On a problem of krasnosel'skii and rutickii
In \cite[p. 30]{5}, M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let $f$ be an $N$-function such that $f(ts)\leq f(t)f(s)$, $s,t\geq 1$. Is there another $N$-function $F$ such that $F(st)\leq F(t)F(s)$, $s,t and gt;0$ and equivalent to $f$ o...
- Autores:
-
Bárcenas, Diomedes
Finol, Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2011
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/39501
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/39501
http://bdigital.unal.edu.co/29598/
- Palabra clave:
- Orlicz Functions
N-Functions
Submultiplicative Functions
Matuszewska--Orlicz indices
39B62
26B25
26A51
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In \cite[p. 30]{5}, M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let $f$ be an $N$-function such that $f(ts)\leq f(t)f(s)$, $s,t\geq 1$. Is there another $N$-function $F$ such that $F(st)\leq F(t)F(s)$, $s,t and gt;0$ and equivalent to $f$ on $[1,\infty)?$. We give a necessary and sufficient condition for a positive and constructive solution. |
---|