Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación
diagramas, ilustraciones a color, tablas
- Autores:
-
Rodríguez Beltrán, Edgar Orlando
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79617
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
Rifampin
Antibióticos Antituberculosos
Antibiotics, Antitubercular
Mycobacterium
Mycobacterium tuberculosis
Rifampicina
rpoB
Fitness
Virulencia
Resistencia
Antibióticos
Rifampicin
Fitness
Virulence
Resistance
Antibiotics
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f3f83e737531295d830a489f38cbcfd6 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79617 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
dc.title.translated.eng.fl_str_mv |
rpoB S531L-rifampicin-resistant mutant isolation in Mycobacterium tuberculosis ATCC 25618 and evolution biomarker identification |
title |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
spellingShingle |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación 610 - Medicina y salud::615 - Farmacología y terapéutica Rifampin Antibióticos Antituberculosos Antibiotics, Antitubercular Mycobacterium Mycobacterium tuberculosis Rifampicina rpoB Fitness Virulencia Resistencia Antibióticos Rifampicin Fitness Virulence Resistance Antibiotics |
title_short |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
title_full |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
title_fullStr |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
title_full_unstemmed |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
title_sort |
Aislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación |
dc.creator.fl_str_mv |
Rodríguez Beltrán, Edgar Orlando |
dc.contributor.advisor.none.fl_str_mv |
Murcia Aranguren, Martha Isabel Carazzone, Chiara |
dc.contributor.author.none.fl_str_mv |
Rodríguez Beltrán, Edgar Orlando |
dc.contributor.projectmanager.none.fl_str_mv |
Edgar Orlando Rodríguez Beltrán |
dc.contributor.researchgroup.spa.fl_str_mv |
MICOBAC-UN |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica Rifampin Antibióticos Antituberculosos Antibiotics, Antitubercular Mycobacterium Mycobacterium tuberculosis Rifampicina rpoB Fitness Virulencia Resistencia Antibióticos Rifampicin Fitness Virulence Resistance Antibiotics |
dc.subject.decs.none.fl_str_mv |
Rifampin Antibióticos Antituberculosos Antibiotics, Antitubercular Mycobacterium |
dc.subject.proposal.spa.fl_str_mv |
Mycobacterium tuberculosis Rifampicina rpoB Fitness Virulencia Resistencia Antibióticos |
dc.subject.proposal.eng.fl_str_mv |
Rifampicin Fitness Virulence Resistance Antibiotics |
description |
diagramas, ilustraciones a color, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-08T20:55:33Z |
dc.date.available.none.fl_str_mv |
2021-06-08T20:55:33Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79617 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79617 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adone, R., Ciuchini, F., & Marianelli, C. (2005). Protective Properties of Rifampin-Resistant Rough Mutants of Brucella melitensis. Infect Immun, 73(7), 4198–4204. https://doi.org/10.1128/IAI.73.7.4198 Ambion, & Life Technologies. (2012). TURBO DNA-free 3 TM Kit User Guide. User Guide. Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489–493. https://doi.org/10.1016/S1369-5274(99)00005-3 Angst, D. C., & Hall, A. R. (2013). The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evolutionary Biology, 13(1), 163. https://doi.org/10.1186/1471-2148-13-163 Applied-Biosystems. (2010). Relative Quantitation Using Comparative CT - Getting started guide, 1–120. Applied Biosystems. (2002). TaqMan ® Universal PCR Master Mix. Applied Biosystems. (2010). High Capacity cDNA Reverse Transcription Kits for 200 and 1000 Reactions Protocol (Rev E). Manual, (06), 1–29. AppliedBiosystems. (2011). SYBR Green PCR Master Mix and SYBR Green RT-PCR Reagents Kit User Guide, 4309155(4309155), 1–48. Retrieved from http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041053.pdf%5Cnpapers3://publication/uuid/32687140-3E25-4A66-B58A-ED792D5D3C76 Astarie-Dequeker, C., Le Guyader, L., Malaga, W., Seaphanh, F. K., Chalut, C., Lopez, A., & Guilhot, C. (2009). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens, 5(2). https://doi.org/10.1371/journal.ppat.1000289 ATCC, & BEI Resources. (2015). Certificate of analysis for NR-20328 – Mycobacterium tuberculosis, Strain H37Rv, Purified Phtiocerol dimycocerosate. Manassas (VA) Bæk, K. T., Thøgersen, L., Mogensen, R. G., Mellergaard, M., Thomsen, L. E., Petersen, A., & Skov, S. (2015). Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX Gene. Antimicrobial Agents and Chemotherapy, 59(11), 6983–6991. https://doi.org/10.1128/AAC.01303-15. Bergman, J. M., Wrande, M., & Hughes, D. (2014). Acetate availability and utilization supports the growth of mutant sub-populations on aging bacterial colonies. PLoS ONE, 9(10), 1–9. https://doi.org/10.1371/journal.pone.0109255 Bergval, I., Kwok, B., Schuitema, A., Kremer, K., van Soolingen, D., Klatser, P., & Anthony, R. (2012). Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029108 Bergval, I. L., Klatser, P. R., Schuitema, A. R. J., Oskam, L., & Anthony, R. M. (2007). Specific mutations in the Mycobacterium tuberculosis rpoB gene are associated with increased dnaE2 expression. FEMS Microbiology Letters, 275(2), 338–343. https://doi.org/10.1111/j.1574-6968.2007.00905.x Bhatnagar, N; Getachew, E; Straley, S; Williams, J; Meltzer, M; Fortier, A. (1994). Reduced virulence of rifampicin-resistant mutants of Francisella tularensis. J Infect Dis, 170(4), 841-7. Billington, O. J., Mchugh, T. D., & Gillespie, S. H. (1999). Physiological Cost of Rifampin Resistance Induced In Vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother., 43(8), 1866–1869. Bisson, G. P., Mehaffy, C., Broeckling, C., Prenni, J., Rifat, D., Lun, D. S., … Dobosc, K. (2012). Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by Rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. Journal of Bacteriology, 194(23), 6441–6452. https://doi.org/10.1128/JB.01013-12 Björkman, J., Hughes, D., & Andersson, D. I. (1998). Virulence of antibiotic-resistant Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3949–3953. https://doi.org/10.1073/pnas.95.7.3949 Blaser, M. J., Musser, J. M., Bifani, P. J., Kreiswirth, B. N., & Small, P. M. (2001). Bacterial polymorphisms The nature and consequence of genetic variability within Mycobacterium tuberculosis Bacterial polymorphisms. The Journal of Clinical Investigation, 107(5), 533–537. https://doi.org/10.1172/JCI11426 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 Boor, K. Price, C. (1995). Genetic and Transcriptional organization of the region encoding the B subunit of RNA polymerase in Bacillus subtilis. Boor, K. J., Duncan, M. L., & Price, C. W. (1995). Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. The Journal of Biological Chemistry, 270(35), 20329–20336. https://doi.org/10.1074/jbc.270.35.20329 Borrell, S., & Gagneux, S. (2009). Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. International Journal of Tuberculosis and Lung Disease, 13(12), 1456–1466. Borrell, Sonia, Teo, Y., Giardina, F., Streicher, E. M., Klopper, M., Feldmann, J., … Gagneux, S. (2013). Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evolution, Medicine, and Public Health, 2013(1), 65–74. https://doi.org/10.1093/emph/eot003 Brandis, G., & Hughes, D. (2013). Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. Journal of Antimicrobial Chemotherapy, 68(11), 2493–2497. https://doi.org/10.1093/jac/dkt224 Brandis, G., & Hughes, D. (2018). Mechanisms of fitness cost reduction for rifampicin-resistant strains with deletion or duplication mutations in rpoB. Scientific Reports, 8(1), 1–6. https://doi.org/10.1038/s41598-018-36005-y Brandis, G., Pietsch, F., Alemayehu, R., & Hughes, D. (2014). Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 1–6. https://doi.org/10.1093/jac/dku434 Brandis, G., Wrande, M., Liljas, L., & Hughes, D. (2012). Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Molecular Microbiology, 85(1), 142–151. Retrieved from http://doi.wiley.com/10.1111/j.1365-2958.2012.08099.x Brinkman, C. L., Tyner, H. L., Schmidt-Malan, S. M., Mandrekar, J. N., & Patel, R. (2015). Causes and implications of the disappearance of rifampin resistance in a rat model of methicillin-resistant Staphylococcus aureus foreign body osteomyelitis. Antimicrobial Agents and Chemotherapy, 59(8), 4481–4488. https://doi.org/10.1128/AAC.05078-14 Bromfield, E. S. P., Lewis, D. M., & Barran, L. R. (1985). Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness. Journal of Bacteriology, 164(1), 410–413. Burian, J., Ramon-Garcia, S., Howes, C. G., & Thompson, C. J. (2012). WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Rev Anti Infect Ther, 10(9), 1037–1047. https://doi.org/10.1586/eri.12.90 Butler, W. R., & Guthertz, L. S. (2001). Mycolic Acid Analysis by High-Performance Liquid Chromatography for Identification of Mycobacterium Species Mycolic Acid Analysis by High-Performance Liquid Chromatography for Identification of Mycobacterium Species. Clinical Microbiology Reviews, 14(4), 704–726. https://doi.org/10.1128/CMR.14.4.704 Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC - Trends in Analytical Chemistry, 61, 192–206. https://doi.org/10.1016/j.trac.2014.04.017 Camacho, L. R., Constant, P., Raynaud, C., Lanéelle, M. A., Triccas, J. A., Gicquel, B., … Guilhot, C. (2001). Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. Journal of Biological Chemistry, 276(23), 19845–19854. https://doi.org/10.1074/jbc.M100662200 Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., … . (2001). Structural mechanism for rifampin inhibition of bacterial RNA polymerase. Cell, 104(6), 901–912. https://doi.org/10.1016/S0092-8674(01)00286-0 Campodónico, V. L., Rifat, D., Chuang, Y. M., Ioerger, T. R., & Karakousis, P. C. (2018). Altered Mycobacterium tuberculosis cell wall metabolism and physiology associated with RpoB mutation H526D. Frontiers in Microbiology, 9(MAR), 494. https://doi.org/10.3389/fmicb.2018.00494 Carata, E., Peano, C., Tredici, S. M., Ferrari, F., Talà, A., Corti, G., … Alifano, P. (2009). Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microbial Cell Factories, 8, 18. https://doi.org/10.1186/1475-2859-8-18 Casadevall, A., & Pirofski, L. (2001). Host-pathogen interactions: the attributes of virulence. The Journal of Infectious Diseases, 184(3), 337–344. https://doi.org/10.1086/322044 Cerezo, I., Jiménez, Y., Hernandez, J., Zozio, T., Murcia, M., & Rastogi, N. (2011). A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol, 12(4), 657–663. Chavadi, S. S., Edupuganti, U. R., Vergnolle, O., Fatima, I., Singh, S. M., Soll, C. E., & Quadri, L. E. N. (2011). Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. Journal of Biological Chemistry, 286(28), 24616–24625. https://doi.org/10.1074/jbc.M111.247601 Chung-Delgado, K., Guillen-Bravo, S., Revilla-Montag, A., & Bernabe-Ortiz, A. (2015). Mortality among MDR-TB cases: Comparison with drug-susceptible tuberculosis and associated factors. PLoS ONE, 10(3), 1–10. https://doi.org/10.1371/journal.pone.0119332 Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695 Cohan, F. M., King, E. C., & Zawadzki, P. (1994). Amelioration of the deleterious pleiotropy effects of an adaptive mutation in Bacillus subtilis. Evolution, 48(1), 81–95. Cohen, T., Sommers, B., & Murray, M. (2003). The effect of drug resistance on the fitness of Mycobacterium tuberculosis. The Lancet Infectious Diseases, 3, 13–21. https://doi.org/10.1016/S1473-3099(03)00483-3 Colicchio, R., Pagliuca, C., Pastore, G., Cicatiello, A. G., Pagliarulo, C., Talà, A., … Salvatore, P. (2015). Fitness cost of rifampin resistance in Neisseria meningitidis: In Vitro study of mechanisms associated with rpoB H553Y mutation. Antimicrobial Agents and Chemotherapy, 59(12), 7637–7649. https://doi.org/10.1128/AAC.01746-15 Comas, I., Borrell, S., Roetzer, A., Rose, G., Malla, B., Kato-Maeda, M., … Gagneux, S. (2011). Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nature Genetics, 44(1), 106–110. https://doi.org/10.1038/ng.1038 Compeau, G., Alachi, B., Platsouka, E., & Levy, S. (1988). Survival of Rifampin-Resistant Mutants of Pseudomonas fluorescens and Pseudomonas putida in Soil Systems. Applied and Environmental Microbiology, 54(10), 2432–2438. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=20&SID=X1zq5N1zsWYNocNVLLR&page=1&doc=5 Conrad, T. M., Frazier, M., Joyce, A. R., Cho, B. K., Knight, E. M., Lewis, N. E., … Palsson, B. (2010). RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20500–20505. https://doi.org/10.1073/pnas.0911253107 Conrad, T. M., Joyce, A. R., Applebee, M. K., Barrett, C. L., Xie, B., Gao, Y., & Palsson, B. T. (2009). Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biology, 10(10), 1–12. https://doi.org/10.1186/gb-2009-10-10-r118 CSU-Colorado State University. (2013). Isolation of total lipid-PP018.1. Colorado State University. Fort Collins, CO: Colorado State University. Cui, L., Isii, T., Fukuda, M., Ochiai, T., Neoh, H. M., Da Cunha Camargo, I. L. B., … Hiramatsu, K. (2010). An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 54(12), 5222–5233. https://doi.org/10.1128/AAC.00437-10 Dang, N. A., Kolk, A. H. J., Kuijper, S., Janssen, H. G., & Vivo-Truyols, G. (2013). The identification of biomarkers differentiating Mycobacterium tuberculosis and non-tuberculous mycobacteria via thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and chemometrics. Metabolomics, 9(6), 1274–1285. https://doi.org/10.1007/s11306-013-0531-z Dang, N. A., Kuijper, S., Walters, E., Claassens, M., van Soolingen, D., Vivo-Truyols, G., … Kolk, A. H. J. (2013). Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography-Mass Spectrometry and Chemometrics. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0076263 Dang, U. T., Zamora, I., Hevener, K. E., Adhikari, S., Wu, X., & Hurdle, J. G. (2016). Rifamycin resistance in Clostridium difficile is generally associated with a low fitness burden. Antimicrobial Agents and Chemotherapy, 60(9), 5604–5607. https://doi.org/10.1128/AAC.01137-16 Davies, a P., Billington, O. J., Bannister, B. a, Weir, W. R., McHugh, T. D., Gillespie, S. H., & Davies, AP; Billington, OJ; Bannister, BA; Weir, WR; McHugh, TD; Gillespie, S. (2000). Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J Infect, 41(2), 184–187. https://doi.org/10.1053/jinf.2000.0711 De Knegt, G. J., Bruning, O., Ten Kate, M. T., De Jong, M., Van Belkum, A., Endtz, H. P., … De Steenwinkel, J. E. M. (2013). Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis, 93(1), 96–101. https://doi.org/10.1016/j.tube.2012.10.013 de Visser, J. A. G. M., Cooper, T. F., & Elena, S. F. (2011). The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences, 278(1725), 3617–3624. https://doi.org/10.1098/rspb.2011.1537 De Vos, M., Müller, B., Borrell, S., Black, P. A., Van Helden, P. D., Warren, R. M., … Victor, T. C. (2013). Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrobial Agents and Chemotherapy, 57(2), 827–832. https://doi.org/10.1128/AAC.01541-12 Deatherage, D. E., Kepner, J. L., Bennett, A. F., Lenski, R. E., & Barrick, J. E. (2017). Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proceedings of the National Academy of Sciences of the United States of America, 114(10), E1904–E1912. https://doi.org/10.1073/pnas.1616132114 Dixit, A., Freschi, L., Vargas, R., Calderon, R., Sacchettini, J., Drobniewski, F., … Farhat, M. R. (2019). Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-41967-8 du Preez, I., & Loots, D. T. (2012). Altered fatty acid metabolism due to rifampicin-resistance conferring mutations in the rpoB Gene of Mycobacterium tuberculosis: mapping the potential of pharmaco-metabolomics for global health and personalized medicine. Omics : A Journal of Integrative Biology, 16(11), 596–603. https://doi.org/10.1089/omi.2012.0028 Durão, P., Gülereşi, D., Proença, J., & Gordo, I. (2016). Enhanced survival of rifampin- and streptomycin-resistant Escherichia coli inside macrophages. Antimicrobial Agents and Chemotherapy, 60(7), 4324–4332. https://doi.org/10.1128/AAC.00624-16 Durão, P., Trindade, S., Sousa, A., & Gordo, I. (2015). Multiple resistance at no cost: Rifampicin and streptomycin a dangerous liaison in the spread of antibiotic resistance. Molecular Biology and Evolution, 32(10), 2675–2680. https://doi.org/10.1093/molbev/msv143 Enne, V. I., Delsol, A. A., Roe, J. M., & Bennett, P. M. (2004). Rifampicin resistance and its fitness cost in Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 53(2), 203–207. https://doi.org/10.1093/jac/dkh044 ENSEMBL genomes. (n.d.). Mycobacterium tuberculosis H37Rv genome. In: http://ftp.ensemblgenomes.org/vol1/pub/release-48/bacteria/fasta/bacteria_0_collection/mycobacterium_tuberculosis_h37rv/dna/Mycobacterium_tuberculosis_h37rv.ASM19595v2.dna.chromosome.Chromosome.fa.gz. Retrieved from http://ftp.ensemblgenomes.org/vol1/pub/release-48/bacteria/fasta/bacteria_0_collection/mycobacterium_tuberculosis_h37rv/dna/Mycobacterium_tuberculosis_h37rv.ASM19595v2.dna.chromosome.Chromosome.fa.gz Fajardo-Cavazos, P., Leehan, J. D., & Nicholson, W. L. (2018). Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilis rpoB gene after cultivation in the human spaceflight environment. Frontiers in Microbiology, 9(FEB), 1–11. https://doi.org/10.3389/fmicb.2018.00192 Fajardo-Cavazos, P., & Nicholson, W. L. (2016). Cultivation of Staphylococcus epidermidis in the human spaceflight environment leads to alterations in the frequency and spectrum of spontaneous rifampicin-resistance mutations in the rpoB gene. Frontiers in Microbiology, 7(JUN), 1–10. https://doi.org/10.3389/fmicb.2016.00999 Feng, S., Du, Y. Q., Zhang, L., Zhang, L., Feng, R. R., & Liu, S. Y. (2015). Analysis of serum metabolic profile by ultra-performance liquid chromatography-mass spectrometry for biomarkers discovery: Application in a pilot study to discriminate patients with tuberculosis. Chinese Medical Journal, 128(2), 159–168. https://doi.org/10.4103/0366-6999.149188 Forrellad, M. A., Klepp, L. I., Gioffre, A., Sabio y Garcia, J., Morbidoni, H. R., de la Paz Santangelo, M., … Bigi, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4(1), 3–66. https://doi.org/10.4161/viru.22329 Gagneux, S., Long, C. D., Small, P. M., Van, T., Schoolnik, G. K., & Bohannan, B. J. M. (2006). The Competitive Cost of Antibiotic Resistance in Mycobacterium tuberculosis. Science, 312(5782), 1944–1946. https://doi.org/10.1126/science.1124410 Gagneux, S., & Small, P. M. (2007). Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infectious Diseases, 7(5), 328–337. https://doi.org/10.1016/S1473-3099(07)70108-1 Gao, W., Cameron, D. R., Davies, J. K., Kostoulias, X., Stepnell, J., Tuck, K. L., … Howden, B. P. (2013). The RpoB H148Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus. Journal of Infectious Diseases, 207(6), 929–939. https://doi.org/10.1093/infdis/jis772 Garrison, E; Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. ArXiv. Retrieved from arxiv:1207.3907 [q-bio.GN] 2012 Gifford, D. R., & Maclean, R. C. (2013). Evolutionary Reversals Of Antibiotic Resistance In Experimental Populations Of Pseudomonas aeruginosa. Evolution, 67(10), 2973–2981. https://doi.org/10.1111/evo.12158 Gifford, D. R., Moss, E., & Maclean, R. C. (2016). Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. Evolution, 70(3), 725–730. https://doi.org/10.1111/evo.12880 Gifford, D. R., Toll-Riera, M., & MacLean, R. C. (2016). Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa. Evolution; International Journal of Organic Evolution, 70(7), 1659–1666. https://doi.org/10.1111/evo.12958 Gliniewicz, K., Plant, K. P., Lapatra, S. E., Lafrentz, B. R., Cain, K., Snekvik, K. R., & Call, D. R. (2012). Comparative proteomic analysis of virulent and rifampicin-attenuated Flavobacterium psychrophilum. Journal of Fish Diseases, 35(7), 529–539. https://doi.org/10.1111/j.1365-2761.2012.01378.x Gliniewicz, Karol, Wildung, M., Orfe, L. H., Wiens, G. D., Cain, K. D., Lahmers, K. K., … Call, D. R. (2015). Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum Microbial genetics, genomics and proteomics. BMC Microbiology, 15(1), 1–15. https://doi.org/10.1186/s12866-015-0518-1 González-González, A., Hug, S. M., Rodríguez-Verdugo, A., Patel, J. S., & Gaut, B. S. (2017). Adaptive mutations in RNA polymerase and the transcriptional terminator rho have similar effects on Escherichia coli gene expression. Molecular Biology and Evolution, 34(11), 2839–2855. https://doi.org/10.1093/molbev/msx216 Green, M., & Sambrook, J. (2012). Molecular Cloning: A laboratory manual. (4th ed.). Cold Spring Harbor (NY): CSH Press. Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/femsre/fux011 Hain Lifescience. (2012). Genotype MDRTB plus version 2.0 (No. IFU-304A-02). Nerhen, Germany. Retrieved from https://www.ghdonline.org/uploads/MTBDRplusV2_0212_304A-02-02.pdf Hall, A. R. (2013). Genotype-by-environment interactions due to antibiotic resistance and adaptation in Escherichia coli. Journal of Evolutionary Biology, 26(8), 1655–1664. https://doi.org/10.1111/jeb.12172 Hall, Alex R., Iles, J. C., & MacLean, R. C. (2011). The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics, 187(3), 817–822. https://doi.org/10.1534/genetics.110.124628 Hall, Alex R., & Maclean, R. C. (2011). Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa. Evolution, 65(8), 2370–2379. https://doi.org/10.1111/j.1558-5646.2011.01302.x Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6(10), 986–994. https://doi.org/10.1101/gr.6.10.986 Hermann, C., Giddey, A. D., Nel, A. J. M., Soares, N. C., & Blackburn, J. M. (2019). Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. Journal of Proteomics, 191(February 2018), 166–179. https://doi.org/10.1016/j.jprot.2018.02.019 Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., … Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38(12), 1406–1412. https://doi.org/10.1038/ng1906 Hotter, G. S., & Collins, D. M. (2011). Mycobacterium bovis lipids: Virulence and vaccines. Veterinary Microbiology, 151(1–2), 91–98. https://doi.org/10.1016/j.vetmic.2011.02.030 Hovhannisyan, H. G., & Barseghyan, A. H. (2015). The influence of rifampicin resistant mutations on the biosynthesis of exopolysaccharides by strain Escherichia coli K-12 lon. Applied Biochemistry and Microbiology, 51(5), 546–550. https://doi.org/10.1134/S0003683815040134 Howard, N. C., Marin, N. D., Ahmed, M., Rosa, B. A., Martin, J., Bambouskova, M., … Khader, S. A. (2018). Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 3(10), 1099–1108. https://doi.org/10.1038/s41564-018-0245-0 Hu, Y. H., Deng, T., Sun, B. G., & Sun, L. (2012). Development and efficacy of an attenuated Vibrio harveyi vaccine candidate with cross protectivity against Vibrio alginolyticus. Fish and Shellfish Immunology, 32(6), 1155–1161. https://doi.org/10.1016/j.fsi.2012.03.032 Ilumina. (2020). Illumina DNA Prep Reference Guide-Document # 1000000025416 v09. Retrieved from www.illumina.com/company/legal.html. Inaoka, T., Takahashi, K., Yada, H., Yoshida, M., & Ochi, K. (2004). RNA Polymerase Mutation Activates the Production of a Dormant Antibiotic 3,3’-Neotrehalosadiamine via an Autoinduction Mechanism in Bacillus subtilis. Journal of Biological Chemistry, 279(5), 3885–3892. https://doi.org/10.1074/jbc.M309925200 Ingham, C. J., & Furneaux, P. A. (2000). Mutations in the β subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG. Microbiology, 146(12), 3041–3049. https://doi.org/10.1099/00221287-146-12-3041 Jacobs, R. F. (1994). Multiple-Drug-Resistant Tuberculosis. Clin Infect Dis, 19(1), 1–8. Jagielski, T., Bakuła, Z., Brzostek, A., Minias, A., Law Stachowiak, R., Kalita, J., … Dziadek, J. (2018). Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrobial Agents and Chemotherapy, 62(10), 1–16. https://doi.org/10.1128/AAC.01093-18 Jansen, G., Crummenerl, L. L., Gilbert, F., Mohr, T., Pfefferkorn, R., Thänert, R., … Schulenburg, H. (2015). Evolutionary transition from pathogenicity to commensalism: Global regulator mutations mediate fitness gains through virulence attenuation. Molecular Biology and Evolution, 32(11), 2883–2896. https://doi.org/10.1093/molbev/msv160 Jayaraman, R. (2011). Hypermutation and stress adaptation in bacteria. Journal of Genetics, 90(2), 383–391. https://doi.org/10.1007/s12041-011-0086-6 Jenkins, C., Bacon, J., Allnutt, J., Hatch, K. A., Bose, A., O’Sullivan, D. M., … McHugh, T. D. (2009). Enhanced heterogeneity of rpoB in Mycobacterium tuberculosis found at low pH. Journal of Antimicrobial Chemotherapy, 63(6), 1118–1120. https://doi.org/10.1093/jac/dkp125 Joloba, M. L., Bajaksouzian, S., & Jacobs, M. R. (2000). Evaluation of Etest for susceptibility testing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 38(10), 3834–3836. https://doi.org/10.1128/jcm.38.10.3834-3836.2000 Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175. https://doi.org/10.3390/ijms13033145 Kang, Y. S., & Park, W. (2010). Trade-off between antibiotic resistance and biological fitness in Acinetobacter sp. strain DR1. Environmental Microbiology, 12(5), 1304–1318. https://doi.org/10.1111/j.1462-2920.2010.02175.x Klesius, P. H., & Shoemaker, C. A. (1999). Development and use of modified live Edwardsiella ictaluri vaccine against enteric septicemia of catfish. Advances in Veterinary Medicine, 41(C), 523–537. https://doi.org/10.1016/S0065-3519(99)80039-1 Krašovec, R., Belavkin, R. V, Aston, J. a D., Channon, A., Aston, E., Rash, B. M., … Knight, C. G. (2014). Mutation rate plasticity in rifampicin resistance depends on Escherichia coli cell-cell interactions. Nature Communications, 5, 3742. https://doi.org/10.1038/ncomms4742 Kuehne, S. A., Dempster, A. W., Collery, M. M., Joshi, N., Jowett, J., Kelly, M. L., … Minton, N. P. (2018). Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. Journal of Antimicrobial Chemotherapy, 73(4), 973–980. https://doi.org/10.1093/jac/dkx486 Kunnath-Velayudhan, S., & Gennaro, M. L. (2011). Immunodiagnosis of tuberculosis: A dynamic view of biomarker discovery. Clinical Microbiology Reviews, 24(4), 792–805. https://doi.org/10.1128/CMR.00014-11 LaFrentz, B. R., LaPatra, S. E., Call, D. R., & Cain, K. D. (2008). Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine, 26(44), 5582–5589. https://doi.org/10.1016/j.vaccine.2008.07.083 Lahiri, N., Shah, R. R., Layre, E., Young, D., Ford, C., Murray, M. B., … Moody, D. B. (2016). Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. The Journal of Biological Chemistry, 291(27), 14248–14256. https://doi.org/10.1074/jbc.M116.716704 Lai, C., Xu, J., Tozawa, Y., Okamoto-Hosoya, Y., Yao, X., & Ochi, K. (2002). Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology (Reading, England), 148(Pt 11), 3365–3373. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12427928 Lawrence, M. L., & Banes, M. M. (2005). Tissue persistence and vaccine efficacy of an O polysaccharide mutant strain of Edwardsiella ictaluri. Journal of Aquatic Animal Health, 17(3), 228–232. https://doi.org/10.1577/H04-049.1 Layre, E., Lee, H. J., Young, D. C., Jezek Martinot, A., Buter, J., Minnaard, A. J., … Moody, D. B. (2014). Molecular profiling of Mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 2978–2983. https://doi.org/10.1073/pnas.1315883111 Layre, E., Sweet, L., Hong, S., Madigan, C. A., Desjardins, D., Young, D. C., … Moody, D. B. (2011). A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chemistry and Biology, 18(12), 1537–1549. https://doi.org/10.1016/j.chembiol.2011.10.013 Lenski, R. (1991). Quantifying fitness and gene stability in microorganisms. In L. Ginzburg (Ed.), Assessing ecological risks of biotechnology. (Vol. 15, pp. 173–192). Stoneham, MA: Butterworth-Heinemann. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2009380 Lewis, DM; Bromfield, ESP. and Barran, L. (1987). Effect of rifampin resistance on nodulating competitiveness of Rhizobium meliloti. Canadian Journal of Microbiology, 33(4), 343–345. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 Li, Q.-J., Jiao, W. wei, Yin, Q. qin, Li, Y. jia, Li, J. qiong, Xu, F., … Shen, A. dong. (2017). Positive epistasis of major low-cost drug resistance mutations rpoB531-TTG and katG315-ACC depends on the phylogenetic background of Mycobacterium tuberculosis strains. International Journal of Antimicrobial Agents, 49(6), 757–762. https://doi.org/10.1016/j.ijantimicag.2017.02.009 Li, Q. J., Jiao, W. W., Yin, Q. Q., Xu, F., Li, J. Q., Sun, L., … Shen, A. D. (2016). Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrobial Agents and Chemotherapy, 60(5), 2807–2812. https://doi.org/10.1128/AAC.02358-15 Life Technologies. (2012). TRIzol ® Reagent, (15596026), 18–21. https://doi.org/10.1101/pdb.caut2701 Lin, W., Zeng, J., Wan, K., Lv, L., Guo, L., Li, X., & Yu, X. (2018). Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environment International, 120(March), 63–71. https://doi.org/10.1016/j.envint.2018.07.035 Linde, K., Fthenakis, G. C., & Fichtner, A. (1998). Bacterial live vaccines with graded level of attenuation achieved by antibiotic resistance mutations: Transduction experiments on the functional unit of resistance, attenuation and further accompanying markers. Veterinary Microbiology, 62(2), 121–134. https://doi.org/10.1016/S0378-1135(98)00201-6 Lipsitch, M. (2001). The rise and fall of antimicrobial resistance. Trends in Microbiology, 9(9), 438–444. https://doi.org/10.1016/S0966-842X(01)02130-8 Lipsitch, M., & Moxon, E. R. (1997). Virulence and transmissibility of pathogens: What is the relationship? Trends in Microbiology, 5(1), 31–37. https://doi.org/10.1016/S0966-842X(97)81772-6 Lodi, L., Rubino, C., Ricci, S., Indolfi, G., Giovannini, M., Consales, G., … Azzari, C. (2020). Neisseria meningitidis with H552Y substitution on rpoB gene shows attenuated behavior in vivo: report of a rifampicin-resistant case following chemoprophylaxis. Journal of Chemotherapy, 32(2), 98–102. https://doi.org/10.1080/1120009X.2020.1723967 Loots, D. T. (2016). New insights into the survival mechanisms of rifampicin-resistant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 71(3), 655–660. https://doi.org/10.1093/jac/dkv406 MacLean, R. C., Perron, G. G., & Gardner, A. (2010). Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa. Genetics, 186(4), 1345–1354. https://doi.org/10.1534/genetics.110.123083 MacLean, R. Craig, & Buckling, A. (2009). The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa. PLoS Genetics, 5(3). https://doi.org/10.1371/journal.pgen.1000406 Maharjan, R., & Ferenci, T. (2017). The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environmental Microbiology Reports, 9(5), 635–641. https://doi.org/10.1111/1758-2229.12564 Malik, A. N. J., & Godfrey-Faussett, P. (2005). Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. The Lancet. Infectious Diseases, 5(3), 174–183. https://doi.org/10.1016/S1473-3099(05)01310-1 Malshetty, V., Kurthkoti, K., China, A., Mallick, B., Yamunadevi, S., Sang, P. B., … Varshney, U. (2010). Novel insertion and deletion mutants of RpoB that render Mycobacterium smegmatis RNA polymerase resistant to rifampicin-mediated inhibition of transcription. Microbiology, 156(5), 1565–1573. https://doi.org/10.1099/mic.0.036970-0 Manten, A., & Van Wijngaarden, L. (1969). Development of drug resistance to rifampicin. Chemotherapy, 14(2), 93–100. Mariam, D. H., Mengistu, Y., Hoffner, S. E., & Andersson, D. I. (2004). Effect of rpoB mutations on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 48(4), 1289–1294. https://doi.org/10.1128/AAC.48.4.1289 Martin, A., Herranz, M., Ruiz Serrano, M. J., Bouza, E., & Garcia de Viedma, D. (2010). The clonal composition of Mycobacterium tuberculosis in clinical specimens could be modified by culture. Tuberculosis, 90(3), 201–207. https://doi.org/10.1016/j.tube.2010.03.012 Matange, N., Hegde, S., & Bodkhe, S. (2019). Adaptation through lifestyle switching sculpts the fitness landscape of evolving populations: Implications for the selection of drug-resistant bacteria at low drug pressures. Genetics, 211(3), 1029–1044. https://doi.org/10.1534/genetics.119.301834 Matsuo, M., Hishinuma, T., Katayama, Y., Cui, L., Kapi, M., & Hiramatsu, K. (2011). Mutation of RNA polymerase β subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrobial Agents and Chemotherapy, 55(9), 4188–4195. https://doi.org/10.1128/AAC.00398-11 Maudsdotter, L., Ushijima, Y., & Morikawa, K. (2019). Fitness of spontaneous rifampicin-resistant Staphylococcus aureus isolates in a biofilm environment. Frontiers in Microbiology, 10(MAY), 1–10. https://doi.org/10.3389/fmicb.2019.00988 Maughan, H., Galeano, B., & Nicholson, W. L. (2004). Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. Journal of Bacteriology, 186(8), 2481–2486. https://doi.org/10.1128/jb.186.8.2481-2486.2004 McCarty, J., Glodé, M. P., Granoff, D. M., & Daum, R. S. (1986). Pathogenicity of a rifampin-resistant cerebrospinal fluid isolate of Haemophilus influenzae type b. The Journal of Pediatrics, 109(2), 255–259. https://doi.org/10.1016/S0022-3476(86)80381-X McDermott-Lancaster, R. D., & Hilson, G. R. F. (1988). Rifampicin-resistant strains of Mycobacterium leprae may have reduced virulence. Journal of Medical Microbiology, 25(1), 13–15. https://doi.org/10.1099/00222615-25-1-13 McNerney, R., Maeurer, M., Abubakar, I., Marais, B., McHugh, T. D., Ford, N., … Zumla, A. (2012). Tuberculosis diagnostics and biomarkers: Needs, challenges, recent advances, and opportunities. Journal of Infectious Diseases, 205(SUPPL. 2), 147–158. https://doi.org/10.1093/infdis/jir860 Meenakshi, S., & Munavar, M. H. (2015). Suppression of capsule expression in Δlon strains of Escherichia coli by two novel rpoB mutations in concert with HNS: Possible role for DNA bending at rcsA promoter. MicrobiologyOpen, 4(5), 712–729. https://doi.org/10.1002/mbo3.268 Meftahi, N., Namouchi, A., Mhenni, B., Brandis, G., Hughes, D., & Mardassi, H. (2016). Evidence for the critical role of a secondary site rpoB mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain. Journal of Antimicrobial Chemotherapy, 71(2), 324–332. https://doi.org/10.1093/jac/dkv345 Miskinyte, M., & Gordo, I. (2013). Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Antimicrobial Agents and Chemotherapy, 57(1), 189–195. https://doi.org/10.1128/AAC.01632-12 Moeller, R., Vlasic, I., Reitz, G., & Nicholson, W. L. (2012). Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Archives of Microbiology, 194(9), 759–767. https://doi.org/10.1007/s00203-012-0811-4 Moorman, D. R., & Mandell, G. L. (1981). Characteristics of Rifampin-Resistant Variants Obtained from Clinical Isolates of Staphylococcus aureus, 20(6), 709–713. Morlock, G. P., Plikaytis, B. B., & Crawford, J. T. (2000). Characterization of Spontaneous , In Vitro-Selected , Rifampin-Resistant Mutants of Mycobacterium tuberculosis Strain H37Rv. Antimicrob Agents Chemother, 44(12), 3298–3301. Moura de Sousa, J., Balbontín, R., Durão, P., & Gordo, I. (2017). Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biology, 15(4). https://doi.org/10.1371/journal.pbio.2001741 Mukherjee, R., & Chatterji, D. (2008). Stationary phase induced alterations in mycobacterial RNA polymerase assembly: A cue to its phenotypic resistance towards rifampicin. Biochemical and Biophysical Research Communications, 369(3), 899–904. https://doi.org/10.1016/j.bbrc.2008.02.118 Mundhada, H., Seoane, J. M., Schneider, K., Koza, A., Christensen, H. B., Klein, T., … Nielsen, A. T. (2017). Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metabolic Engineering, 39(November 2016), 141–150. https://doi.org/10.1016/j.ymben.2016.11.008 Nair, R. R., Fiegna, F., & Velicer, G. J. (2018). Indirect evolution of social fitness inequalities and facultative social exploitation. Proceedings of the Royal Society B: Biological Sciences, 285(1875). https://doi.org/10.1098/rspb.2018.0054 Nandy, P., Chib, S., & Seshasayee, A. (2020). A Mutant RNA Polymerase Activates the General Stress Response, Enabling Escherichia coli Adaptation to Late Prolonged Stationary Phase . MSphere, 5(2), 1–16. https://doi.org/10.1128/msphere.00092-20 Neri, A., Mignogna, G., Fazio, C., Giorgi, A., Schininà, M. E., & Stefanelli, P. (2010). Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed. BMC Microbiology, 10, 246. https://doi.org/10.1186/1471-2180-10-246 Nicholson, W. L., & Park, R. (2015). Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance. FEMS Microbiology Letters, 362(24), 1–7. https://doi.org/10.1093/femsle/fnv213 Nicoara, S. C., Turner, N. W., Minnikin, D. E., Lee, O. Y. C., O’Sullivan, D. M., McNerney, R., … Morgan, G. H. (2015). Development of sample clean up methods for the analysis of Mycobacterium tuberculosis methyl mycocerosate biomarkers in sputum extracts by gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 986–987, 135–142. https://doi.org/10.1016/j.jchromb.2015.02.010 NIST. (n.d.). Unified atomic mass unit. Retrieved from https://physics.nist.gov/cgi-bin/cuu/Value?ukg O’Neill, AJ; Huovinen, T; Fishwick, CW; Chopra, I. (2006). Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother, 50(1), 298–309. https://doi.org/10.1128/AAC.50.1.298 O’Sullivan, D. M., McHugh, T. D., & Gillespie, S. H. (2010). Mapping the fitness of Mycobacterium tuberculosis strains: A complex picture. Journal of Medical Microbiology, 59(12), 1533–1535. https://doi.org/10.1099/jmm.0.019091-0 Oh, T. S., Kang, H. Y., Nam, Y. S., Kim, Y. J., You, E. K., Lee, M. Y., … Lee, H. J. (2016). An Effective Method of RNA Extraction from Mycobacterium tuberculosis . Annals of Clinical Microbiology, 19(1), 20. https://doi.org/10.5145/acm.2016.19.1.20 Olivares-Fuster, O., & Arias, C. R. (2011). Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare. Journal of Fish Diseases, 34(5), 385–394. https://doi.org/10.1111/j.1365-2761.2011.01253.x Osada, Y., Une, T., Nakajo, M., & Ogawa, H. (1973). Virulence of rifampicin-resistant mutants of Shigella and enteropathogenic Escherichia coli with special reference to their cell invasiveness. Japanese Journal of Microbiology, 17(4), 243–249. Pain, A. N. (1979). Symbiotic Properties of Antibiotic-Resistant and Auxotrophic Mutants of Rhizobium leguminosarum. J Appl Microbiol, 47(1), 53–64. Pal, R., Hameed, S., Kumar, P., Singh, S., & Fatima, Z. (2015). Comparative Lipidome Profile of Sensitive and Resistant Mycobacterium tuberculosis Strain. Int.J.Curr.Microbiol.App.Sci, 1(1), 189–197. Retrieved from https://www.ijcmas.com/special/1/Rahul Pal, et al.pdf Pal, R., Hameed, S., Kumar, P., Singh, S., & Fatima, Z. (2017). Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0972-6 Pankhurst, C. E. (1977). Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Canadian Journal of Microbiology, 23(8), 1026–1033. Pérez-Varela, M., Corral, J., Vallejo, J. A., Rumbo-Feal, S., Bou, G., Aranda, J., & Barbé, J. (2017). Mutations in the β-Subunit of the RNA Polymerase Impair the Surface-Associated Motility and Virulence of Acinetobacter baumannii. Infect Immun, 85(8), 1–13. https://doi.org/10.1128/IAI.00327-17 Perkins, A. E., & Nicholson, W. L. (2008). Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. Journal of Bacteriology, 190(3), 807–814. https://doi.org/10.1128/JB.00901-07 Perron, G. G., Hall, A. R., & Buckling, A. (2010). Hypermutability and Compensatory Adaptation in Antibiotic-Resistant Bacteria. American Naturalist, 176(3), 303–311. https://doi.org/10.1086/655217 Piccaro, G., Pietraforte, D., Giannoni, F., Mustazzolu, A., & Fattorini, L. (2014). Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(12), 7527–7533. https://doi.org/10.1128/AAC.03169-14 Pridgeon, J. W., & Klesius, P. H. (2011). Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia. Vaccine, 29(45), 7896–7904. https://doi.org/10.1016/j.vaccine.2011.08.082 Qi, Q., Preston, G. M., & Maclean, R. C. (2014). Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. MBio, 5(6), 1–12. https://doi.org/10.1128/mBio.01562-14 Qi, Q., Toll-Riera, M., Heilbron, K., Preston, G. M., & Maclean, R. C. (2016). The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 283(1822). https://doi.org/10.1098/rspb.2015.2452 Qiu, X., Yan, X., Liu, M., & Han, R. (2012). Genetic and proteomic characterization of rpoB mutations and their effect on nematicidal activity in Photorhabdus luminescens LN2. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043114 Ramaswamy, S., & Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tubercle and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 79(1), 3–29. Retrieved from http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6WXJ-45M7SD6-1-1&_cdi=7160&_user=613892&_check=y&_orig=search&_coverDate=12/31/1998&view=c&wchp=dGLbVlb-zSkzS&md5=dc9043f2ec30ace8b3e477b568a0fb3c&ie=/sdarticle.pdf Ravan, P., Nejad Sattari, T., Siadat, S. D., & Vaziri, F. (2019). Evaluation of the expression of cytokines and chemokines in macrophages in response to rifampin-monoresistant Mycobacterium tuberculosis and H37Rv strain. Cytokine, 115(August 2018), 127–134. https://doi.org/10.1016/j.cyto.2018.12.004 Reynolds, M. G. (2000). Compensatory evolution in rifampin resistant Escherichia coli. Genetics, 156(4), 1471–1481. Rifat, D., Campodónico, V. L., Tao, J., Miller, J. A., Alp, A., Yao, Y., & Karakousis, P. C. (2017). In vitro and in vivo fitness costs associated with Mycobacterium tuberculosis RpoB mutation H526D. Future Microbiology, 12(9), 753–765. https://doi.org/10.2217/fmb-2017-0022 Rodríguez-Verdugo, A., Gaut, B. S., & Tenaillon, O. (2013). Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evolutionary Biology, 13(1), 50. https://doi.org/10.1186/1471-2148-13-50 Rodŕiguez-Verdugo, A., Tenaillon, O., & Gaut, B. S. (2016). First-Step mutations during adaptation restore the expression of hundreds of genes. Molecular Biology and Evolution, 33(1), 25–39. https://doi.org/10.1093/molbev/msv228 Ross, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T., & Gourse, R. L. (2013). The magic spot: A ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Molecular Cell, 50(3), 420–429. https://doi.org/10.1016/j.molcel.2013.03.021 Rugbjerg, P., Feist, A. M., & Sommer, M. O. A. (2018). Enhanced metabolite productivity of Escherichia coli adapted to glucose M9 minimal medium. Frontiers in Bioengineering and Biotechnology, 6(NOV), 1–6. https://doi.org/10.3389/fbioe.2018.00166 Ryall, B., Eydallin, G., & Ferenci, T. (2012). Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiology and Molecular Biology Reviews : MMBR, 76(3), 597–625. https://doi.org/10.1128/MMBR.05028-11 S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. W. & B. G. B. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(NOVEMBER), 537–544. https://doi.org/10.1038/29241 Sandalakis, V., Psaroulaki, A., De Bock, P. J., Christidou, A., Gevaert, K., Tsiotis, G., & Tselentis, Y. (2012). Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. Journal of Proteome Research, 11(4), 2374–2385. https://doi.org/10.1021/pr201122w Sandberg, T. E., Pedersen, M., Lacroix, R. A., Ebrahim, A., Bonde, M., Herrgard, M. J., … Feist, A. M. (2014). Evolution of Escherichia coli to 42 °c and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Molecular Biology and Evolution, 31(10), 2647–2662. https://doi.org/10.1093/molbev/msu209 Sartain, M. J., Dick, D. L., Rithner, C. D., Crick, D. C., & Belisle, J. T. (2011). Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. Journal of Lipid Research, 52(C), 861–872. https://doi.org/10.1194/jlr.M010363 Schurig, G., Roop, R. 2nd, Bagchi, T., Boyle, S., Buhrman, D., & Sriranganathan, N. (1991). Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol, 28(2), 171–188. Sharma, S. K., & Mohan, A. (2004). Multidrug-resistant tuberculosis. The Indian Journal of Medical Research, 120(4), 354–376. https://doi.org/10.1378/chest.130.1.261 Shoemaker, C. A., Klesius, P. H., & Evans, J. J. (2002). In ovo methods for utilizing the modified live Edwardsiella ictaluri vaccine against enteric septicemia in channel catfish. Aquaculture, 203(3–4), 221–227. https://doi.org/10.1016/S0044-8486(01)00631-7 Skoog, D., Holler, F., & Crouch, S. (2007). Principles of instrumental analysis (6th ed.). Belmont (CA): Thompson Brooks/Cole. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D’Argenio, D. A., … Olson, M. V. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA, 103(22), 8487–8492. https://doi.org/10.1073/pnas.0602138103 Song, T., Park, Y., Shamputa, I. C., Seo, S., Lee, S. Y., Jeon, H. S., … Cho, S. N. (2014). Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Molecular Microbiology, 91(6), 1106–1119. https://doi.org/10.1111/mmi.12520 Spies, F. S., Almeida Da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrobial Agents and Chemotherapy, 52(8), 2947–2949. https://doi.org/10.1128/AAC.01570-07 Spies, F. S., Von Groll, A., Ribeiro, A. W., Ramos, D. F., Ribeiro, M. O., Dalla Costa, E. R., … Da Silva, P. E. A. (2013). Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB, and katG genes.Tuberculosis, 93(2), 150–154. https://doi.org/10.1016/j.tube.2012.11.004 Sriraman, K., Nilgiriwala, K., Saranath, D., Chatterjee, A., & Mistry, N. (2018). Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis. Current Microbiology, 75(4), 394–400. https://doi.org/10.1007/s00284-017-1393-9 Ssengooba, W., Lukoye, D., Meehan, C. J., Kateete, D. P., Joloba, M. L., De Jong, B. C., … Van Leth, F. (2017). Tuberculosis resistance-conferring mutations with fitness cost among HIV-positive individuals in Uganda. International Journal of Tuberculosis and Lung Disease, 21(5), 531–536. https://doi.org/10.5588/ijtld.16.0544 Stefan, M. A., Ugur, F. S., & Garcia, G. A. (2018). Source of the fitness defect in rifamycin-resistant Mycobacterium tuberculosis RNA polymerase and the mechanism of compensation by mutations in the B’ subunit. Antimicrobial Agents and Chemotherapy, 62(6), 1–13. https://doi.org/10.1128/AAC.00164-18 Strauss, O. J., Warren, R. M., Jordaan, A., Streicher, E. M., Hanekom, M., Falmer, A. A., … Victor, T. C. (2008). Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. Journal of Clinical Microbiology, 46(4), 1514–1516. https://doi.org/10.1128/JCM.01938-07 Sun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., … Gao, Q. (2012). Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. Journal of Infectious Diseases, 206(11), 1724–1733. https://doi.org/10.1093/infdis/jis601 Sun, J., Zhu, D., Xu, J., Jia, R., Chen, S., Liu, M., … Cheng, A. (2019). Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/s12866-019-1478-7 Sun, Y., Liu, C. sheng, & Sun, L. (2010). Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine, 28(38), 6344–6350. https://doi.org/10.1016/j.vaccine.2010.06.101 Swain, P., Behera, T., Mohapatra, D., Nanda, P. K., Nayak, S. K., Meher, P. K., & Das, B. K. (2010). Derivation of rough attenuated variants from smooth virulent Aeromonas hydrophila and their immunogenicity in fish. Vaccine, 28(29), 4626–4631. https://doi.org/10.1016/j.vaccine.2010.04.078 Taha, M.-K., Zarantonelli, M. L., Ruckly, C., Giorgini, D., & Alonso, J.-M. (2006). Rifampin-resistant Neisseria meningitidis. Emerging Infectious Diseases, 12(5), 859–860. Tanaka, Y., Kasahara, K., Hirose, Y., Murakami, K., Kugimiya, R., & Ochi, K. (2013). Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. Journal of Bacteriology, 195(13), 2959–2970. https://doi.org/10.1128/JB.00147-13 TB alliance. (2015). Genolyse DNA isolation from decontaminated sputum (screening samples) and from positive cultures (control strain M.tb H37Rv). Thermo Scientific. (2009). NanoDrop 2000 / 2000c Spectrophotometer User Manual. Wilmington, Delaware: Thermo Scientific. Thermo Scientific. (2010). LCQFleet - Getting Start Guide. (Thermo Scientific, Ed.). Dormering: Thermo Scientific. Thermo Scientific. (2013). Thermo Scientific Dionex UltiMate 3000 Series SD, RS, BM and BX pumps-DOC4820-4001. (Thermo Scientific, Ed.). Dormering: Thermo Scientific Trindade, S., Sousa, A., & Gordo, I. (2012). Antibiotic resistance and stress in the light of Fisher’s model. Evolution, 66(12), 3815–3824. https://doi.org/10.1111/j.1558-5646.2012.01722.x Vargas, A. P., Rios, A. A., Grandjean, L., Kirwan, D. E., Gilman, R. H., Sheen, P., & Zimic, M. J. (2020). Determination of potentially novel compensatory mutations in rpoC associated with rifampin resistance and rpoB mutations in Mycobacterium tuberculosis Clinical isolates from Peru. International Journal of Mycobacteriology, 9(2), 121–137. https://doi.org/10.4103/ijmy.ijmy_27_20 Velayati, A. A., Farnia, P., Masjedi, M. R., Ibrahim, T. A., Tabarsi, P., Haroun, R. Z., … Varahram, M. (2009). Totally drug-resistant tuberculosis strains: Evidence of adaptation at the cellular level. European Respiratory Journal, 34(5), 1202–1203. https://doi.org/10.1183/09031936.00081909 Velayati, Ali Akbar, Farnia, P., Ibrahim, T. A., Haroun, R. Z., Kuan, H. O., Ghanavi, J., … Masjedi, M. R. (2009). Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: Using transmission electron microscopy. Chemotherapy, 55(5), 303–307. https://doi.org/10.1159/000226425 Vellend, M. (2010). Conceptual synthesis in community ecology. Quarterly Review of Biology, 85(2), 183–206. https://doi.org/10.1086/652373 Villanueva, M., Jousselin, A., Baek, K. T., Prados, J., Andrey, D. O., Renzoni, A., … Kelley, W. L. (2016). Rifampin resistance rpoB alleles or multicopy thioredoxin/thioredoxin reductase suppresses the lethality of disruption of the global stress regulator spx in Staphylococcus aureus. Journal of Bacteriology, 198(19), 2719–2731. https://doi.org/10.1128/JB.00261-16 Vitali, B., Turroni, S., Serina, S., Sosio, M., Vannini, L., Candela, M., … Brigidi, P. (2008). Molecular and phenotypic traits of in-vitro-selected mutants of Bifidobacterium resistant to rifaximin. International Journal of Antimicrobial Agents, 31(6), 555–560. https://doi.org/10.1016/j.ijantimicag.2008.02.002 Vogwill, T., Kojadinovic, M., & Maclean, R. C. (2016). Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proceedings of the Royal Society B: Biological Sciences, 283(1830). https://doi.org/10.1098/rspb.2016.0151 Wang, C., Fang, R., Zhou, B., Tian, X., Zhang, X., Zheng, X., … Zhou, T. (2019). Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiology, 19(1), 1–8. https://doi.org/10.1186/s12866-019-1573-9 Wang, S., Zhou, Y., Zhao, B., Ou, X., Xia, H., Zheng, Y., … Zhao, Y. (2020). Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Frontiers of Medicine, 14(1), 51–59. https://doi.org/10.1007/s11684-019-0720-x Watanabe, Y., Cui, L., Katayama, Y., Kozue, K., & Hiramatsu, K. (2011). Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. Journal of Clinical Microbiology, 49(7), 2680–2684. https://doi.org/10.1128/JCM.02144-10 Wegrzyn, A., Szalewska-Pałasz, A., Błaszczak, A., Liberek, K., & Wegrzyn, G. (1998). Differential inhibition of transcription from sigma70- and sigma32-dependent promoters by rifampicin. FEBS Letters, 440(1–2), 172–174. WHO. (2019). WHO TB Report. WHO Library Cataloguing-in-Publication Data World, 7. Wi, Y. M., Greenwood-Quaintance, K. E., Brinkman, C. L., Lee, J. Y. H., Howden, B. P., & Patel, R. (2018). Rifampicin resistance in Staphylococcus epidermidis: molecular characterisation and fitness cost of rpoB mutations. International Journal of Antimicrobial Agents, 51(5), 670–677. https://doi.org/10.1016/j.ijantimicag.2017.12.019 Wichelhaus, T. A., Böddinghaus, B., Besier, S., Schäfer, V., Brade, V., & Ludwig, A. (2002). Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 46(11), 3381–3385. https://doi.org/10.1128/AAC.46.11.3381-3385.2002 Willingham-Lane, J. M., Berghaus, L. J., Berghaus, R. D., Hart, K. A., & Giguère, S. (2019). Effect of macrolide and rifampin resistance on fitness of Rhodococcus equi during intramacrophage replication and in vivo. Infection and Immunity, 87(10), 1–10. https://doi.org/10.1128/IAI.00281-19 Wolff, K. A., Nguyen, H. T., Cartabuke, R. H., Singh, A., Ogwang, S., & Nguyen, L. (2009). Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrobial Agents and Chemotherapy, 53(8), 3515–3519. https://doi.org/10.1128/AAC.00012-09 Wrande, M., Roth, J. R., & Hughes, D. (2008). Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11863–11868. https://doi.org/10.1073/pnas.0804739105 Wu, S., Barnes, P. F., Samten, B., Pang, X., Rodrigue, S., Ghanny, S., … Howard, S. T. (2009). Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth. Microbiology, 155(4), 1272–1281. https://doi.org/10.1099/mic.0.024638-0 Xu, J., Tozawa, Y., Lai, C., Hayashi, H., & Ochi, K. (2002). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Molecular Genetics and Genomics, 268(2), 179–189. https://doi.org/10.1007/s00438-002-0730-1 Xu, Z., Zhou, A., Wu, J., Zhou, A., Li, J., Zhang, S., … Yao, Y. F. (2018). Transcriptional approach for decoding the mechanism of rpoC compensatory mutations for the fitness cost in rifampicin-resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 9(NOV), 1–12. https://doi.org/10.3389/fmicb.2018.02895 Yu, J., Wu, J., Francis, K. P., Purchio, T. F., & Kadurugamuwa, J. L. (2005a). Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 55(4), 528–534. https://doi.org/10.1093/jac/dki053 Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20004–20009. https://doi.org/10.1073/pnas.0907925106 Zhan, L., Tang, J., Sun, M., & Qin, C. (2017). Animal models for tuberculosis in translational and precision medicine. Frontiers in Microbiology, 8(MAY). https://doi.org/10.3389/fmicb.2017.00717 Zhou, Y. N., & Jin, D. J. (1998). The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2908–2913. https://doi.org/10.1073/pnas.95.6.2908 Zuo, Y., Wang, Y., & Steitz, T. A. (2013). The Mechanism of E. coli RNA Polymerase Regulation by ppGpp is suggested by the structure of their complex. Molecular Cell, 50(3), 430–436. https://doi.org/10.1016/j.molcel.2013.03.020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (235 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.department.spa.fl_str_mv |
Instituto de Biotecnología (IBUN) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79617/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79617/2/unMS09tesis70-Documento%20de%20tesis%20definitivo.pdf https://repositorio.unal.edu.co/bitstream/unal/79617/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79617/4/unMS09tesis70-Documento%20de%20tesis%20definitivo.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 502d3f22a10003caa6732e7e6991780f f7d494f61e544413a13e6ba1da2089cd d05b3d7609454d0ee37b6bc680829101 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090159062253568 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Murcia Aranguren, Martha Isabel2d3a40be45d44dfb2c92cd107332178cCarazzone, Chiaraa16885e2b62003869c663402913aaf32600Rodríguez Beltrán, Edgar Orlando2e033cfd3c7f5582588d68ccb468a9b2Edgar Orlando Rodríguez BeltránMICOBAC-UN2021-06-08T20:55:33Z2021-06-08T20:55:33Z2021https://repositorio.unal.edu.co/handle/unal/79617Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, tablasLa TB multirresistente es causada por Mycobacterium tuberculosis (MTB) resistente a rifampicina e isoniazida y constituye un grave problema de salud pública en países emergentes. Puesto que el fitness del agente patógeno es crítico en el desenlace en la infección, el conocimiento sobre el mismo debe ser claro. Trabajos previos sobre resistencia a rifampicina han mostrado situaciones de pérdida y otras de conservación del fitness competitivo. El objetivo del trabajo fue medir la expresión de genes de virulencia / resistencia y los niveles de PDIM relacionándolos con el fitness competitivo de una cepa ATCC25618 RR-TB. Materiales y métodos: Se realizó un ensayo de fitness competitivo usando las cepas MTB ATCC25618 wt: ATCC25618 rpoB-S450L (o S531L) (RifR 1 µg/ml) 1:1 en 50 ml Middlebrook 7H9/OADC (Días 2-12) calculándose tiempos de generación in vitro y fitness relativo. Se extrajeron mRNA y PDIM en días 10/11 y 21 Resultados: Se obtuvo la cepa ATCC 25618 rpoB-S450L (transición en rpoB C1349T). Disminuyó el fitness en rpoB-S450L yH445Y mostrándose fitness dispar interréplicas biológicas. En S450L, hubo dos réplicas con disminución del fitness y una con aumento. Hubo aumento significativo de la expresión de pknG en rpoB-S450L vs silvestre y un aumento no significativo en la cepa silvestre (comparada con rpoB-S450L) en la expresión de ppsA en fase logarítmica que se correlaciona con mayor producción de PDIM, siendo pknG y PDIM potenciales biomarcadoresIntroduction. Multidrug-resistant TB, the infection by INH/ RIF-resistant tuberculosis is a severe public health problem in emerging countries. Fitness (W) is a critical component in clinical outcome so it must be explored. Previous works on RIF-resistance have shown some competitive fitness gains and losses. Objective. The objective of these experiments was to measure virulence/ resistance genes and PDIM levels in relation with competitive fitness of a S450L RifR ATCC25618 strain. Materials and methods. We made a competitive fitness in vitro assay with ATCC 25618 wt: ATCC 25618 rpoB-S450L (RifR 1 µg/ml) 1:1 strains in 50 ml Middlebrook OADC and we found generation time (G) in vitro and relative fitness. mRNA and PDIM were extracted on days 10/11 and 21. Results. We obtained ATCC 25618 rpoB S450L mutant (rpoB C1349T transition). Fitness decreased in rpoB-S450L strain with heterogeneous fitness in 3 biological replicas for both S450L and H445Y strains, for the former, 2 replicas with low W and one with high W. There was significant pknG increase in rpoB-S450L and non-significant increase in wt (compared to S450L) in polyketide synthase-ppsA in log phase which is related to increased PDIM, being PDIM and pknG potential biomarkers.Proyecto 120771250393 con contrato 295/2016 de Colciencias (actual MinCien-cias)MaestríaMagíster en Ciencias - MicrobiologíaSe realizó un ensayo de fitness competitivo usando las cepas MTB ATCC25618 wt: ATCC25618 rpoB-S450L (o S531L) (RifR 1 ug/ml) 1:1 en 50 ml Middlebrook 7H9/OADC (Días 2-12) calculándose tiempos de generación in vitro y fitness relativo. Se extrajeron mRNA y PDIM en días 10/11 y 21Biología Molecular de los Microorganismos1 recurso en línea (235 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaRifampinAntibióticos AntituberculososAntibiotics, AntitubercularMycobacteriumMycobacterium tuberculosisRifampicinarpoBFitnessVirulenciaResistenciaAntibióticosRifampicinFitnessVirulenceResistanceAntibioticsAislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptaciónrpoB S531L-rifampicin-resistant mutant isolation in Mycobacterium tuberculosis ATCC 25618 and evolution biomarker identificationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdone, R., Ciuchini, F., & Marianelli, C. (2005). Protective Properties of Rifampin-Resistant Rough Mutants of Brucella melitensis. Infect Immun, 73(7), 4198–4204. https://doi.org/10.1128/IAI.73.7.4198Ambion, & Life Technologies. (2012). TURBO DNA-free 3 TM Kit User Guide. User Guide.Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489–493. https://doi.org/10.1016/S1369-5274(99)00005-3Angst, D. C., & Hall, A. R. (2013). The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evolutionary Biology, 13(1), 163. https://doi.org/10.1186/1471-2148-13-163Applied-Biosystems. (2010). Relative Quantitation Using Comparative CT - Getting started guide, 1–120.Applied Biosystems. (2002). TaqMan ® Universal PCR Master Mix.Applied Biosystems. (2010). High Capacity cDNA Reverse Transcription Kits for 200 and 1000 Reactions Protocol (Rev E). Manual, (06), 1–29.AppliedBiosystems. (2011). SYBR Green PCR Master Mix and SYBR Green RT-PCR Reagents Kit User Guide, 4309155(4309155), 1–48. Retrieved from http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041053.pdf%5Cnpapers3://publication/uuid/32687140-3E25-4A66-B58A-ED792D5D3C76Astarie-Dequeker, C., Le Guyader, L., Malaga, W., Seaphanh, F. K., Chalut, C., Lopez, A., & Guilhot, C. (2009). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens, 5(2). https://doi.org/10.1371/journal.ppat.1000289ATCC, & BEI Resources. (2015). Certificate of analysis for NR-20328 – Mycobacterium tuberculosis, Strain H37Rv, Purified Phtiocerol dimycocerosate. Manassas (VA)Bæk, K. T., Thøgersen, L., Mogensen, R. G., Mellergaard, M., Thomsen, L. E., Petersen, A., & Skov, S. (2015). Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX Gene. Antimicrobial Agents and Chemotherapy, 59(11), 6983–6991. https://doi.org/10.1128/AAC.01303-15.Bergman, J. M., Wrande, M., & Hughes, D. (2014). Acetate availability and utilization supports the growth of mutant sub-populations on aging bacterial colonies. PLoS ONE, 9(10), 1–9. https://doi.org/10.1371/journal.pone.0109255Bergval, I., Kwok, B., Schuitema, A., Kremer, K., van Soolingen, D., Klatser, P., & Anthony, R. (2012). Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029108Bergval, I. L., Klatser, P. R., Schuitema, A. R. J., Oskam, L., & Anthony, R. M. (2007). Specific mutations in the Mycobacterium tuberculosis rpoB gene are associated with increased dnaE2 expression. FEMS Microbiology Letters, 275(2), 338–343. https://doi.org/10.1111/j.1574-6968.2007.00905.xBhatnagar, N; Getachew, E; Straley, S; Williams, J; Meltzer, M; Fortier, A. (1994). Reduced virulence of rifampicin-resistant mutants of Francisella tularensis. J Infect Dis, 170(4), 841-7.Billington, O. J., Mchugh, T. D., & Gillespie, S. H. (1999). Physiological Cost of Rifampin Resistance Induced In Vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother., 43(8), 1866–1869.Bisson, G. P., Mehaffy, C., Broeckling, C., Prenni, J., Rifat, D., Lun, D. S., … Dobosc, K. (2012). Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by Rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. Journal of Bacteriology, 194(23), 6441–6452. https://doi.org/10.1128/JB.01013-12Björkman, J., Hughes, D., & Andersson, D. I. (1998). Virulence of antibiotic-resistant Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3949–3953. https://doi.org/10.1073/pnas.95.7.3949Blaser, M. J., Musser, J. M., Bifani, P. J., Kreiswirth, B. N., & Small, P. M. (2001). Bacterial polymorphisms The nature and consequence of genetic variability within Mycobacterium tuberculosis Bacterial polymorphisms. The Journal of Clinical Investigation, 107(5), 533–537. https://doi.org/10.1172/JCI11426Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170Boor, K. Price, C. (1995). Genetic and Transcriptional organization of the region encoding the B subunit of RNA polymerase in Bacillus subtilis.Boor, K. J., Duncan, M. L., & Price, C. W. (1995). Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. The Journal of Biological Chemistry, 270(35), 20329–20336. https://doi.org/10.1074/jbc.270.35.20329Borrell, S., & Gagneux, S. (2009). Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. International Journal of Tuberculosis and Lung Disease, 13(12), 1456–1466.Borrell, Sonia, Teo, Y., Giardina, F., Streicher, E. M., Klopper, M., Feldmann, J., … Gagneux, S. (2013). Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evolution, Medicine, and Public Health, 2013(1), 65–74. https://doi.org/10.1093/emph/eot003Brandis, G., & Hughes, D. (2013). Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. Journal of Antimicrobial Chemotherapy, 68(11), 2493–2497. https://doi.org/10.1093/jac/dkt224Brandis, G., & Hughes, D. (2018). Mechanisms of fitness cost reduction for rifampicin-resistant strains with deletion or duplication mutations in rpoB. Scientific Reports, 8(1), 1–6. https://doi.org/10.1038/s41598-018-36005-yBrandis, G., Pietsch, F., Alemayehu, R., & Hughes, D. (2014). Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 1–6. https://doi.org/10.1093/jac/dku434Brandis, G., Wrande, M., Liljas, L., & Hughes, D. (2012). Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Molecular Microbiology, 85(1), 142–151. Retrieved from http://doi.wiley.com/10.1111/j.1365-2958.2012.08099.xBrinkman, C. L., Tyner, H. L., Schmidt-Malan, S. M., Mandrekar, J. N., & Patel, R. (2015). Causes and implications of the disappearance of rifampin resistance in a rat model of methicillin-resistant Staphylococcus aureus foreign body osteomyelitis. Antimicrobial Agents and Chemotherapy, 59(8), 4481–4488. https://doi.org/10.1128/AAC.05078-14Bromfield, E. S. P., Lewis, D. M., & Barran, L. R. (1985). Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness. Journal of Bacteriology, 164(1), 410–413.Burian, J., Ramon-Garcia, S., Howes, C. G., & Thompson, C. J. (2012). WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Rev Anti Infect Ther, 10(9), 1037–1047. https://doi.org/10.1586/eri.12.90Butler, W. R., & Guthertz, L. S. (2001). Mycolic Acid Analysis by High-Performance Liquid Chromatography for Identification of Mycobacterium Species Mycolic Acid Analysis by High-Performance Liquid Chromatography for Identification of Mycobacterium Species. Clinical Microbiology Reviews, 14(4), 704–726. https://doi.org/10.1128/CMR.14.4.704Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC - Trends in Analytical Chemistry, 61, 192–206. https://doi.org/10.1016/j.trac.2014.04.017Camacho, L. R., Constant, P., Raynaud, C., Lanéelle, M. A., Triccas, J. A., Gicquel, B., … Guilhot, C. (2001). Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. Journal of Biological Chemistry, 276(23), 19845–19854. https://doi.org/10.1074/jbc.M100662200Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., … . (2001). Structural mechanism for rifampin inhibition of bacterial RNA polymerase. Cell, 104(6), 901–912. https://doi.org/10.1016/S0092-8674(01)00286-0Campodónico, V. L., Rifat, D., Chuang, Y. M., Ioerger, T. R., & Karakousis, P. C. (2018). Altered Mycobacterium tuberculosis cell wall metabolism and physiology associated with RpoB mutation H526D. Frontiers in Microbiology, 9(MAR), 494. https://doi.org/10.3389/fmicb.2018.00494Carata, E., Peano, C., Tredici, S. M., Ferrari, F., Talà, A., Corti, G., … Alifano, P. (2009). Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microbial Cell Factories, 8, 18. https://doi.org/10.1186/1475-2859-8-18Casadevall, A., & Pirofski, L. (2001). Host-pathogen interactions: the attributes of virulence. The Journal of Infectious Diseases, 184(3), 337–344. https://doi.org/10.1086/322044Cerezo, I., Jiménez, Y., Hernandez, J., Zozio, T., Murcia, M., & Rastogi, N. (2011). A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol, 12(4), 657–663.Chavadi, S. S., Edupuganti, U. R., Vergnolle, O., Fatima, I., Singh, S. M., Soll, C. E., & Quadri, L. E. N. (2011). Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. Journal of Biological Chemistry, 286(28), 24616–24625. https://doi.org/10.1074/jbc.M111.247601Chung-Delgado, K., Guillen-Bravo, S., Revilla-Montag, A., & Bernabe-Ortiz, A. (2015). Mortality among MDR-TB cases: Comparison with drug-susceptible tuberculosis and associated factors. PLoS ONE, 10(3), 1–10. https://doi.org/10.1371/journal.pone.0119332Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695Cohan, F. M., King, E. C., & Zawadzki, P. (1994). Amelioration of the deleterious pleiotropy effects of an adaptive mutation in Bacillus subtilis. Evolution, 48(1), 81–95.Cohen, T., Sommers, B., & Murray, M. (2003). The effect of drug resistance on the fitness of Mycobacterium tuberculosis. The Lancet Infectious Diseases, 3, 13–21. https://doi.org/10.1016/S1473-3099(03)00483-3Colicchio, R., Pagliuca, C., Pastore, G., Cicatiello, A. G., Pagliarulo, C., Talà, A., … Salvatore, P. (2015). Fitness cost of rifampin resistance in Neisseria meningitidis: In Vitro study of mechanisms associated with rpoB H553Y mutation. Antimicrobial Agents and Chemotherapy, 59(12), 7637–7649. https://doi.org/10.1128/AAC.01746-15Comas, I., Borrell, S., Roetzer, A., Rose, G., Malla, B., Kato-Maeda, M., … Gagneux, S. (2011). Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nature Genetics, 44(1), 106–110. https://doi.org/10.1038/ng.1038Compeau, G., Alachi, B., Platsouka, E., & Levy, S. (1988). Survival of Rifampin-Resistant Mutants of Pseudomonas fluorescens and Pseudomonas putida in Soil Systems. Applied and Environmental Microbiology, 54(10), 2432–2438. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=20&SID=X1zq5N1zsWYNocNVLLR&page=1&doc=5Conrad, T. M., Frazier, M., Joyce, A. R., Cho, B. K., Knight, E. M., Lewis, N. E., … Palsson, B. (2010). RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20500–20505. https://doi.org/10.1073/pnas.0911253107Conrad, T. M., Joyce, A. R., Applebee, M. K., Barrett, C. L., Xie, B., Gao, Y., & Palsson, B. T. (2009). Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biology, 10(10), 1–12. https://doi.org/10.1186/gb-2009-10-10-r118CSU-Colorado State University. (2013). Isolation of total lipid-PP018.1. Colorado State University. Fort Collins, CO: Colorado State University.Cui, L., Isii, T., Fukuda, M., Ochiai, T., Neoh, H. M., Da Cunha Camargo, I. L. B., … Hiramatsu, K. (2010). An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 54(12), 5222–5233. https://doi.org/10.1128/AAC.00437-10Dang, N. A., Kolk, A. H. J., Kuijper, S., Janssen, H. G., & Vivo-Truyols, G. (2013). The identification of biomarkers differentiating Mycobacterium tuberculosis and non-tuberculous mycobacteria via thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and chemometrics. Metabolomics, 9(6), 1274–1285. https://doi.org/10.1007/s11306-013-0531-zDang, N. A., Kuijper, S., Walters, E., Claassens, M., van Soolingen, D., Vivo-Truyols, G., … Kolk, A. H. J. (2013). Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography-Mass Spectrometry and Chemometrics. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0076263Dang, U. T., Zamora, I., Hevener, K. E., Adhikari, S., Wu, X., & Hurdle, J. G. (2016). Rifamycin resistance in Clostridium difficile is generally associated with a low fitness burden. Antimicrobial Agents and Chemotherapy, 60(9), 5604–5607. https://doi.org/10.1128/AAC.01137-16Davies, a P., Billington, O. J., Bannister, B. a, Weir, W. R., McHugh, T. D., Gillespie, S. H., & Davies, AP; Billington, OJ; Bannister, BA; Weir, WR; McHugh, TD; Gillespie, S. (2000). Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J Infect, 41(2), 184–187. https://doi.org/10.1053/jinf.2000.0711De Knegt, G. J., Bruning, O., Ten Kate, M. T., De Jong, M., Van Belkum, A., Endtz, H. P., … De Steenwinkel, J. E. M. (2013). Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis, 93(1), 96–101. https://doi.org/10.1016/j.tube.2012.10.013de Visser, J. A. G. M., Cooper, T. F., & Elena, S. F. (2011). The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences, 278(1725), 3617–3624. https://doi.org/10.1098/rspb.2011.1537De Vos, M., Müller, B., Borrell, S., Black, P. A., Van Helden, P. D., Warren, R. M., … Victor, T. C. (2013). Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrobial Agents and Chemotherapy, 57(2), 827–832. https://doi.org/10.1128/AAC.01541-12Deatherage, D. E., Kepner, J. L., Bennett, A. F., Lenski, R. E., & Barrick, J. E. (2017). Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proceedings of the National Academy of Sciences of the United States of America, 114(10), E1904–E1912. https://doi.org/10.1073/pnas.1616132114Dixit, A., Freschi, L., Vargas, R., Calderon, R., Sacchettini, J., Drobniewski, F., … Farhat, M. R. (2019). Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-41967-8du Preez, I., & Loots, D. T. (2012). Altered fatty acid metabolism due to rifampicin-resistance conferring mutations in the rpoB Gene of Mycobacterium tuberculosis: mapping the potential of pharmaco-metabolomics for global health and personalized medicine. Omics : A Journal of Integrative Biology, 16(11), 596–603. https://doi.org/10.1089/omi.2012.0028Durão, P., Gülereşi, D., Proença, J., & Gordo, I. (2016). Enhanced survival of rifampin- and streptomycin-resistant Escherichia coli inside macrophages. Antimicrobial Agents and Chemotherapy, 60(7), 4324–4332. https://doi.org/10.1128/AAC.00624-16Durão, P., Trindade, S., Sousa, A., & Gordo, I. (2015). Multiple resistance at no cost: Rifampicin and streptomycin a dangerous liaison in the spread of antibiotic resistance. Molecular Biology and Evolution, 32(10), 2675–2680. https://doi.org/10.1093/molbev/msv143Enne, V. I., Delsol, A. A., Roe, J. M., & Bennett, P. M. (2004). Rifampicin resistance and its fitness cost in Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 53(2), 203–207. https://doi.org/10.1093/jac/dkh044ENSEMBL genomes. (n.d.). Mycobacterium tuberculosis H37Rv genome. In: http://ftp.ensemblgenomes.org/vol1/pub/release-48/bacteria/fasta/bacteria_0_collection/mycobacterium_tuberculosis_h37rv/dna/Mycobacterium_tuberculosis_h37rv.ASM19595v2.dna.chromosome.Chromosome.fa.gz. Retrieved from http://ftp.ensemblgenomes.org/vol1/pub/release-48/bacteria/fasta/bacteria_0_collection/mycobacterium_tuberculosis_h37rv/dna/Mycobacterium_tuberculosis_h37rv.ASM19595v2.dna.chromosome.Chromosome.fa.gzFajardo-Cavazos, P., Leehan, J. D., & Nicholson, W. L. (2018). Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilis rpoB gene after cultivation in the human spaceflight environment. Frontiers in Microbiology, 9(FEB), 1–11. https://doi.org/10.3389/fmicb.2018.00192Fajardo-Cavazos, P., & Nicholson, W. L. (2016). Cultivation of Staphylococcus epidermidis in the human spaceflight environment leads to alterations in the frequency and spectrum of spontaneous rifampicin-resistance mutations in the rpoB gene. Frontiers in Microbiology, 7(JUN), 1–10. https://doi.org/10.3389/fmicb.2016.00999Feng, S., Du, Y. Q., Zhang, L., Zhang, L., Feng, R. R., & Liu, S. Y. (2015). Analysis of serum metabolic profile by ultra-performance liquid chromatography-mass spectrometry for biomarkers discovery: Application in a pilot study to discriminate patients with tuberculosis. Chinese Medical Journal, 128(2), 159–168. https://doi.org/10.4103/0366-6999.149188Forrellad, M. A., Klepp, L. I., Gioffre, A., Sabio y Garcia, J., Morbidoni, H. R., de la Paz Santangelo, M., … Bigi, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4(1), 3–66. https://doi.org/10.4161/viru.22329Gagneux, S., Long, C. D., Small, P. M., Van, T., Schoolnik, G. K., & Bohannan, B. J. M. (2006). The Competitive Cost of Antibiotic Resistance in Mycobacterium tuberculosis. Science, 312(5782), 1944–1946. https://doi.org/10.1126/science.1124410Gagneux, S., & Small, P. M. (2007). Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infectious Diseases, 7(5), 328–337. https://doi.org/10.1016/S1473-3099(07)70108-1Gao, W., Cameron, D. R., Davies, J. K., Kostoulias, X., Stepnell, J., Tuck, K. L., … Howden, B. P. (2013). The RpoB H148Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus. Journal of Infectious Diseases, 207(6), 929–939. https://doi.org/10.1093/infdis/jis772Garrison, E; Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. ArXiv. Retrieved from arxiv:1207.3907 [q-bio.GN] 2012Gifford, D. R., & Maclean, R. C. (2013). Evolutionary Reversals Of Antibiotic Resistance In Experimental Populations Of Pseudomonas aeruginosa. Evolution, 67(10), 2973–2981. https://doi.org/10.1111/evo.12158Gifford, D. R., Moss, E., & Maclean, R. C. (2016). Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. Evolution, 70(3), 725–730. https://doi.org/10.1111/evo.12880Gifford, D. R., Toll-Riera, M., & MacLean, R. C. (2016). Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa. Evolution; International Journal of Organic Evolution, 70(7), 1659–1666. https://doi.org/10.1111/evo.12958Gliniewicz, K., Plant, K. P., Lapatra, S. E., Lafrentz, B. R., Cain, K., Snekvik, K. R., & Call, D. R. (2012). Comparative proteomic analysis of virulent and rifampicin-attenuated Flavobacterium psychrophilum. Journal of Fish Diseases, 35(7), 529–539. https://doi.org/10.1111/j.1365-2761.2012.01378.xGliniewicz, Karol, Wildung, M., Orfe, L. H., Wiens, G. D., Cain, K. D., Lahmers, K. K., … Call, D. R. (2015). Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum Microbial genetics, genomics and proteomics. BMC Microbiology, 15(1), 1–15. https://doi.org/10.1186/s12866-015-0518-1González-González, A., Hug, S. M., Rodríguez-Verdugo, A., Patel, J. S., & Gaut, B. S. (2017). Adaptive mutations in RNA polymerase and the transcriptional terminator rho have similar effects on Escherichia coli gene expression. Molecular Biology and Evolution, 34(11), 2839–2855. https://doi.org/10.1093/molbev/msx216Green, M., & Sambrook, J. (2012). Molecular Cloning: A laboratory manual. (4th ed.). Cold Spring Harbor (NY): CSH Press.Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/femsre/fux011Hain Lifescience. (2012). Genotype MDRTB plus version 2.0 (No. IFU-304A-02). Nerhen, Germany. Retrieved from https://www.ghdonline.org/uploads/MTBDRplusV2_0212_304A-02-02.pdfHall, A. R. (2013). Genotype-by-environment interactions due to antibiotic resistance and adaptation in Escherichia coli. Journal of Evolutionary Biology, 26(8), 1655–1664. https://doi.org/10.1111/jeb.12172Hall, Alex R., Iles, J. C., & MacLean, R. C. (2011). The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics, 187(3), 817–822. https://doi.org/10.1534/genetics.110.124628Hall, Alex R., & Maclean, R. C. (2011). Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa. Evolution, 65(8), 2370–2379. https://doi.org/10.1111/j.1558-5646.2011.01302.xHeid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6(10), 986–994. https://doi.org/10.1101/gr.6.10.986Hermann, C., Giddey, A. D., Nel, A. J. M., Soares, N. C., & Blackburn, J. M. (2019). Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. Journal of Proteomics, 191(February 2018), 166–179. https://doi.org/10.1016/j.jprot.2018.02.019Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., … Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38(12), 1406–1412. https://doi.org/10.1038/ng1906Hotter, G. S., & Collins, D. M. (2011). Mycobacterium bovis lipids: Virulence and vaccines. Veterinary Microbiology, 151(1–2), 91–98. https://doi.org/10.1016/j.vetmic.2011.02.030Hovhannisyan, H. G., & Barseghyan, A. H. (2015). The influence of rifampicin resistant mutations on the biosynthesis of exopolysaccharides by strain Escherichia coli K-12 lon. Applied Biochemistry and Microbiology, 51(5), 546–550. https://doi.org/10.1134/S0003683815040134Howard, N. C., Marin, N. D., Ahmed, M., Rosa, B. A., Martin, J., Bambouskova, M., … Khader, S. A. (2018). Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 3(10), 1099–1108. https://doi.org/10.1038/s41564-018-0245-0Hu, Y. H., Deng, T., Sun, B. G., & Sun, L. (2012). Development and efficacy of an attenuated Vibrio harveyi vaccine candidate with cross protectivity against Vibrio alginolyticus. Fish and Shellfish Immunology, 32(6), 1155–1161. https://doi.org/10.1016/j.fsi.2012.03.032Ilumina. (2020). Illumina DNA Prep Reference Guide-Document # 1000000025416 v09. Retrieved from www.illumina.com/company/legal.html.Inaoka, T., Takahashi, K., Yada, H., Yoshida, M., & Ochi, K. (2004). RNA Polymerase Mutation Activates the Production of a Dormant Antibiotic 3,3’-Neotrehalosadiamine via an Autoinduction Mechanism in Bacillus subtilis. Journal of Biological Chemistry, 279(5), 3885–3892. https://doi.org/10.1074/jbc.M309925200Ingham, C. J., & Furneaux, P. A. (2000). Mutations in the β subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG. Microbiology, 146(12), 3041–3049. https://doi.org/10.1099/00221287-146-12-3041Jacobs, R. F. (1994). Multiple-Drug-Resistant Tuberculosis. Clin Infect Dis, 19(1), 1–8.Jagielski, T., Bakuła, Z., Brzostek, A., Minias, A., Law Stachowiak, R., Kalita, J., … Dziadek, J. (2018). Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrobial Agents and Chemotherapy, 62(10), 1–16. https://doi.org/10.1128/AAC.01093-18Jansen, G., Crummenerl, L. L., Gilbert, F., Mohr, T., Pfefferkorn, R., Thänert, R., … Schulenburg, H. (2015). Evolutionary transition from pathogenicity to commensalism: Global regulator mutations mediate fitness gains through virulence attenuation. Molecular Biology and Evolution, 32(11), 2883–2896. https://doi.org/10.1093/molbev/msv160Jayaraman, R. (2011). Hypermutation and stress adaptation in bacteria. Journal of Genetics, 90(2), 383–391. https://doi.org/10.1007/s12041-011-0086-6Jenkins, C., Bacon, J., Allnutt, J., Hatch, K. A., Bose, A., O’Sullivan, D. M., … McHugh, T. D. (2009). Enhanced heterogeneity of rpoB in Mycobacterium tuberculosis found at low pH. Journal of Antimicrobial Chemotherapy, 63(6), 1118–1120. https://doi.org/10.1093/jac/dkp125Joloba, M. L., Bajaksouzian, S., & Jacobs, M. R. (2000). Evaluation of Etest for susceptibility testing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 38(10), 3834–3836. https://doi.org/10.1128/jcm.38.10.3834-3836.2000Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175. https://doi.org/10.3390/ijms13033145Kang, Y. S., & Park, W. (2010). Trade-off between antibiotic resistance and biological fitness in Acinetobacter sp. strain DR1. Environmental Microbiology, 12(5), 1304–1318. https://doi.org/10.1111/j.1462-2920.2010.02175.xKlesius, P. H., & Shoemaker, C. A. (1999). Development and use of modified live Edwardsiella ictaluri vaccine against enteric septicemia of catfish. Advances in Veterinary Medicine, 41(C), 523–537. https://doi.org/10.1016/S0065-3519(99)80039-1Krašovec, R., Belavkin, R. V, Aston, J. a D., Channon, A., Aston, E., Rash, B. M., … Knight, C. G. (2014). Mutation rate plasticity in rifampicin resistance depends on Escherichia coli cell-cell interactions. Nature Communications, 5, 3742. https://doi.org/10.1038/ncomms4742Kuehne, S. A., Dempster, A. W., Collery, M. M., Joshi, N., Jowett, J., Kelly, M. L., … Minton, N. P. (2018). Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. Journal of Antimicrobial Chemotherapy, 73(4), 973–980. https://doi.org/10.1093/jac/dkx486Kunnath-Velayudhan, S., & Gennaro, M. L. (2011). Immunodiagnosis of tuberculosis: A dynamic view of biomarker discovery. Clinical Microbiology Reviews, 24(4), 792–805. https://doi.org/10.1128/CMR.00014-11LaFrentz, B. R., LaPatra, S. E., Call, D. R., & Cain, K. D. (2008). Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine, 26(44), 5582–5589. https://doi.org/10.1016/j.vaccine.2008.07.083Lahiri, N., Shah, R. R., Layre, E., Young, D., Ford, C., Murray, M. B., … Moody, D. B. (2016). Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. The Journal of Biological Chemistry, 291(27), 14248–14256. https://doi.org/10.1074/jbc.M116.716704Lai, C., Xu, J., Tozawa, Y., Okamoto-Hosoya, Y., Yao, X., & Ochi, K. (2002). Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology (Reading, England), 148(Pt 11), 3365–3373. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12427928Lawrence, M. L., & Banes, M. M. (2005). Tissue persistence and vaccine efficacy of an O polysaccharide mutant strain of Edwardsiella ictaluri. Journal of Aquatic Animal Health, 17(3), 228–232. https://doi.org/10.1577/H04-049.1Layre, E., Lee, H. J., Young, D. C., Jezek Martinot, A., Buter, J., Minnaard, A. J., … Moody, D. B. (2014). Molecular profiling of Mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 2978–2983. https://doi.org/10.1073/pnas.1315883111Layre, E., Sweet, L., Hong, S., Madigan, C. A., Desjardins, D., Young, D. C., … Moody, D. B. (2011). A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chemistry and Biology, 18(12), 1537–1549. https://doi.org/10.1016/j.chembiol.2011.10.013Lenski, R. (1991). Quantifying fitness and gene stability in microorganisms. In L. Ginzburg (Ed.), Assessing ecological risks of biotechnology. (Vol. 15, pp. 173–192). Stoneham, MA: Butterworth-Heinemann. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2009380Lewis, DM; Bromfield, ESP. and Barran, L. (1987). Effect of rifampin resistance on nodulating competitiveness of Rhizobium meliloti. Canadian Journal of Microbiology, 33(4), 343–345.Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324Li, Q.-J., Jiao, W. wei, Yin, Q. qin, Li, Y. jia, Li, J. qiong, Xu, F., … Shen, A. dong. (2017). Positive epistasis of major low-cost drug resistance mutations rpoB531-TTG and katG315-ACC depends on the phylogenetic background of Mycobacterium tuberculosis strains. International Journal of Antimicrobial Agents, 49(6), 757–762. https://doi.org/10.1016/j.ijantimicag.2017.02.009Li, Q. J., Jiao, W. W., Yin, Q. Q., Xu, F., Li, J. Q., Sun, L., … Shen, A. D. (2016). Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrobial Agents and Chemotherapy, 60(5), 2807–2812. https://doi.org/10.1128/AAC.02358-15Life Technologies. (2012). TRIzol ® Reagent, (15596026), 18–21. https://doi.org/10.1101/pdb.caut2701Lin, W., Zeng, J., Wan, K., Lv, L., Guo, L., Li, X., & Yu, X. (2018). Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environment International, 120(March), 63–71. https://doi.org/10.1016/j.envint.2018.07.035Linde, K., Fthenakis, G. C., & Fichtner, A. (1998). Bacterial live vaccines with graded level of attenuation achieved by antibiotic resistance mutations: Transduction experiments on the functional unit of resistance, attenuation and further accompanying markers. Veterinary Microbiology, 62(2), 121–134. https://doi.org/10.1016/S0378-1135(98)00201-6Lipsitch, M. (2001). The rise and fall of antimicrobial resistance. Trends in Microbiology, 9(9), 438–444. https://doi.org/10.1016/S0966-842X(01)02130-8Lipsitch, M., & Moxon, E. R. (1997). Virulence and transmissibility of pathogens: What is the relationship? Trends in Microbiology, 5(1), 31–37. https://doi.org/10.1016/S0966-842X(97)81772-6Lodi, L., Rubino, C., Ricci, S., Indolfi, G., Giovannini, M., Consales, G., … Azzari, C. (2020). Neisseria meningitidis with H552Y substitution on rpoB gene shows attenuated behavior in vivo: report of a rifampicin-resistant case following chemoprophylaxis. Journal of Chemotherapy, 32(2), 98–102. https://doi.org/10.1080/1120009X.2020.1723967Loots, D. T. (2016). New insights into the survival mechanisms of rifampicin-resistant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 71(3), 655–660. https://doi.org/10.1093/jac/dkv406MacLean, R. C., Perron, G. G., & Gardner, A. (2010). Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa. Genetics, 186(4), 1345–1354. https://doi.org/10.1534/genetics.110.123083MacLean, R. Craig, & Buckling, A. (2009). The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa. PLoS Genetics, 5(3). https://doi.org/10.1371/journal.pgen.1000406Maharjan, R., & Ferenci, T. (2017). The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environmental Microbiology Reports, 9(5), 635–641. https://doi.org/10.1111/1758-2229.12564Malik, A. N. J., & Godfrey-Faussett, P. (2005). Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. The Lancet. Infectious Diseases, 5(3), 174–183. https://doi.org/10.1016/S1473-3099(05)01310-1Malshetty, V., Kurthkoti, K., China, A., Mallick, B., Yamunadevi, S., Sang, P. B., … Varshney, U. (2010). Novel insertion and deletion mutants of RpoB that render Mycobacterium smegmatis RNA polymerase resistant to rifampicin-mediated inhibition of transcription. Microbiology, 156(5), 1565–1573. https://doi.org/10.1099/mic.0.036970-0Manten, A., & Van Wijngaarden, L. (1969). Development of drug resistance to rifampicin. Chemotherapy, 14(2), 93–100.Mariam, D. H., Mengistu, Y., Hoffner, S. E., & Andersson, D. I. (2004). Effect of rpoB mutations on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 48(4), 1289–1294. https://doi.org/10.1128/AAC.48.4.1289Martin, A., Herranz, M., Ruiz Serrano, M. J., Bouza, E., & Garcia de Viedma, D. (2010). The clonal composition of Mycobacterium tuberculosis in clinical specimens could be modified by culture. Tuberculosis, 90(3), 201–207. https://doi.org/10.1016/j.tube.2010.03.012Matange, N., Hegde, S., & Bodkhe, S. (2019). Adaptation through lifestyle switching sculpts the fitness landscape of evolving populations: Implications for the selection of drug-resistant bacteria at low drug pressures. Genetics, 211(3), 1029–1044. https://doi.org/10.1534/genetics.119.301834Matsuo, M., Hishinuma, T., Katayama, Y., Cui, L., Kapi, M., & Hiramatsu, K. (2011). Mutation of RNA polymerase β subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrobial Agents and Chemotherapy, 55(9), 4188–4195. https://doi.org/10.1128/AAC.00398-11Maudsdotter, L., Ushijima, Y., & Morikawa, K. (2019). Fitness of spontaneous rifampicin-resistant Staphylococcus aureus isolates in a biofilm environment. Frontiers in Microbiology, 10(MAY), 1–10. https://doi.org/10.3389/fmicb.2019.00988Maughan, H., Galeano, B., & Nicholson, W. L. (2004). Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. Journal of Bacteriology, 186(8), 2481–2486. https://doi.org/10.1128/jb.186.8.2481-2486.2004McCarty, J., Glodé, M. P., Granoff, D. M., & Daum, R. S. (1986). Pathogenicity of a rifampin-resistant cerebrospinal fluid isolate of Haemophilus influenzae type b. The Journal of Pediatrics, 109(2), 255–259. https://doi.org/10.1016/S0022-3476(86)80381-XMcDermott-Lancaster, R. D., & Hilson, G. R. F. (1988). Rifampicin-resistant strains of Mycobacterium leprae may have reduced virulence. Journal of Medical Microbiology, 25(1), 13–15. https://doi.org/10.1099/00222615-25-1-13McNerney, R., Maeurer, M., Abubakar, I., Marais, B., McHugh, T. D., Ford, N., … Zumla, A. (2012). Tuberculosis diagnostics and biomarkers: Needs, challenges, recent advances, and opportunities. Journal of Infectious Diseases, 205(SUPPL. 2), 147–158. https://doi.org/10.1093/infdis/jir860Meenakshi, S., & Munavar, M. H. (2015). Suppression of capsule expression in Δlon strains of Escherichia coli by two novel rpoB mutations in concert with HNS: Possible role for DNA bending at rcsA promoter. MicrobiologyOpen, 4(5), 712–729. https://doi.org/10.1002/mbo3.268Meftahi, N., Namouchi, A., Mhenni, B., Brandis, G., Hughes, D., & Mardassi, H. (2016). Evidence for the critical role of a secondary site rpoB mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain. Journal of Antimicrobial Chemotherapy, 71(2), 324–332. https://doi.org/10.1093/jac/dkv345Miskinyte, M., & Gordo, I. (2013). Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Antimicrobial Agents and Chemotherapy, 57(1), 189–195. https://doi.org/10.1128/AAC.01632-12Moeller, R., Vlasic, I., Reitz, G., & Nicholson, W. L. (2012). Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Archives of Microbiology, 194(9), 759–767. https://doi.org/10.1007/s00203-012-0811-4Moorman, D. R., & Mandell, G. L. (1981). Characteristics of Rifampin-Resistant Variants Obtained from Clinical Isolates of Staphylococcus aureus, 20(6), 709–713.Morlock, G. P., Plikaytis, B. B., & Crawford, J. T. (2000). Characterization of Spontaneous , In Vitro-Selected , Rifampin-Resistant Mutants of Mycobacterium tuberculosis Strain H37Rv. Antimicrob Agents Chemother, 44(12), 3298–3301.Moura de Sousa, J., Balbontín, R., Durão, P., & Gordo, I. (2017). Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biology, 15(4). https://doi.org/10.1371/journal.pbio.2001741Mukherjee, R., & Chatterji, D. (2008). Stationary phase induced alterations in mycobacterial RNA polymerase assembly: A cue to its phenotypic resistance towards rifampicin. Biochemical and Biophysical Research Communications, 369(3), 899–904. https://doi.org/10.1016/j.bbrc.2008.02.118Mundhada, H., Seoane, J. M., Schneider, K., Koza, A., Christensen, H. B., Klein, T., … Nielsen, A. T. (2017). Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metabolic Engineering, 39(November 2016), 141–150. https://doi.org/10.1016/j.ymben.2016.11.008Nair, R. R., Fiegna, F., & Velicer, G. J. (2018). Indirect evolution of social fitness inequalities and facultative social exploitation. Proceedings of the Royal Society B: Biological Sciences, 285(1875). https://doi.org/10.1098/rspb.2018.0054Nandy, P., Chib, S., & Seshasayee, A. (2020). A Mutant RNA Polymerase Activates the General Stress Response, Enabling Escherichia coli Adaptation to Late Prolonged Stationary Phase . MSphere, 5(2), 1–16. https://doi.org/10.1128/msphere.00092-20Neri, A., Mignogna, G., Fazio, C., Giorgi, A., Schininà, M. E., & Stefanelli, P. (2010). Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed. BMC Microbiology, 10, 246. https://doi.org/10.1186/1471-2180-10-246Nicholson, W. L., & Park, R. (2015). Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance. FEMS Microbiology Letters, 362(24), 1–7. https://doi.org/10.1093/femsle/fnv213Nicoara, S. C., Turner, N. W., Minnikin, D. E., Lee, O. Y. C., O’Sullivan, D. M., McNerney, R., … Morgan, G. H. (2015). Development of sample clean up methods for the analysis of Mycobacterium tuberculosis methyl mycocerosate biomarkers in sputum extracts by gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 986–987, 135–142. https://doi.org/10.1016/j.jchromb.2015.02.010NIST. (n.d.). Unified atomic mass unit. Retrieved from https://physics.nist.gov/cgi-bin/cuu/Value?ukgO’Neill, AJ; Huovinen, T; Fishwick, CW; Chopra, I. (2006). Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother, 50(1), 298–309. https://doi.org/10.1128/AAC.50.1.298O’Sullivan, D. M., McHugh, T. D., & Gillespie, S. H. (2010). Mapping the fitness of Mycobacterium tuberculosis strains: A complex picture. Journal of Medical Microbiology, 59(12), 1533–1535. https://doi.org/10.1099/jmm.0.019091-0Oh, T. S., Kang, H. Y., Nam, Y. S., Kim, Y. J., You, E. K., Lee, M. Y., … Lee, H. J. (2016). An Effective Method of RNA Extraction from Mycobacterium tuberculosis . Annals of Clinical Microbiology, 19(1), 20. https://doi.org/10.5145/acm.2016.19.1.20Olivares-Fuster, O., & Arias, C. R. (2011). Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare. Journal of Fish Diseases, 34(5), 385–394. https://doi.org/10.1111/j.1365-2761.2011.01253.xOsada, Y., Une, T., Nakajo, M., & Ogawa, H. (1973). Virulence of rifampicin-resistant mutants of Shigella and enteropathogenic Escherichia coli with special reference to their cell invasiveness. Japanese Journal of Microbiology, 17(4), 243–249.Pain, A. N. (1979). Symbiotic Properties of Antibiotic-Resistant and Auxotrophic Mutants of Rhizobium leguminosarum. J Appl Microbiol, 47(1), 53–64.Pal, R., Hameed, S., Kumar, P., Singh, S., & Fatima, Z. (2015). Comparative Lipidome Profile of Sensitive and Resistant Mycobacterium tuberculosis Strain. Int.J.Curr.Microbiol.App.Sci, 1(1), 189–197. Retrieved from https://www.ijcmas.com/special/1/Rahul Pal, et al.pdfPal, R., Hameed, S., Kumar, P., Singh, S., & Fatima, Z. (2017). Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0972-6Pankhurst, C. E. (1977). Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Canadian Journal of Microbiology, 23(8), 1026–1033.Pérez-Varela, M., Corral, J., Vallejo, J. A., Rumbo-Feal, S., Bou, G., Aranda, J., & Barbé, J. (2017). Mutations in the β-Subunit of the RNA Polymerase Impair the Surface-Associated Motility and Virulence of Acinetobacter baumannii. Infect Immun, 85(8), 1–13. https://doi.org/10.1128/IAI.00327-17Perkins, A. E., & Nicholson, W. L. (2008). Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. Journal of Bacteriology, 190(3), 807–814. https://doi.org/10.1128/JB.00901-07Perron, G. G., Hall, A. R., & Buckling, A. (2010). Hypermutability and Compensatory Adaptation in Antibiotic-Resistant Bacteria. American Naturalist, 176(3), 303–311. https://doi.org/10.1086/655217Piccaro, G., Pietraforte, D., Giannoni, F., Mustazzolu, A., & Fattorini, L. (2014). Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(12), 7527–7533. https://doi.org/10.1128/AAC.03169-14Pridgeon, J. W., & Klesius, P. H. (2011). Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia. Vaccine, 29(45), 7896–7904. https://doi.org/10.1016/j.vaccine.2011.08.082Qi, Q., Preston, G. M., & Maclean, R. C. (2014). Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. MBio, 5(6), 1–12. https://doi.org/10.1128/mBio.01562-14Qi, Q., Toll-Riera, M., Heilbron, K., Preston, G. M., & Maclean, R. C. (2016). The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 283(1822). https://doi.org/10.1098/rspb.2015.2452Qiu, X., Yan, X., Liu, M., & Han, R. (2012). Genetic and proteomic characterization of rpoB mutations and their effect on nematicidal activity in Photorhabdus luminescens LN2. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043114Ramaswamy, S., & Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tubercle and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 79(1), 3–29. Retrieved from http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6WXJ-45M7SD6-1-1&_cdi=7160&_user=613892&_check=y&_orig=search&_coverDate=12/31/1998&view=c&wchp=dGLbVlb-zSkzS&md5=dc9043f2ec30ace8b3e477b568a0fb3c&ie=/sdarticle.pdfRavan, P., Nejad Sattari, T., Siadat, S. D., & Vaziri, F. (2019). Evaluation of the expression of cytokines and chemokines in macrophages in response to rifampin-monoresistant Mycobacterium tuberculosis and H37Rv strain. Cytokine, 115(August 2018), 127–134. https://doi.org/10.1016/j.cyto.2018.12.004Reynolds, M. G. (2000). Compensatory evolution in rifampin resistant Escherichia coli. Genetics, 156(4), 1471–1481.Rifat, D., Campodónico, V. L., Tao, J., Miller, J. A., Alp, A., Yao, Y., & Karakousis, P. C. (2017). In vitro and in vivo fitness costs associated with Mycobacterium tuberculosis RpoB mutation H526D. Future Microbiology, 12(9), 753–765. https://doi.org/10.2217/fmb-2017-0022Rodríguez-Verdugo, A., Gaut, B. S., & Tenaillon, O. (2013). Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evolutionary Biology, 13(1), 50. https://doi.org/10.1186/1471-2148-13-50Rodŕiguez-Verdugo, A., Tenaillon, O., & Gaut, B. S. (2016). First-Step mutations during adaptation restore the expression of hundreds of genes. Molecular Biology and Evolution, 33(1), 25–39. https://doi.org/10.1093/molbev/msv228Ross, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T., & Gourse, R. L. (2013). The magic spot: A ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Molecular Cell, 50(3), 420–429. https://doi.org/10.1016/j.molcel.2013.03.021Rugbjerg, P., Feist, A. M., & Sommer, M. O. A. (2018). Enhanced metabolite productivity of Escherichia coli adapted to glucose M9 minimal medium. Frontiers in Bioengineering and Biotechnology, 6(NOV), 1–6. https://doi.org/10.3389/fbioe.2018.00166Ryall, B., Eydallin, G., & Ferenci, T. (2012). Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiology and Molecular Biology Reviews : MMBR, 76(3), 597–625. https://doi.org/10.1128/MMBR.05028-11S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. W. & B. G. B. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(NOVEMBER), 537–544. https://doi.org/10.1038/29241Sandalakis, V., Psaroulaki, A., De Bock, P. J., Christidou, A., Gevaert, K., Tsiotis, G., & Tselentis, Y. (2012). Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. Journal of Proteome Research, 11(4), 2374–2385. https://doi.org/10.1021/pr201122wSandberg, T. E., Pedersen, M., Lacroix, R. A., Ebrahim, A., Bonde, M., Herrgard, M. J., … Feist, A. M. (2014). Evolution of Escherichia coli to 42 °c and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Molecular Biology and Evolution, 31(10), 2647–2662. https://doi.org/10.1093/molbev/msu209Sartain, M. J., Dick, D. L., Rithner, C. D., Crick, D. C., & Belisle, J. T. (2011). Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. Journal of Lipid Research, 52(C), 861–872. https://doi.org/10.1194/jlr.M010363Schurig, G., Roop, R. 2nd, Bagchi, T., Boyle, S., Buhrman, D., & Sriranganathan, N. (1991). Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol, 28(2), 171–188.Sharma, S. K., & Mohan, A. (2004). Multidrug-resistant tuberculosis. The Indian Journal of Medical Research, 120(4), 354–376. https://doi.org/10.1378/chest.130.1.261Shoemaker, C. A., Klesius, P. H., & Evans, J. J. (2002). In ovo methods for utilizing the modified live Edwardsiella ictaluri vaccine against enteric septicemia in channel catfish. Aquaculture, 203(3–4), 221–227. https://doi.org/10.1016/S0044-8486(01)00631-7Skoog, D., Holler, F., & Crouch, S. (2007). Principles of instrumental analysis (6th ed.). Belmont (CA): Thompson Brooks/Cole.Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D’Argenio, D. A., … Olson, M. V. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA, 103(22), 8487–8492. https://doi.org/10.1073/pnas.0602138103Song, T., Park, Y., Shamputa, I. C., Seo, S., Lee, S. Y., Jeon, H. S., … Cho, S. N. (2014). Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Molecular Microbiology, 91(6), 1106–1119. https://doi.org/10.1111/mmi.12520Spies, F. S., Almeida Da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrobial Agents and Chemotherapy, 52(8), 2947–2949. https://doi.org/10.1128/AAC.01570-07Spies, F. S., Von Groll, A., Ribeiro, A. W., Ramos, D. F., Ribeiro, M. O., Dalla Costa, E. R., … Da Silva, P. E. A. (2013). Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB, and katG genes.Tuberculosis, 93(2), 150–154. https://doi.org/10.1016/j.tube.2012.11.004Sriraman, K., Nilgiriwala, K., Saranath, D., Chatterjee, A., & Mistry, N. (2018). Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis. Current Microbiology, 75(4), 394–400. https://doi.org/10.1007/s00284-017-1393-9Ssengooba, W., Lukoye, D., Meehan, C. J., Kateete, D. P., Joloba, M. L., De Jong, B. C., … Van Leth, F. (2017). Tuberculosis resistance-conferring mutations with fitness cost among HIV-positive individuals in Uganda. International Journal of Tuberculosis and Lung Disease, 21(5), 531–536. https://doi.org/10.5588/ijtld.16.0544Stefan, M. A., Ugur, F. S., & Garcia, G. A. (2018). Source of the fitness defect in rifamycin-resistant Mycobacterium tuberculosis RNA polymerase and the mechanism of compensation by mutations in the B’ subunit. Antimicrobial Agents and Chemotherapy, 62(6), 1–13. https://doi.org/10.1128/AAC.00164-18Strauss, O. J., Warren, R. M., Jordaan, A., Streicher, E. M., Hanekom, M., Falmer, A. A., … Victor, T. C. (2008). Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. Journal of Clinical Microbiology, 46(4), 1514–1516. https://doi.org/10.1128/JCM.01938-07Sun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., … Gao, Q. (2012). Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. Journal of Infectious Diseases, 206(11), 1724–1733. https://doi.org/10.1093/infdis/jis601Sun, J., Zhu, D., Xu, J., Jia, R., Chen, S., Liu, M., … Cheng, A. (2019). Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/s12866-019-1478-7Sun, Y., Liu, C. sheng, & Sun, L. (2010). Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine, 28(38), 6344–6350. https://doi.org/10.1016/j.vaccine.2010.06.101Swain, P., Behera, T., Mohapatra, D., Nanda, P. K., Nayak, S. K., Meher, P. K., & Das, B. K. (2010). Derivation of rough attenuated variants from smooth virulent Aeromonas hydrophila and their immunogenicity in fish. Vaccine, 28(29), 4626–4631. https://doi.org/10.1016/j.vaccine.2010.04.078Taha, M.-K., Zarantonelli, M. L., Ruckly, C., Giorgini, D., & Alonso, J.-M. (2006). Rifampin-resistant Neisseria meningitidis. Emerging Infectious Diseases, 12(5), 859–860.Tanaka, Y., Kasahara, K., Hirose, Y., Murakami, K., Kugimiya, R., & Ochi, K. (2013). Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. Journal of Bacteriology, 195(13), 2959–2970. https://doi.org/10.1128/JB.00147-13TB alliance. (2015). Genolyse DNA isolation from decontaminated sputum (screening samples) and from positive cultures (control strain M.tb H37Rv).Thermo Scientific. (2009). NanoDrop 2000 / 2000c Spectrophotometer User Manual. Wilmington, Delaware: Thermo Scientific.Thermo Scientific. (2010). LCQFleet - Getting Start Guide. (Thermo Scientific, Ed.). Dormering: Thermo Scientific.Thermo Scientific. (2013). Thermo Scientific Dionex UltiMate 3000 Series SD, RS, BM and BX pumps-DOC4820-4001. (Thermo Scientific, Ed.). Dormering: Thermo ScientificTrindade, S., Sousa, A., & Gordo, I. (2012). Antibiotic resistance and stress in the light of Fisher’s model. Evolution, 66(12), 3815–3824. https://doi.org/10.1111/j.1558-5646.2012.01722.xVargas, A. P., Rios, A. A., Grandjean, L., Kirwan, D. E., Gilman, R. H., Sheen, P., & Zimic, M. J. (2020). Determination of potentially novel compensatory mutations in rpoC associated with rifampin resistance and rpoB mutations in Mycobacterium tuberculosis Clinical isolates from Peru. International Journal of Mycobacteriology, 9(2), 121–137. https://doi.org/10.4103/ijmy.ijmy_27_20Velayati, A. A., Farnia, P., Masjedi, M. R., Ibrahim, T. A., Tabarsi, P., Haroun, R. Z., … Varahram, M. (2009). Totally drug-resistant tuberculosis strains: Evidence of adaptation at the cellular level. European Respiratory Journal, 34(5), 1202–1203. https://doi.org/10.1183/09031936.00081909Velayati, Ali Akbar, Farnia, P., Ibrahim, T. A., Haroun, R. Z., Kuan, H. O., Ghanavi, J., … Masjedi, M. R. (2009). Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: Using transmission electron microscopy. Chemotherapy, 55(5), 303–307. https://doi.org/10.1159/000226425Vellend, M. (2010). Conceptual synthesis in community ecology. Quarterly Review of Biology, 85(2), 183–206. https://doi.org/10.1086/652373Villanueva, M., Jousselin, A., Baek, K. T., Prados, J., Andrey, D. O., Renzoni, A., … Kelley, W. L. (2016). Rifampin resistance rpoB alleles or multicopy thioredoxin/thioredoxin reductase suppresses the lethality of disruption of the global stress regulator spx in Staphylococcus aureus. Journal of Bacteriology, 198(19), 2719–2731. https://doi.org/10.1128/JB.00261-16Vitali, B., Turroni, S., Serina, S., Sosio, M., Vannini, L., Candela, M., … Brigidi, P. (2008). Molecular and phenotypic traits of in-vitro-selected mutants of Bifidobacterium resistant to rifaximin. International Journal of Antimicrobial Agents, 31(6), 555–560. https://doi.org/10.1016/j.ijantimicag.2008.02.002Vogwill, T., Kojadinovic, M., & Maclean, R. C. (2016). Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proceedings of the Royal Society B: Biological Sciences, 283(1830). https://doi.org/10.1098/rspb.2016.0151Wang, C., Fang, R., Zhou, B., Tian, X., Zhang, X., Zheng, X., … Zhou, T. (2019). Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiology, 19(1), 1–8. https://doi.org/10.1186/s12866-019-1573-9Wang, S., Zhou, Y., Zhao, B., Ou, X., Xia, H., Zheng, Y., … Zhao, Y. (2020). Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Frontiers of Medicine, 14(1), 51–59. https://doi.org/10.1007/s11684-019-0720-xWatanabe, Y., Cui, L., Katayama, Y., Kozue, K., & Hiramatsu, K. (2011). Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. Journal of Clinical Microbiology, 49(7), 2680–2684. https://doi.org/10.1128/JCM.02144-10Wegrzyn, A., Szalewska-Pałasz, A., Błaszczak, A., Liberek, K., & Wegrzyn, G. (1998). Differential inhibition of transcription from sigma70- and sigma32-dependent promoters by rifampicin. FEBS Letters, 440(1–2), 172–174.WHO. (2019). WHO TB Report. WHO Library Cataloguing-in-Publication Data World, 7.Wi, Y. M., Greenwood-Quaintance, K. E., Brinkman, C. L., Lee, J. Y. H., Howden, B. P., & Patel, R. (2018). Rifampicin resistance in Staphylococcus epidermidis: molecular characterisation and fitness cost of rpoB mutations. International Journal of Antimicrobial Agents, 51(5), 670–677. https://doi.org/10.1016/j.ijantimicag.2017.12.019Wichelhaus, T. A., Böddinghaus, B., Besier, S., Schäfer, V., Brade, V., & Ludwig, A. (2002). Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 46(11), 3381–3385. https://doi.org/10.1128/AAC.46.11.3381-3385.2002Willingham-Lane, J. M., Berghaus, L. J., Berghaus, R. D., Hart, K. A., & Giguère, S. (2019). Effect of macrolide and rifampin resistance on fitness of Rhodococcus equi during intramacrophage replication and in vivo. Infection and Immunity, 87(10), 1–10. https://doi.org/10.1128/IAI.00281-19Wolff, K. A., Nguyen, H. T., Cartabuke, R. H., Singh, A., Ogwang, S., & Nguyen, L. (2009). Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrobial Agents and Chemotherapy, 53(8), 3515–3519. https://doi.org/10.1128/AAC.00012-09Wrande, M., Roth, J. R., & Hughes, D. (2008). Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11863–11868. https://doi.org/10.1073/pnas.0804739105Wu, S., Barnes, P. F., Samten, B., Pang, X., Rodrigue, S., Ghanny, S., … Howard, S. T. (2009). Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth. Microbiology, 155(4), 1272–1281. https://doi.org/10.1099/mic.0.024638-0Xu, J., Tozawa, Y., Lai, C., Hayashi, H., & Ochi, K. (2002). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Molecular Genetics and Genomics, 268(2), 179–189. https://doi.org/10.1007/s00438-002-0730-1Xu, Z., Zhou, A., Wu, J., Zhou, A., Li, J., Zhang, S., … Yao, Y. F. (2018). Transcriptional approach for decoding the mechanism of rpoC compensatory mutations for the fitness cost in rifampicin-resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 9(NOV), 1–12. https://doi.org/10.3389/fmicb.2018.02895Yu, J., Wu, J., Francis, K. P., Purchio, T. F., & Kadurugamuwa, J. L. (2005a). Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 55(4), 528–534. https://doi.org/10.1093/jac/dki053Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20004–20009. https://doi.org/10.1073/pnas.0907925106Zhan, L., Tang, J., Sun, M., & Qin, C. (2017). Animal models for tuberculosis in translational and precision medicine. Frontiers in Microbiology, 8(MAY). https://doi.org/10.3389/fmicb.2017.00717Zhou, Y. N., & Jin, D. J. (1998). The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2908–2913. https://doi.org/10.1073/pnas.95.6.2908Zuo, Y., Wang, Y., & Steitz, T. A. (2013). The Mechanism of E. coli RNA Polymerase Regulation by ppGpp is suggested by the structure of their complex. Molecular Cell, 50(3), 430–436. https://doi.org/10.1016/j.molcel.2013.03.020Identificación de biomarcadores de evolución y adaptación de tuberculosis resistente a rifampicina basada en expresión de genes de resistencia/ virulencia/ fitness y en lipidomica comparativa: qRT-PCR y HPLC-MMinCiencias-República de ColombiaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79617/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALunMS09tesis70-Documento de tesis definitivo.pdfunMS09tesis70-Documento de tesis definitivo.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf8103238https://repositorio.unal.edu.co/bitstream/unal/79617/2/unMS09tesis70-Documento%20de%20tesis%20definitivo.pdf502d3f22a10003caa6732e7e6991780fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79617/3/license_rdff7d494f61e544413a13e6ba1da2089cdMD53THUMBNAILunMS09tesis70-Documento de tesis definitivo.pdf.jpgunMS09tesis70-Documento de tesis definitivo.pdf.jpgGenerated Thumbnailimage/jpeg6951https://repositorio.unal.edu.co/bitstream/unal/79617/4/unMS09tesis70-Documento%20de%20tesis%20definitivo.pdf.jpgd05b3d7609454d0ee37b6bc680829101MD54unal/79617oai:repositorio.unal.edu.co:unal/796172024-07-20 23:10:37.002Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |