On a problem of krasnosel'skii and rutickii

In \cite[p. 30]{5}, M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let $f$ be an $N$-function such that $f(ts)\leq f(t)f(s)$, $s,t\geq 1$. Is there another $N$-function $F$ such that $F(st)\leq F(t)F(s)$, $s,t and gt;0$ and equivalent to $f$ o...

Full description

Autores:
Bárcenas, Diomedes
Finol, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/39501
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/39501
http://bdigital.unal.edu.co/29598/
Palabra clave:
Orlicz Functions
N-Functions
Submultiplicative Functions
Matuszewska--Orlicz indices
39B62
26B25
26A51
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In \cite[p. 30]{5}, M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let $f$ be an $N$-function such that $f(ts)\leq f(t)f(s)$, $s,t\geq 1$. Is there another $N$-function $F$ such that $F(st)\leq F(t)F(s)$, $s,t and gt;0$ and equivalent to $f$ on $[1,\infty)?$. We give a necessary and sufficient condition for a positive and constructive solution.