & Nethercot, D.A. (2018). FINITE ELEMENT MODELLING OF COMPOSITE COLD-FORMED STEEL FLOORING SYSTEMS. Engineering Structures, 158, 28-42.[60]. Lakkavalli, B. & Liu, Y. (2006). EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION FLOOR JOIST. Journal of Constructional Steel Research, 62, 995-1006.[61]. Lawan, M., Tahir, M., & Mirza, J. (2016). BOLTED SHEAR CONNECTORS PERFORMANCE IN SELF-COMPACTING CONCRETE INTEGRATED WITH COLD-FORMED STEEL SECTION. Latin American Journal of Solids And Structures, 13(4), 731–749.[62]. Lawan, M., Tahir, M., & Osman, M. (2015). COMPOSITE CONSTRUCTION OF COLD-FORMED STEEL (CFS) SECTION WITH HIGH STRENGTH BOLTED SHEAR CONNECTOR. Jurnal Teknologi, 77(16), 171–179.[63]. Lawan, M., Tahir, M., & Hosseinpour, E. (2016). FEASIBILITY OF USING BOLTED SHEAR CONNECTOR WITH COLD-FORMED STEEL IN COMPOSITE CONSTRUCTION. Jurnal Teknologi, 78(6–12), 7–13.[64]. Lawan, M., & Tahir, M. (2015). STRENGTH CAPACITY OF BOLTED SHEAR CONNECTORS WITH COLD-FORMED STEEL SECTION INTEGRATED AS COMPOSITE BEAM IN SELF-COMPACTING CONCRETE. Jurnal Teknologi, 77(16), 105–112.[65]. Lawan, M., Tahir, M., Ngian, S. & Sulaiman, A. (2015). STRUCTURAL PERFORMANCE OF COLD-FORMED STEEL SECTION IN COMPOSITE STRUCTURES: A REVIEW. Jurnal Teknologi, 74:4, 165-175.[66]. Lawson, R., Popo-Ola, S. & Varley, D. (2001). INNOVATIVE DEVELOPMENT OF LIGHT STEEL COMPOSITES IN BUILDINGS. In International union of laboratories and experts in construction materials and structures (RILEM). International symposium on connections between steel and concrete.[67]. Lemes, D. (2007). ANÁLISE TEÓRICA E EXPERIMENTAL DE CONECTORES DE CISALHAMENTO E VIGAS MISTAS CONSTITUIDAS POR PERFIS DE AḈO FORMADOS A FRIO E LAJE DE VIGOTAS PRÉ-MOLDADAS. Tesis doctoral Universidad de Sao Paulo.[68]. Liu, Y., Zheng, S., Yoda, T. & Lin, W. (2016). PARAMETRIC STUDY ON SHEAR CAPACITY OF CIRCULAR-HOLE AND LONG-HOLE PERFOBONF SHEAR CONNECTOR. Journal of Constructional Steel Research, 117, 64-80.[69]. Luo, Y., Li, A. & Kang, Z. (2012). PARAMETRIC STUDY OF BONDED STEEL-CONCRETE COMPOSITE BEAMS BY USING FINITE ELEMENT ANALYSIS. Engineering Structures, 34, 40–51.[70]. PUSH TESTS ON INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construction, 325–337.[71]. Majdi, Y., Hsu, C., & Zarei, M. (2014). FINITE ELEMENT ANALYSIS OF NEW COMPOSITE FLOORS HAVING COLD-FORMED STEEL AND CONCRETE SLAB. Engineering Structures, 77, 65–83.[72]. Majdi, Y., Hsu, C., & Zarei, M. (2014). FINITE ELEMENT MODELING OF NEW COMPOSITE FLOORS HAVING COLD-FORMED STEEL AND CONCRETE SLAB. In Y. W.-W. LaBoube R.A. (Ed.), 22nd International Specialty Conference on Recent Research and Developments in Cold-Formed Steel Design and Construction, 463-477.[73]. Malite, M., Nimir, W., De Sales, J., Goncalves, R., Dubey, A., Nayak, A., Malathy, R. (2016). COMPOSITE CONSTRUCTION OF COLD-FORMED STEEL (CFS) SECTION WITH HIGH STRENGTH BOLTED SHEAR CONNECTOR. Jurnal Teknologi, 67(1), 67–72.[74]. Malite, M., Nimir, W., Goncalves, R. & de Sales, J. (2000). ON THE STRUCTURAL BEHAVIOR OF COMPOSITE BEAMS USING COLD-FORMED SHAPES. In 15th International Specialty Conference on Cold-Formed Steel Structures, 307-319.[75]. Malite, M., Nimir, W., Goncalves, R. & de Sales, J. (1998). COLD-FORMED SHEAR CONNECTORS FOR COMPOSITE CONSTRUCTIONS. In 14th International Specialty Conference on Cold-Formed Steel Structures, 409-421.[76]. Medberry, S.B. & Shahrooz, B.M. (2002). PERFOBOND SHEAR CONNECTOR FOR COMPOSITE CONSTRUCTION. Engineering Journal AISC, 39(1), 2-12.[77]. Merryfield, G., El-Ragaby, A., & Ghrib, F. (2016). NEW SHEAR CONNECTOR FOR OPEN WEB STEEL JOIST WITH METAL DECK AND CONCRETE SLAB FLOOR SYSTEM. Construction And Building Materials, 125, 1-11.[78]. Montgomery, D. (2013). DESIGN AND ANALYSIS OF EXPERIMENTS, 8th ed., Wiley, New Jesey,[79]. Ñurinda, F., Bermudez, R. & Monge, G. (2008). REVISIÓN DEL DISEÑO ESTRUCTURAL DEL HOSPITAL MONTE ESPAÑA VILLA FONTANA. ANÁLISIS Y DISEÑO DE SECCIONE COMPUESTAS DE ACERO Y CONCRETO POR EL MÉTODO LRFD. Nicaragua.[80]. Ollgaard, J., Slutter, R., & Fisher, J. (1971). SHEAR STRENGTH OF STUD CONNECTORS IN LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE. AISC Engineering Journal, 55-64.[81]. Oguejiofor E.C & Hosain MU. (1994). A PARAMETRIC STUDY OF PERFOBOND RIB SHEAR CONNECTORS. Canadian Journal of Civil Engineering, 21, 614-625.[82]. Oguejiofor E.C & Hosain MU. (1997). NUMERICAL ANALYSIS OF PUSH-OUT SPECIMENES WITH PERFOBOND RIB CONNECTORS. Computers & Structures, 64 (4), 617-624.[83]. Ollgaard, J. Slutter, R. & Fisher, J. (1971). SHEAR STRENGTH OF STUD CONNECTORS IN LIGHTWEIGHT AND NORMAL-WEIGTH CONCRETE. AISC Engineering journal, 55-64.[84]. Papastergiou, D. & Lebet, J. (2014). EXPERIMENTAL INVESTIGATION AND MODELLING OF THE STRUCTURAL BEHAVIOR OF CONFINED GROUTED INTERFACES FOR A NEW STEEL-CONCRETE CONNECTION. Engineering Structures, 74, 180-192.[85]. Pathirana, S., Uy, B., Mirza, O. & Zhu, X.. (2016). FLEXURAL BEHAVIOUR OF COMPOSITE STEEL-CONCRETE BEAMS UTILISING BLIND BOLT SHEAR CONNECTORS. Engineering Structures, 114, 181-194.[86]. Queiroz, F.D., Nethercot, D.A. & Vellazco, P.C. (2007). FINITE ELEMENT MODELLING OF COMPOSITE BEAMS WITH FULL AND PARTIAL SHEAR CONNECTION. Journal of Constructional Steel Research, 63, 505-521.[87]. Queiroz, G., Rodrigues, F., Pereira, S., Pfeil, M. Oliveira, C. & da Mata, L. (2010). In. International Colloquium on Stability and Ductility of Steel Structures 2006, Vol. 1.[88]. Raj, P.V. & Sathiya B.P. (2017). AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF SHEAR CONNECTORS IN COMPOSITE SECTIONS. International Research Journal of Engineering and Technology (IRJET), Vol 04 (6), 991-999.[89]. Saggaff, A., Tahir, M., Azimi, M., & Alhajri, T. (2017). STRUCTURAL ASPECTS OF COLD-FORMED STEEL SECTION DESIGNED AS U-SHAPE COMPOSITE BEAM. In V. B. F. Borgan W.R. Saloma (Ed.), AIP Conference Proceedings (Vol. 1903). American Institute of Physics Inc.[90]. Saggaff, A., Alhajri, T., Alenezi, K., Tahir, M., Zin, R., Ngian, S., & Ragaee, M. (2016). EXPERIMENTAL STUDY ON BOLTED SHEAR CONNECTOR ENHANCEMENT IN PRECAST COLD-FORMED STEEL-FERRO CEMENT FOR COMPOSITE BEAM SYSTEM. Iioab Journal, 7(1), 446–452.[91]. Saggaff, A., Tahir, M., Azimi, M., & Lawan, M. (2016). IMPACT OF BOLTED SHEAR CONNECTOR SPACING IN COMPOSITE BEAM INCORPORATING COLD-FORMED STEEL OF CHANNEL LIPPED SECTION. Iioab Journal, 7(1), 441–445.[92]. Saggaff, A., Tahir, M. M., Azimi, M., & Lawan, M. M. (2016). INFLUENCE OF BOLTED SHEAR CONNECTOR SIZE IN PUSH-OUT TEST FOR COMPOSITE CONSTRUCTION WITH COLD-FORMED STEEL SECTION. Iioab Journal, 7(1), 521–526.[93]. Sara, B.M. & Bahram, M.S. (2002). PERFOBOND SHEAR CONNECTORS FOR COMPOSITE CONSRUCTION. Engineering Journal, First Quarter, 2-12.[94]. Shahabi, S., Sulong, N., Shariati, M., & Shah, S. (2016). PERFORMANCE OF SHEAR CONNECTORS AT ELEVATED TEMPERATURES-A REVIEW. Steel And Composite Structures, 20(1), 185–203.[95]. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M., & Shah, S. (2016). NUMERICAL ANALYSIS OF CHANNEL CONNECTORS UNDER FIRE AND A COMPARISON OF PERFORMANCE WITH DIFFERENT TYPES OF SHEAR CONNECTORS SUBJECTED TO FIRE. Steel And Composite Structures, 20(3), 651–669.[96]. Shankar, B., Liu, Y. (2006). EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION FLOOR JOISTS. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 62, 995-1006.[97]. Shariati, M., Ramli, N., Suhatril, M., Shariati,A., Arabnejad, M. & Sinaei, H. (2012). BEHAVIOUR OF C-SHAPED ANGLE SHEAR CONNECTORS UNDER MONOTONIC AND FULLY REVERSED CYCLIC LOADING: AN EXPERIMENTAL STUDY. Materials and Design, 41, 67-73.[98]. Shariati, M., Khorramian, K., Maleki, S., Jalali, A. & Tahir, M.M. (2017). NUMERICAL ANALYSIS OF TILTED ANGLE SHEAR CONNECTORS IN STEEL-CONCRETE COMPOSITE SYSTEMS. Steel and Composite Structures, Vol.23(1), 67-85.[99]. Shi, Y., Zhou, X., Xu, L., Yao, X. & Wang, W. (2019). A SIMPLIFIED METHOD TO EVALUATE THE FLEXURAL CAPACITY OF LIGHTWEIGHT COLD-FORMED STEEL FLOOR SYSTEM WITH ORIENTED STRAND BOARD SUBFLOOR. Thin-Walled Structures, 134, 40-51.[100]. Shi, Y., Yang, K., Guan, Y., Yao, X., Xu, L. & Zhang, H. (2020). THE FLEXURAL BEHAVIOR OF COLD-FORMED STEEL COMPOSITE BEAMS. Thin-Walled Structures, 218, 1-15.[101]. Shi, Y., Yang, K., Guan, Y., Yao, X., Xu, L. & Zhang, H. (2020). THE FLEXURAL BEHAVIOR OF COLD-FORMED STEEL COMPOSITE BEAMS. Thin-Walled Structures, 218, 1-15.[102]. Slutter, R., & Driscoll, G. (1963). FLEXURAL STRENGTH OF STEEL AND CONCRETE COMPOSITE BEAMS. Final report of an investigation of composite beams for buildings sponsored by the American Institute of Steel Construction, 1-57.[103]. Sotelino, E. & Chung, W. (2006). THREE-DIMENSIONAL FINITE ELEMENT MODELING OF COMPOSITE GIRDER BRIDGES. Engineering Structures, 28, 63-71.[104]. STANDARDS AUSTRALIA – STANDARDS NEW ZELAND.(AS/NZS 4600/2005). COLD FORMED STEEL STRUCTURES. Australia.[105]. Tahir, M., Saggaff, A., Azimi, M. & Lawan, M. (2016). IMPACT OF BOLTED SHEAR CONNECTOR SPACING IN COMPOSITE BEAM INCORPORATING COLD FORMED STEEL OF CHANNEL LIPPED SECTION. IIOAB Journal, 7, 441-445.[106]. Tahir, M.M., Bamaga, S.O., Tan, C.S., Shek, P.N. & Aghlara, R. (2019). PUSH-OUT TEST ON THREE INNOVATIVE SHEAR CONNECTORS FOR COMPOSITE COLD-FORMED STEEL CONCRETE BEAMS. Construction and Building Materials, 223, 288-298.[107]. Tahir, M., Bamaga, S., Ngian, S., Mohamad, S., Sulaiman, A., & Aghlara, R. (2019). STRUCTURAL BEHAVIOUR OF COLD-FORMED STEEL OF DOUBLE C-LIPPED CHANNEL SECTIONS INTEGRATED WITH CONCRETE SLABS AS COMPOSITE BEAMS. Latin American Journal of Solids and Structures, 16(5), 1–15.[108]. Tan, C., Lee, Y., Mohammad, S., Lim, S., Lee, Y., & Lim, J. (2015). FLEXURAL BEHAVIOUR OF REINFORCED SLAB PANEL SYSTEM WITH EMBEDDED COLD-FORMED STEEL FRAMES AS REINFORCEMENT. Jurnal Teknologi, 74(4), 39–44.[109]. Thivya, J., & Malathy, R. (2016). PERFORMANCE OF CONCRETE FILLED IN COLD FORM STEEL SHEET WITH SHEAR CONNECTOR UNDER PURE BENDING. Journal Of Scientific & Industrial Research, 75(3), 172–175.[110]. Titoum, M., Mazoz, A., Benanane, A. & Ouinas, D. (2016). EXPERIMENTAL STUDY AND FINITE ELEMENT MODELLING OF PUSH-OUT TEST ON A NEW SHEAR CONNECTOR OF I-SHAPE. Advanced Steel Construction Vol.12, N°4, 487–506.[111]. Valencia, G. (2010). DISEÑO BÁSICO DE ESTRUCTURAS DE ACERO DE ACUERDO CON NSR-10. 1° Edición. Editorial Escuela Colombiana de Ingenieria.[112]. Valsa I., Sharada H., Manjula K., & Iqbal, M. (2013). FLEXURAL BEHAVIOR OF COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Steel and Composite Structures, 14(2), 105–120.[113]. Verissimo, G.S. (2007). DEVELOPMENT OF A SHEAR CONNECTOR PLATE GEAR FOR COMPOSITE STRUCTURES OF STEEL AND CONCRETE AND STUDY THEIR BEHAVIOR (En Portugués). Tesis de Doctorado Universidad Federal de Minas Gerais Belo Horizonte.[114]. Viest, I. M., Siess, C. P., Appleton, J. H. & Newmark N. M. (1952). FULL-SCALED TEST OF CHANNEL SHEAR CONNECTORS AND COMPOSITE T-BEAMS. Report of investigation. University of Illinois Bulletin N° 405.[115]. Vinnakota, S., Foley, C., & Vinnakota, M. (2003). DESIGN OF PARTIALLY OR FULLY COMPOSITE BEAMS WITH RIBBED METAL DECK USING LRFD SPECIFICATIONS. Engineering Journal/American Institute of Steel Construction. 60-78.[116]. Wehbe, N., Wehbe, A., Dayton, L. & Sigl, A. (2011). DEVELOPMENT OF CONCRETE/COLD FORMED STEEL COMPOSITE FLEXURAL MEMBERS. In ASCE Structures Congress 2011, 3099-3109.[117]. Youns, M.A., Hassaneen, S.A., Badr, M.R. & Salem, E.S. (2016). COMPOSITE BEAMS OF COLD FORMED STEEL SECTIONS AND CONCRETE SLAB. International Journal of Engineering Development and Research, Vol. 4(4), 165-177.[118]. Yu, J., Wang, L., & Chang, J. (2010). INTERFACE SHEARING FORCE ANALYSIS OF COMPOSITE BEAMS WITH COLD FORMED STEEL U SECTION BASED ON ENERGY THEORY. Journal of Shenyang Jianzhu University (Natural Science), 26(1), 108–111.[119]. Yu, Wei-Wen & Laboube, R. (2010). COLD FORMED STEEL DESIGN. 4th Edition. John Wiley & Sons, Inc.[120]. Zhao, C. & Liu, Y.Q. (2012). EXPERIMENTAL STUDY OF SHEAR CAPACITY OF PERFOBOND CONNECTOR. Journal of Engineering Mechanics, 29(12), 349-354.Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86873/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL80098348.2024.pdf80098348.2024.pdfTesis de Doctorado en Ingeniería - Ingeniería Civilapplication/pdf21363352https://repositorio.unal.edu.co/bitstream/unal/86873/2/80098348.2024.pdf2cc53095e7cba0e1e70add8f17afdd7aMD52THUMBNAIL80098348.2024.pdf.jpg80098348.2024.pdf.jpgGenerated Thumbnailimage/jpeg5212https://repositorio.unal.edu.co/bitstream/unal/86873/3/80098348.2024.pdf.jpg6fa152f42e6bfe6b2c8fdd58f9203380MD53unal/86873oai:repositorio.unal.edu.co:unal/868732024-09-26 23:11:56.324Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=