Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua
ilustraciones, tablas
- Autores:
-
Portilla Portillo, Estéfano Jesús
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80948
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Railway transport
Transporte ferroviario
ATO
Automatic train operation
Data based train operation
Data driven control
Control with machine learning
Operación automática de trenes
Control con aprendizaje de máquina
Operación de trenes basada en datos
Control basado en datos
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_f3df8fe7042a5a05a43d479baf540526 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80948 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
dc.title.translated.eng.fl_str_mv |
Data based train automatic operation model for railway systems without continuos communication systems |
title |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
spellingShingle |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua 620 - Ingeniería y operaciones afines Railway transport Transporte ferroviario ATO Automatic train operation Data based train operation Data driven control Control with machine learning Operación automática de trenes Control con aprendizaje de máquina Operación de trenes basada en datos Control basado en datos |
title_short |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
title_full |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
title_fullStr |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
title_full_unstemmed |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
title_sort |
Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
dc.creator.fl_str_mv |
Portilla Portillo, Estéfano Jesús |
dc.contributor.advisor.none.fl_str_mv |
Zapata Madrigal, German |
dc.contributor.author.none.fl_str_mv |
Portilla Portillo, Estéfano Jesús |
dc.contributor.researchgroup.spa.fl_str_mv |
Investigación en Teleinformática y Teleautomática (Grupo T&T) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Railway transport Transporte ferroviario ATO Automatic train operation Data based train operation Data driven control Control with machine learning Operación automática de trenes Control con aprendizaje de máquina Operación de trenes basada en datos Control basado en datos |
dc.subject.lemb.none.fl_str_mv |
Railway transport Transporte ferroviario |
dc.subject.proposal.eng.fl_str_mv |
ATO Automatic train operation Data based train operation Data driven control Control with machine learning |
dc.subject.proposal.spa.fl_str_mv |
Operación automática de trenes Control con aprendizaje de máquina Operación de trenes basada en datos Control basado en datos |
description |
ilustraciones, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-11T16:35:11Z |
dc.date.available.none.fl_str_mv |
2022-02-11T16:35:11Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80948 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80948 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
J. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao, “Research and development of automatic train operation for railway transportation systems: A survey,” Transp. Res. Part C Emerg. Technol., vol. 85, pp. 548–572, 2017, doi: 10.1016/j.trc.2017.09.009. J. Yin, D. Chen, and Y. Li, “Smart train operation algorithms based on expert knowledge and ensemble CART for the electric locomotive,” Knowledge-Based Syst., vol. 92, pp. 78–91, 2016, doi: 10.1016/j.knosys.2015.10.016. C.-Y. Zhang, D. Chen, J. Yin, and L. Chen, “A flexible and robust train operation model based on expert knowledge and online adjustment,” Int. J. Wavelets, Multiresolution Inf. Process., vol. 15, no. 03, p. 1750023, 2017, doi: 10.1142/s0219691317500230. Y. Wang, M. Zhang, J. Ma, and X. Zhou, “Survey on Driverless Train Operation for Urban Rail Transit Systems,” Urban Rail Transit, vol. 2, no. 3–4, pp. 106–113, 2016, doi: 10.1007/s40864-016-0047-8. C. Y. Zhang, D. Chen, J. Yin, and L. Chen, “Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive,” Adv. Eng. Informatics, vol. 30, no. 3, pp. 553–563, 2016, doi: 10.1016/j.aei.2016.07.004. Y. J.a, C. D.a, and L. L.b, “Intelligent train operation algorithms for subway by expert system and reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2561–2571, 2014, doi: 10.1109/TITS.2014.2320757. S. Clark, “A historical overview of railway signalling & control (or `from Bobbies to Balises’),” in IET 13th Professional Development Course on Electric Traction Systems, 2014, pp. 4 (18 .)-4 (18 .), doi: 10.1049/cp.2014.1433. S. Morar, “Evolution of communication based train control worldwide,” IET Semin. Dig., vol. 2012, no. 14926, pp. 218–226, 2012, doi: 10.1049/ic.2012.0054. 82 Título de la tesis o trabajo de investigación G. M. Scheepmaker, H. Y. Willeboordse, J. H. Hoogenraad, R. S. Luijt, and R. M. P. Goverde, “Comparing train driving strategies on multiple key performance indicators,” J. Rail Transp. Plan. Manag., vol. 13, no. November 2019, p. 100163, 2020, doi: 10.1016/j.jrtpm.2019.100163. Y. Wang, N. Bin, B. Ton van den, and D. S. Bart, Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems. 2016. A. Naweed and G. Balakrishnan, “Understanding the visual skills and strategies of train drivers in the urban rail environment,” Work, vol. 47, no. 3, pp. 339–352, 2014, doi: 10.3233/WOR-131705. “IEC 62290-1 Railway applications: urban guided transport management and command/control systems. Part 1: system principles and fundamental concepts.,” Int. Electrotech. Comm., 2014. H. rong Dong, S. gen Gao, B. Ning, and L. Li, “Extended fuzzy logic controller for high speed train,” Neural Comput. Appl., vol. 22, no. 2, pp. 321–328, 2013, doi: 10.1007/s00521-011-0681-8. D. Gong and G. Li, “Research on Multi-objective Optimized Target Speed Curve of Subway Operation Based on ATO System,” vol. 6, no. 2, pp. 133–137, 2020, doi: 10.6919/ICJE.202002. H. Liang and Y. Zhang, “Research on Automatic Train Operation Performance Optimization of High Speed Railway Based on Asynchronous Advantage ActorCritic,” pp. 1674–1680, 2021, doi: 10.1109/cac51589.2020.9327330. A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points,” Transp. Res. Part B Methodol., vol. 94, pp. 482–508, 2016, doi: 10.1016/j.trb.2015.07.023. P. J. P. P.G. Howlett, Advances in Industrial Control. 2006. E. Khmelnitsky, “On an optimal control problem of train operation,” IEEE Trans. Automat. Contr., vol. 45, no. 7, pp. 1257–1266, 2000, doi: 10.1109/9.867018. R. Liu and I. M. Golovitcher, “Energy-efficient operation of rail vehicles,” Transp. Res. Part A Policy Pract., vol. 37, no. 10, pp. 917–932, 2003, doi: 10.1016/j.tra.2003.07.001. E. Rodrigo, S. Tapia, J. M. Mera, and M. Soler, “Optimizing electric rail energy consumption using the lagrange multiplier technique,” J. Transp. Eng., vol. 139, no. 3, pp. 321–329, 2013, doi: 10.1061/(ASCE)TE.1943-5436.0000483. H. Ko, T. Koseki, and M. Miyatake, “Application of dynamic programming to the optimization of the running profile of a train,” Adv. Transp., vol. 15, no. June 2014, pp. 103–112, 2004. M. Miyatake and K. Matsuda, “Energy saving speed and charge/discharge control of a railway vehicle with on-board energy storage by means of an optimization model,” IEEJ Trans. Electr. Electron. Eng., vol. 4, no. 6, pp. 771–778, 2009, doi: 10.1002/tee.20479. Y. V. Bocharnikov, A. M. Tobias, and C. Roberts, “Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation,” IET Semin. Dig., vol. 2010, no. 13342, pp. 1–5, 2010, doi: 10.1049/ic.2010.0038. K. K. Wong and T. K. Ho, “Coast control for mass rapid transit railways with searching methods,” IEE Proc. - Electr. Power Appl., vol. 151, no. 3, p. 365, 2004, doi: 10.1049/ip-epa:20040346. P. Howlett, “The Optimal Control of a Train,” Ann. Oper. Res., vol. 98, no. 1–4, pp. 65–87, 2000, doi: 10.1023/a:1019235819716. S. Liu, F. Cao, J. Xun, and Y. Wang, “Energy-Efficient Operation of Single Train Based on the Control Strategy of ATO,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 2015-Octob, pp. 2580–2586, 2015, doi: 10.1109/ITSC.2015.415. B. R. Ke, M. C. Chen, and C. L. Lin, “Block-layout design using maxmin ant system for saving energy on mass rapid transit systems,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 2, pp. 226–235, 2009, doi: 10.1109/TITS.2009.2018324. G. Amaral et al., New Advances in Virtual Humans, vol. 140, no. 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. K. Kim and S. I. J. Chien, “Optimal train operation for minimum energy consumption considering track alignment, speed limit, and schedule adherence,” J. Transp. Eng., vol. 137, no. 9, pp. 665–674, 2011, doi: 10.1061/(ASCE)TE.1943- 5436.0000246. S. Su, X. Li, T. Tang, and Z. Gao, “A subway train timetable optimization approach based on energy-efficient operation strategy,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 2, pp. 883–893, 2013, doi: 10.1109/TITS.2013.2244885. V. Calderaro, V. Galdi, G. Graber, A. Piccolo, and D. Cogliano, “An algorithm to optimize speed profiles of the metro vehicles for minimizing energy consumption,” 2014 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, SPEEDAM 2014, pp. 813–819, 2014, doi: 10.1109/SPEEDAM.2014.6872030. C. Sicre, A. P. Cucala, A. Fernández, and P. Lukaszewicz, “Modeling and optimizing energy-efficient manual driving on high-speed lines,” IEEJ Trans. Electr. Electron. Eng., vol. 7, no. 6, pp. 633–640, 2012, doi: 10.1002/tee.21782. W. Carvajal-Carreño, A. P. Cucala, and A. Fernández-Cardador, “Optimal design of energy-efficient ATO CBTC driving for metro lines based on NSGA-II with fuzzy parameters,” Eng. Appl. Artif. Intell., vol. 36, pp. 164–177, 2014, doi: 10.1016/j.engappai.2014.07.019. H. Liu, C. Qian, Z. Ren, and G. Wang, “Research on running curve optimization of automatic train operation system based on genetic algorithm,” Int. Conf. Electr. Inf. Technol. rail Transp., vol. 482, no. 4800, 2018, doi: 10.1007/978-981-10-7986-3. Q. Pu, X. Zhu, R. Zhang, J. Liu, D. Cai, and G. Fu, “Speed Profile Tracking by an Adaptive Controller for Subway Train Based on Neural Network and PID Algorithm,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 10656–10667, 2020, doi: 10.1109/TVT.2020.3019699. X. Chen, Y. Zhang, and H. Huang, “Train speed control algorithm based on PID controller and single-neuron PID controller,” Proc. - 2010 2nd WRI Glob. Congr. Intell. Syst. GCIS 2010, vol. 1, pp. 107–110, 2010, doi: 10.1109/GCIS.2010.41. B. R. Ke, C. L. Lin, and C. W. Lai, “Optimization of train-speed trajectory and control for mass rapid transit systems,” Control Eng. Pract., vol. 19, no. 7, pp. 675– 687, 2011, doi: 10.1016/j.conengprac.2011.03.003. S. Gao, J. Wei, H. Song, Z. Zhang, H. Dong, and X. Hu, “Fuzzy adaptive automatic train operation control with protection constraints: A residual nonlinearity approximation-based approach,” Eng. Appl. Artif. Intell., vol. 96, no. August, p. 103986, 2020, doi: 10.1016/j.engappai.2020.103986. R. Zhou, S. Song, A. Xue, K. You, and H. Wu, “Smart train operation algorithms based on expert knowledge and reinforcement learning,” arXiv, pp. 1–12, 2020, doi: 10.1109/tsmc.2020.3000073. Y. Zhou and Z. Zhang, “High-speed train control based on multiple-model adaptive control with second-level adaptation,” Veh. Syst. Dyn., vol. 52, no. 5, pp. 637–652, 2014, doi: 10.1080/00423114.2014.887209. Z. Mao, G. Tao, B. Jiang, and X. G. Yan, “Adaptive Compensation of Traction System Actuator Failures for High-Speed Trains,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 11, pp. 2950–2963, 2017, doi: 10.1109/TITS.2017.2666428. R. Cheng, D. Chen, B. Cheng, and S. Zheng, “Intelligent driving methods based on expert knowledge and online optimization for high-speed trains,” Expert Syst. Appl., vol. 87, pp. 228–239, 2017, doi: 10.1016/j.eswa.2017.06.006. W. Zhong, S. Li, H. Xu, and W. Zhang, “On-Line Train Speed Profile Generation of High-Speed Railway With Energy-Saving: A Model Predictive Control Method,” IEEE Trans. Intell. Transp. Syst., pp. 1–12, 2020, doi: 10.1109/TITS.2020.3040730. A. Siahvashi and B. Moaveni, “Automatic Train Control Based On The Multi-agent Control Of Cooperative Systems,” J. Math. Comput. Sci., vol. 01, no. 04, pp. 247– 257, 2010, doi: 10.22436/jmcs.001.04.02. D. A. El-Kebbe and M. Götz, “Distributed real-time control of railway crossings using multi-agent technology,” Proc. - Int. Conf. Comput. Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. Internet, vol. 1, pp. 768–772, 2005, doi: 10.1109/cimca.2005.1631357. M. Etxeberria-Garcia, M. Labayen, M. Zamalloa, and N. Arana-Arexolaleiba, “Application of Computer Vision and Deep Learning in the railway domain for autonomous train stop operation,” Proc. 2020 IEEE/SICE Int. Symp. Syst. Integr. SII 2020, pp. 943–948, 2020, doi: 10.1109/SII46433.2020.9026246. D. Chen, R. Chen, Y. Li, and T. Tang, “Online learning algorithms for train automatic stop control using precise location data of balises,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1526–1535, 2013, doi: 10.1109/TITS.2013.2265171. H. Dong, B. Ning, B. Cai, and Z. Hou, “Automatic train control system development and simulation for high-speed railways,” IEEE Circuits Syst. Mag., vol. 10, no. 2, pp. 6–18, 2010, doi: 10.1109/MCAS.2010.936782. M. Faieghi, A. Jalali, and S. K. E. D. M. Mashhadi, “Robust adaptive cruise control of high speed trains,” ISA Trans., vol. 53, no. 2, pp. 533–541, 2014, doi: 10.1016/j.isatra.2013.12.007. X. Zhu, Q. Pu, Q. Zhang, and R. Zhang, “Automatic train operation speed profile optimization and tracking with multi-objective in urban railway,” Period. Polytech. Transp. Eng., vol. 48, no. 1, pp. 57–64, 2019, doi: 10.3311/PPtr.12039. N. Bin, Advanced Train Control Systems. 2010. M. Johnson, Communications Based Train Control – Rail Engineer. 2014. L. Zhu, D. Yao, and H. Zhao, “Reliability Analysis of Next-Generation CBTC Data Communication Systems,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2024– 2034, 2019, doi: 10.1109/TVT.2018.2870053. Empresa de Transporte Masivo del Valle de Aburrá Limitada, “Metro de Medellin,” 2021. [Online]. Available: www.metrodemedellin.gov.co. [Accessed: 07-Apr-2021]. J. Yin, S. Su, J. Xun, T. Tang, and R. Liu, “Data-driven approaches for modeling train control models: Comparison and case studies,” ISA Trans., vol. 98, no. xxxx, pp. 349–363, 2020, doi: 10.1016/j.isatra.2019.08.024. D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” 35th Int. Conf. Mach. Learn. ICML 2018, vol. 5, pp. 2976–2989, 2018. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 86 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Medellín, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80948/3/1085326640.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80948/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/80948/5/1085326640.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
d11b5b58f4a23b6bb0711e8058e02ffc 8153f7789df02f0a4c9e079953658ab2 14d3dad2ff84f7aa428bfabf9ea7d8bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089554519392256 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata Madrigal, Germanb877cf12ce65a7bb4d20614c97057b0a600Portilla Portillo, Estéfano Jesús2f7f77b2470b0328004be5154f9a8f8aInvestigación en Teleinformática y Teleautomática (Grupo T&T)2022-02-11T16:35:11Z2022-02-11T16:35:11Z2021https://repositorio.unal.edu.co/handle/unal/80948Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasEl presente trabajo presenta la formulación y evaluación de un modelo de operación automática de trenes basado en datos para sistemas ferroviarios con sistema de control basado en comunicaciones (CBTC por sus siglas en inglés) y sin sistemas de comunicación de alta frecuencia. El modelo propuesto se enmarca en la operación automática de trenes con perfiles de velocidad calculados fuera de línea e integra una corrección de salida de control basada en reglas heurísticas. Los perfiles de velocidad usados por el modelo propuesto se denominan perfiles de velocidad condicionados, estos se obtienen a partir de un modelo de procesamiento de información, el cual usa los datos históricos de viaje de conducción manual y el conocimiento de los conductores experimentados. El modelo de procesamiento de información integra aprendizaje profundo y aprendizaje reforzado para obtener perfiles de velocidad sujetos a las condiciones reales del sistema ferroviario, evitando la necesidad del modelado de las dinámicas complejas de la conducción de trenes. Para la obtención de la corrección heurística, se propone usar el conocimiento de los conductores experimentados, el cual es consolidado en una serie de reglas heurísticas que se integran al algoritmo del modelo de operación automática de trenes. El modelo de operación automática de trenes propuesto en este trabajo es desarrollado e implementado para un sistema ferroviario que no cuenta con un sistema de comunicación de alta frecuencia y que opera con conducción manual. El desempeño del modelo se evalúa usando indicadores de confort, seguridad, consumo energético y puntualidad. (Texto tomado de la fuente)This study presents the drafting and assessment of a data based automatic train operation model for railways with communication-based train control (CBTC) and without high frequency communication systems. The model proposed is framed in automatic train operation with speed profiles calculated offline and it integrates a control output correction based on heuristic rules. The speed profiles used by the proposed model are called conditioned speed profiles. These are obtained from an information processing model which uses historical data from manual driving and knowledge from experienced drivers. The information processing model integrates deep and reinforcement learning to obtain speed profiles subject to real railway system conditions, avoiding the need for modeling the complex dynamics of train driving. To obtain heuristic correction, it is proposed the use of experienced drivers’ knowledge which is consolidated in a series of heuristic rules that are integrated into the algorithm of the proposed train operation model. The automatic train operation model proposed in this study is developed and implemented for a railway system that does not have a high-frequency communication system and that operates with manual driving. The model performance is evaluated using comfort, safety, energy consumption, and punctuality indicators.MaestríaMagister en ingeniería - Automatización IndustrialAutomatización integrada inteligenteÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlxvi, 86 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Automatización IndustrialDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afinesRailway transportTransporte ferroviarioATOAutomatic train operationData based train operationData driven controlControl with machine learningOperación automática de trenesControl con aprendizaje de máquinaOperación de trenes basada en datosControl basado en datosModelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continuaData based train automatic operation model for railway systems without continuos communication systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMedellín, ColombiaJ. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao, “Research and development of automatic train operation for railway transportation systems: A survey,” Transp. Res. Part C Emerg. Technol., vol. 85, pp. 548–572, 2017, doi: 10.1016/j.trc.2017.09.009.J. Yin, D. Chen, and Y. Li, “Smart train operation algorithms based on expert knowledge and ensemble CART for the electric locomotive,” Knowledge-Based Syst., vol. 92, pp. 78–91, 2016, doi: 10.1016/j.knosys.2015.10.016.C.-Y. Zhang, D. Chen, J. Yin, and L. Chen, “A flexible and robust train operation model based on expert knowledge and online adjustment,” Int. J. Wavelets, Multiresolution Inf. Process., vol. 15, no. 03, p. 1750023, 2017, doi: 10.1142/s0219691317500230.Y. Wang, M. Zhang, J. Ma, and X. Zhou, “Survey on Driverless Train Operation for Urban Rail Transit Systems,” Urban Rail Transit, vol. 2, no. 3–4, pp. 106–113, 2016, doi: 10.1007/s40864-016-0047-8.C. Y. Zhang, D. Chen, J. Yin, and L. Chen, “Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive,” Adv. Eng. Informatics, vol. 30, no. 3, pp. 553–563, 2016, doi: 10.1016/j.aei.2016.07.004.Y. J.a, C. D.a, and L. L.b, “Intelligent train operation algorithms for subway by expert system and reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2561–2571, 2014, doi: 10.1109/TITS.2014.2320757.S. Clark, “A historical overview of railway signalling & control (or `from Bobbies to Balises’),” in IET 13th Professional Development Course on Electric Traction Systems, 2014, pp. 4 (18 .)-4 (18 .), doi: 10.1049/cp.2014.1433.S. Morar, “Evolution of communication based train control worldwide,” IET Semin. Dig., vol. 2012, no. 14926, pp. 218–226, 2012, doi: 10.1049/ic.2012.0054. 82 Título de la tesis o trabajo de investigaciónG. M. Scheepmaker, H. Y. Willeboordse, J. H. Hoogenraad, R. S. Luijt, and R. M. P. Goverde, “Comparing train driving strategies on multiple key performance indicators,” J. Rail Transp. Plan. Manag., vol. 13, no. November 2019, p. 100163, 2020, doi: 10.1016/j.jrtpm.2019.100163.Y. Wang, N. Bin, B. Ton van den, and D. S. Bart, Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems. 2016.A. Naweed and G. Balakrishnan, “Understanding the visual skills and strategies of train drivers in the urban rail environment,” Work, vol. 47, no. 3, pp. 339–352, 2014, doi: 10.3233/WOR-131705.“IEC 62290-1 Railway applications: urban guided transport management and command/control systems. Part 1: system principles and fundamental concepts.,” Int. Electrotech. Comm., 2014.H. rong Dong, S. gen Gao, B. Ning, and L. Li, “Extended fuzzy logic controller for high speed train,” Neural Comput. Appl., vol. 22, no. 2, pp. 321–328, 2013, doi: 10.1007/s00521-011-0681-8.D. Gong and G. Li, “Research on Multi-objective Optimized Target Speed Curve of Subway Operation Based on ATO System,” vol. 6, no. 2, pp. 133–137, 2020, doi: 10.6919/ICJE.202002.H. Liang and Y. Zhang, “Research on Automatic Train Operation Performance Optimization of High Speed Railway Based on Asynchronous Advantage ActorCritic,” pp. 1674–1680, 2021, doi: 10.1109/cac51589.2020.9327330.A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points,” Transp. Res. Part B Methodol., vol. 94, pp. 482–508, 2016, doi: 10.1016/j.trb.2015.07.023.P. J. P. P.G. Howlett, Advances in Industrial Control. 2006.E. Khmelnitsky, “On an optimal control problem of train operation,” IEEE Trans. Automat. Contr., vol. 45, no. 7, pp. 1257–1266, 2000, doi: 10.1109/9.867018.R. Liu and I. M. Golovitcher, “Energy-efficient operation of rail vehicles,” Transp. Res. Part A Policy Pract., vol. 37, no. 10, pp. 917–932, 2003, doi: 10.1016/j.tra.2003.07.001.E. Rodrigo, S. Tapia, J. M. Mera, and M. Soler, “Optimizing electric rail energy consumption using the lagrange multiplier technique,” J. Transp. Eng., vol. 139, no. 3, pp. 321–329, 2013, doi: 10.1061/(ASCE)TE.1943-5436.0000483.H. Ko, T. Koseki, and M. Miyatake, “Application of dynamic programming to the optimization of the running profile of a train,” Adv. Transp., vol. 15, no. June 2014, pp. 103–112, 2004.M. Miyatake and K. Matsuda, “Energy saving speed and charge/discharge control of a railway vehicle with on-board energy storage by means of an optimization model,” IEEJ Trans. Electr. Electron. Eng., vol. 4, no. 6, pp. 771–778, 2009, doi: 10.1002/tee.20479.Y. V. Bocharnikov, A. M. Tobias, and C. Roberts, “Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation,” IET Semin. Dig., vol. 2010, no. 13342, pp. 1–5, 2010, doi: 10.1049/ic.2010.0038.K. K. Wong and T. K. Ho, “Coast control for mass rapid transit railways with searching methods,” IEE Proc. - Electr. Power Appl., vol. 151, no. 3, p. 365, 2004, doi: 10.1049/ip-epa:20040346.P. Howlett, “The Optimal Control of a Train,” Ann. Oper. Res., vol. 98, no. 1–4, pp. 65–87, 2000, doi: 10.1023/a:1019235819716.S. Liu, F. Cao, J. Xun, and Y. Wang, “Energy-Efficient Operation of Single Train Based on the Control Strategy of ATO,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 2015-Octob, pp. 2580–2586, 2015, doi: 10.1109/ITSC.2015.415.B. R. Ke, M. C. Chen, and C. L. Lin, “Block-layout design using maxmin ant system for saving energy on mass rapid transit systems,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 2, pp. 226–235, 2009, doi: 10.1109/TITS.2009.2018324.G. Amaral et al., New Advances in Virtual Humans, vol. 140, no. 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.K. Kim and S. I. J. Chien, “Optimal train operation for minimum energy consumption considering track alignment, speed limit, and schedule adherence,” J. Transp. Eng., vol. 137, no. 9, pp. 665–674, 2011, doi: 10.1061/(ASCE)TE.1943- 5436.0000246.S. Su, X. Li, T. Tang, and Z. Gao, “A subway train timetable optimization approach based on energy-efficient operation strategy,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 2, pp. 883–893, 2013, doi: 10.1109/TITS.2013.2244885.V. Calderaro, V. Galdi, G. Graber, A. Piccolo, and D. Cogliano, “An algorithm to optimize speed profiles of the metro vehicles for minimizing energy consumption,” 2014 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, SPEEDAM 2014, pp. 813–819, 2014, doi: 10.1109/SPEEDAM.2014.6872030.C. Sicre, A. P. Cucala, A. Fernández, and P. Lukaszewicz, “Modeling and optimizing energy-efficient manual driving on high-speed lines,” IEEJ Trans. Electr. Electron. Eng., vol. 7, no. 6, pp. 633–640, 2012, doi: 10.1002/tee.21782.W. Carvajal-Carreño, A. P. Cucala, and A. Fernández-Cardador, “Optimal design of energy-efficient ATO CBTC driving for metro lines based on NSGA-II with fuzzy parameters,” Eng. Appl. Artif. Intell., vol. 36, pp. 164–177, 2014, doi: 10.1016/j.engappai.2014.07.019.H. Liu, C. Qian, Z. Ren, and G. Wang, “Research on running curve optimization of automatic train operation system based on genetic algorithm,” Int. Conf. Electr. Inf. Technol. rail Transp., vol. 482, no. 4800, 2018, doi: 10.1007/978-981-10-7986-3.Q. Pu, X. Zhu, R. Zhang, J. Liu, D. Cai, and G. Fu, “Speed Profile Tracking by an Adaptive Controller for Subway Train Based on Neural Network and PID Algorithm,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 10656–10667, 2020, doi: 10.1109/TVT.2020.3019699.X. Chen, Y. Zhang, and H. Huang, “Train speed control algorithm based on PID controller and single-neuron PID controller,” Proc. - 2010 2nd WRI Glob. Congr. Intell. Syst. GCIS 2010, vol. 1, pp. 107–110, 2010, doi: 10.1109/GCIS.2010.41.B. R. Ke, C. L. Lin, and C. W. Lai, “Optimization of train-speed trajectory and control for mass rapid transit systems,” Control Eng. Pract., vol. 19, no. 7, pp. 675– 687, 2011, doi: 10.1016/j.conengprac.2011.03.003.S. Gao, J. Wei, H. Song, Z. Zhang, H. Dong, and X. Hu, “Fuzzy adaptive automatic train operation control with protection constraints: A residual nonlinearity approximation-based approach,” Eng. Appl. Artif. Intell., vol. 96, no. August, p. 103986, 2020, doi: 10.1016/j.engappai.2020.103986.R. Zhou, S. Song, A. Xue, K. You, and H. Wu, “Smart train operation algorithms based on expert knowledge and reinforcement learning,” arXiv, pp. 1–12, 2020, doi: 10.1109/tsmc.2020.3000073.Y. Zhou and Z. Zhang, “High-speed train control based on multiple-model adaptive control with second-level adaptation,” Veh. Syst. Dyn., vol. 52, no. 5, pp. 637–652, 2014, doi: 10.1080/00423114.2014.887209.Z. Mao, G. Tao, B. Jiang, and X. G. Yan, “Adaptive Compensation of Traction System Actuator Failures for High-Speed Trains,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 11, pp. 2950–2963, 2017, doi: 10.1109/TITS.2017.2666428.R. Cheng, D. Chen, B. Cheng, and S. Zheng, “Intelligent driving methods based on expert knowledge and online optimization for high-speed trains,” Expert Syst. Appl., vol. 87, pp. 228–239, 2017, doi: 10.1016/j.eswa.2017.06.006.W. Zhong, S. Li, H. Xu, and W. Zhang, “On-Line Train Speed Profile Generation of High-Speed Railway With Energy-Saving: A Model Predictive Control Method,” IEEE Trans. Intell. Transp. Syst., pp. 1–12, 2020, doi: 10.1109/TITS.2020.3040730.A. Siahvashi and B. Moaveni, “Automatic Train Control Based On The Multi-agent Control Of Cooperative Systems,” J. Math. Comput. Sci., vol. 01, no. 04, pp. 247– 257, 2010, doi: 10.22436/jmcs.001.04.02.D. A. El-Kebbe and M. Götz, “Distributed real-time control of railway crossings using multi-agent technology,” Proc. - Int. Conf. Comput. Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. Internet, vol. 1, pp. 768–772, 2005, doi: 10.1109/cimca.2005.1631357.M. Etxeberria-Garcia, M. Labayen, M. Zamalloa, and N. Arana-Arexolaleiba, “Application of Computer Vision and Deep Learning in the railway domain for autonomous train stop operation,” Proc. 2020 IEEE/SICE Int. Symp. Syst. Integr. SII 2020, pp. 943–948, 2020, doi: 10.1109/SII46433.2020.9026246.D. Chen, R. Chen, Y. Li, and T. Tang, “Online learning algorithms for train automatic stop control using precise location data of balises,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1526–1535, 2013, doi: 10.1109/TITS.2013.2265171.H. Dong, B. Ning, B. Cai, and Z. Hou, “Automatic train control system development and simulation for high-speed railways,” IEEE Circuits Syst. Mag., vol. 10, no. 2, pp. 6–18, 2010, doi: 10.1109/MCAS.2010.936782.M. Faieghi, A. Jalali, and S. K. E. D. M. Mashhadi, “Robust adaptive cruise control of high speed trains,” ISA Trans., vol. 53, no. 2, pp. 533–541, 2014, doi: 10.1016/j.isatra.2013.12.007.X. Zhu, Q. Pu, Q. Zhang, and R. Zhang, “Automatic train operation speed profile optimization and tracking with multi-objective in urban railway,” Period. Polytech. Transp. Eng., vol. 48, no. 1, pp. 57–64, 2019, doi: 10.3311/PPtr.12039.N. Bin, Advanced Train Control Systems. 2010.M. Johnson, Communications Based Train Control – Rail Engineer. 2014.L. Zhu, D. Yao, and H. Zhao, “Reliability Analysis of Next-Generation CBTC Data Communication Systems,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2024– 2034, 2019, doi: 10.1109/TVT.2018.2870053.Empresa de Transporte Masivo del Valle de Aburrá Limitada, “Metro de Medellin,” 2021. [Online]. Available: www.metrodemedellin.gov.co. [Accessed: 07-Apr-2021].J. Yin, S. Su, J. Xun, T. Tang, and R. Liu, “Data-driven approaches for modeling train control models: Comparison and case studies,” ISA Trans., vol. 98, no. xxxx, pp. 349–363, 2020, doi: 10.1016/j.isatra.2019.08.024.D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” 35th Int. Conf. Mach. Learn. ICML 2018, vol. 5, pp. 2976–2989, 2018.EstudiantesInvestigadoresMaestrosORIGINAL1085326640.2021.pdf1085326640.2021.pdfTesis de Maestría en Ingeniería - Automatización industrialapplication/pdf2765748https://repositorio.unal.edu.co/bitstream/unal/80948/3/1085326640.2021.pdfd11b5b58f4a23b6bb0711e8058e02ffcMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80948/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1085326640.2021.pdf.jpg1085326640.2021.pdf.jpgGenerated Thumbnailimage/jpeg5545https://repositorio.unal.edu.co/bitstream/unal/80948/5/1085326640.2021.pdf.jpg14d3dad2ff84f7aa428bfabf9ea7d8bbMD55unal/80948oai:repositorio.unal.edu.co:unal/809482023-08-09 07:57:58.627Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |