Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes

ilustraciones, diagramas

Autores:
Ramírez Marín, Alejandro
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83987
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83987
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
Galvanización
Decapado de metales
Galvanizing
Metals - pickling
Valorización de efluentes
Decapado
Galvanizado en caliente
Nanopartículas
Ferrita de zinc
Óxido de zinc
Óxido de hierro
Fotocatálisis
Degradación de colorantes.
Effluent valorization
Pickling
Hot-dip galvanizing
Nanoparticles
Zinc ferrite
Zinc oxide
Iron oxide
Photocatalysis and dye degradation
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f3aa8d1bda66a82781ce2e942544f377
oai_identifier_str oai:repositorio.unal.edu.co:unal/83987
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
dc.title.translated.eng.fl_str_mv Valorization of pickling effluents from hot-dip galvanizing for the development of zinc and iron oxide photocatalysts with potential applications in the degradation of dyes
title Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
spellingShingle Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
Galvanización
Decapado de metales
Galvanizing
Metals - pickling
Valorización de efluentes
Decapado
Galvanizado en caliente
Nanopartículas
Ferrita de zinc
Óxido de zinc
Óxido de hierro
Fotocatálisis
Degradación de colorantes.
Effluent valorization
Pickling
Hot-dip galvanizing
Nanoparticles
Zinc ferrite
Zinc oxide
Iron oxide
Photocatalysis and dye degradation
title_short Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
title_full Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
title_fullStr Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
title_full_unstemmed Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
title_sort Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes
dc.creator.fl_str_mv Ramírez Marín, Alejandro
dc.contributor.advisor.none.fl_str_mv Ocampo Carmona, Luz Marina
dc.contributor.author.none.fl_str_mv Ramírez Marín, Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Ciencia y Tecnología de Materiales
dc.contributor.orcid.spa.fl_str_mv Ramírez Marín, Alejandro [0000-0001-8156-2125]
dc.contributor.cvlac.spa.fl_str_mv A. Ramirez-Marin
dc.contributor.googlescholar.spa.fl_str_mv Alejandro Ramirez Marin
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
Galvanización
Decapado de metales
Galvanizing
Metals - pickling
Valorización de efluentes
Decapado
Galvanizado en caliente
Nanopartículas
Ferrita de zinc
Óxido de zinc
Óxido de hierro
Fotocatálisis
Degradación de colorantes.
Effluent valorization
Pickling
Hot-dip galvanizing
Nanoparticles
Zinc ferrite
Zinc oxide
Iron oxide
Photocatalysis and dye degradation
dc.subject.lemb.spa.fl_str_mv Galvanización
Decapado de metales
dc.subject.lemb.eng.fl_str_mv Galvanizing
Metals - pickling
dc.subject.proposal.spa.fl_str_mv Valorización de efluentes
Decapado
Galvanizado en caliente
Nanopartículas
Ferrita de zinc
Óxido de zinc
Óxido de hierro
Fotocatálisis
Degradación de colorantes.
dc.subject.proposal.eng.fl_str_mv Effluent valorization
Pickling
Hot-dip galvanizing
Nanoparticles
Zinc ferrite
Zinc oxide
Iron oxide
Photocatalysis and dye degradation
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-07T14:36:26Z
dc.date.available.none.fl_str_mv 2023-06-07T14:36:26Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83987
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83987
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Asociación Nacional de Empresarios de Colombia, “Guía práctica de galvanizado por inmersión en caliente,” p. 64, 2013, [Online]. Available: http://www.galvanizadocolombia.com/index.php/publicaciones?task=document.viewdoc&id=6
“Asociación Latinoamericana de Zinc - LATIZA,” 2012.
H. Samaniego Peña, “Valorización de efluentes de decapado ácido metálico. Recuperación de zinc,” Tesis Dr. en Red, 2006.
M. Zhang, C. Chen, L. Mao, and Q. Wu, “Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation,” Constr. Build. Mater., vol. 159, pp. 27–36, 2018, doi: 10.1016/j.conbuildmat.2017.10.130.
M. K. Sinha, S. Pramanik, S. K. Sahu, L. B. Prasad, M. K. Jha, and B. D. Pandey, “Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution,” Sep. Purif. Technol., vol. 167, pp. 37–44, 2016, doi: 10.1016/j.seppur.2016.04.049.
S. Hu et al., “Recovery of zinc and iron from hot-dip galvanizing spent pickle liquor using solvent extraction,” J. Mol. Liq., vol. 362, p. 119741, 2022, doi: 10.1016/j.molliq.2022.119741.
Sonu et al., “An overview of heterojunctioned ZnFe2O4photocatalyst for enhanced oxidative water purification,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105812, 2021, doi: 10.1016/j.jece.2021.105812.
P. Dasta, A. Pratap Singh, and A. Pratap Singh, “Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel,” Mater. Today Proc., vol. 52, pp. 751–757, 2022, doi: 10.1016/j.matpr.2021.10.143.
Q. Wang, L. Cao, Y. Wang, M. Qin, and Q. Wang, “Shell/core structure zinc oxide/iron oxide: A new sunscreen material against blue light,” Mater. Lett., vol. 322, no. February, p. 132529, 2022, doi: 10.1016/j.matlet.2022.132529.
P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, and S. J. Das, “Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route,” Optik (Stuttg)., vol. 134, pp. 99–108, 2017, doi: 10.1016/j.ijleo.2017.01.018.
S. Sharma et al., “Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review,” J. Clean. Prod., vol. 228, pp. 755–769, 2019, doi: 10.1016/j.jclepro.2019.04.292.
Y. Li, D. Chen, S. Fan, and T. Yang, “Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater,” J. Taiwan Inst. Chem. Eng., vol. 96, no. xxxx, pp. 185–192, 2019, doi: 10.1016/j.jtice.2018.11.006.
R. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol. Environ. Saf., vol. 231, p. 113160, 2022, doi: 10.1016/j.ecoenv.2021.113160.
X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, and G. Chen, “Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol,” Chemosphere, vol. 82, no. 4, pp. 581–586, 2011, doi: 10.1016/j.chemosphere.2010.09.068.
M. C. Valor, I. M. Muñoz, T. María Jesus Fernández, L. M. J. Rivera, F. I. Ferrero, O. J. V. Escrig, and N. E. Gisbert, “ÍNDICE PRESENTACIÓN: LA ECONOMÍA CIRCULAR: UNA OPCIÓN INTELIGENTE 4 Marta de la Cuesta González UNED y Economistas sin Fronteras ECONOMÍA CIRCULAR-ESPIRAL. OPCIONES ESTRATÉGICAS DESDE EL RECICLAJE AL CAMBIO SISTÉMICO 7 Luis M. Jiménez Herrero Asociación p,” Econ. sin Front., vol. 37, 2020, [Online]. Available: www.ecosfron.org
DANE, “Boletín Técnico Cuenta ambiental y económica de flujos de materiales – residuos sólidos,” Dane, pp. 1–19, 2020, [Online]. Available: https://www.dane.gov.co/files/investigaciones/pib/ambientales/cuentas_ambientales/cuentas-residuos/Bt-Cuenta-residuos-2018p.pdf
S. Yang et al., “Linear α-olefin production with Na-promoted Fe-Zn catalysts via Fischer-Tropsch synthesis,” RSC Adv., vol. 9, no. 25, pp. 14176–14187, 2019, doi: 10.1039/c9ra02471a.
J. M. Magalhães, J. E. Silva, F. P. Castro, and J. A. Labrincha, “Physical and chemical characterisation of metal finishing industrial wastes,” J. Environ. Manage., vol. 75, no. 2, pp. 157–166, 2005, doi: 10.1016/j.jenvman.2004.09.011.
L. Pérez-Villarejo, S. Martínez-Martínez, B. Carrasco-Hurtado, D. Eliche-Quesada, C. Ureña-Nieto, and P. J. Sánchez-Soto, “Valorization and inertization of galvanic sludge waste in clay bricks,” Appl. Clay Sci., vol. 105–106, pp. 89–99, 2015, doi: 10.1016/j.clay.2014.12.022.
Frias et al., “Novel process to recover by-products from the pickling baths of stainless steel,” Proj. Funded by Eur. Community under Ind. Mater. Technol. Program. (Brite-Euram III), Proj. BE-3501, Contract BRPR-CT 97-0407, pp. 1–3, 1997, [Online]. Available: https://cordis.europa.eu/project/rcn/37577/factsheet/en
A. C. Silva et al., “Incorporation of galvanic waste (Cr, Ni, Cu, Zn, Pb) in a soda-lime-borosilicate glass,” J. Am. Ceram. Soc., vol. 91, no. 4, pp. 1300–1305, 2008, doi: 10.1111/j.1551-2916.2008.02311.x.
J. P. Gong, K. Q. Luo, and Y. L. Huang, “Dynamic modeling & simulation for environmentally benign cleaning & rinsing,” Plat. Surf. Finish., vol. 84, no. 11, pp. 63–70, 1997.
A. Culcasi, R. Gueccia, S. Randazzo, A. Cipollina, and G. Micale, “Design of a novel membrane-integrated waste acid recovery process from pickling solution,” J. Clean. Prod., vol. 236, p. 117623, 2019, doi: 10.1016/j.jclepro.2019.117623.
V. y D. T. Ministerio de Ambiente, “Decreto 4741,” Minist. Ambient. Vivienda y Desarro. Territ., no. 4741, p. 30, 2005.
S. Bao et al., “Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent,” J. Colloid Interface Sci., vol. 462, pp. 235–242, 2016, doi: 10.1016/j.jcis.2015.10.011.
I. C. Chou, Y. M. Kuo, C. Lin, J. W. Wang, C. T. Wang, and G. P. Chang-Chien, “Electroplating sludge metal recovering with vitrification using mineral powder additive,” Resour. Conserv. Recycl., vol. 58, pp. 45–49, 2012, doi: 10.1016/j.resconrec.2011.10.006.
A. Arguillarena, M. Margallo, A. Urtiaga, and A. Irabien, “Life-cycle assessment as a tool to evaluate the environmental impact of hot-dip galvanisation,” J. Clean. Prod., vol. 290, p. 125676, 2021, doi: 10.1016/j.jclepro.2020.125676.
Z. Fang, X. Qiu, J. Chen, and X. Qiu, “Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor,” Appl. Catal. B Environ., vol. 100, no. 1–2, pp. 221–228, 2010, doi: 10.1016/j.apcatb.2010.07.035.
H. I. S. A. Pablo Esteban Zaruma Arias, José Bernardo Proal Nájera, Isaías Chaires Hernández, “Los Colorantes Textiles Industriales Y Tratamientos Óptimos De Sus Efluentes De Agua Residual: Una Breve Revisión Textile Industrial Dyes and optimal wastewater effluents treatments: A short review,” Rev. la Fac. Ciencias Quìmicas, vol. 19, pp. 38–47, 2018.
P. I. Bruto, “Boletín Técnico Producto Interno Bruto ( PIB ) Boletín Técnico,” pp. 1–47, 2022.
L. F. Garcés and G. A. Penuela, “Fotocatálisis de las aguas residuales de la industria textil utilizando colector solar,” Rev. Lasallista Investig, vol. 4, no. 2, pp. 24–31, 2012, [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S1794-44492007000200004&script=sci_arttext&tlng=es
J. Tang, Y. Pei, Q. Hu, D. Pei, and J. Xu, “The Recycling of Ferric Salt in Steel Pickling Liquors: Preparation of Nano-sized Iron Oxide,” Procedia Environ. Sci., vol. 31, pp. 778–784, 2016, doi: 10.1016/j.proenv.2016.02.071.
S. B. Zueva et al., “Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants,” Sustain., vol. 13, no. 1, pp. 1–8, 2021, doi: 10.3390/su13010407.
V. N. Kalpana, B. A. S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and V. Devi Rajeswari, “Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies,” OpenNano, vol. 3, no. March, pp. 48–55, 2018, doi: 10.1016/j.onano.2018.06.001.
S. Li, S. Krishnamoorthy, A. Li, G. D. Meitzner, and E. Iglesia, “Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties,” J. Catal., vol. 206, no. 2, pp. 202–217, 2002, doi: 10.1006/jcat.2001.3506.
M. Mishra and D. M. Chun, “α-Fe<inf>2</inf>O<inf>3</inf> as a photocatalytic material: A review,” Appl. Catal. A Gen., vol. 498, pp. 126–141, 2015, doi: 10.1016/j.apcata.2015.03.023.
S. D. Roy, K. C. Das, and S. S. Dhar, “Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review,” Inorg. Chem. Commun., vol. 134, no. September, p. 109050, 2021, doi: 10.1016/j.inoche.2021.109050.
A. Fouda, S. EL-Din Hassan, S. S. Salem, and T. I. Shaheen, “In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications,” Microb. Pathog., vol. 125, no. September, pp. 252–261, 2018, doi: 10.1016/j.micpath.2018.09.030.
N. A. Zakariya, S. Majeed, and W. H. W. Jusof, “Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium spp.,” Sensors Int., vol. 3, no. November 2021, pp. 1–9, 2022, doi: 10.1016/j.sintl.2022.100164.
C. L. Doolette, T. L. Read, N. R. Howell, T. Cresswell, and E. Lombi, “Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers,” Sci. Total Environ., vol. 749, p. 142369, 2020, doi: 10.1016/j.scitotenv.2020.142369.
S. Chareon, H. O. T. Dip, and C. Limited, “HOT DIP GALVANIZED COATING PROCEDURE SANG CHAREON HOT DIP GALVANIZE COMPANY LIMITED Tappan Zee Bridge,” 2008, [Online]. Available: http://www.sangchareongroup.com/images/brochure/Brochure.pdf
S. L. McArthur, “Thin films of Vanadium Oxide Grown on Vanadium metal,” Surf. Interface Anal., vol. 38, no. c, pp. 1380–1385, 2006, doi: 10.1002/sia.
B. Guo, B. Liu, J. Yang, and S. Zhang, “The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review,” J. Environ. Manage., vol. 193, pp. 410–422, 2017, doi: 10.1016/j.jenvman.2017.02.026.
G. Scheer and M. Huckshold, Design and Manufacturing according to Hot-Dip Galvanizing Requirements. 2011. doi: 10.1002/9783527636884.ch7.
J. D. Hernández, “Detection of the critical points of the hot-dip galvanizing process: a focus on sustainability and sustainable development,” p. 148, 2018.
M. Regel-Rosocka, “A review on methods of regeneration of spent pickling solutions from steel processing,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 57–69, 2010, doi: 10.1016/j.jhazmat.2009.12.043.
R. Huang, Z. Fang, X. Fang, and E. P. Tsang, “Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor,” J. Colloid Interface Sci., vol. 436, pp. 258–266, 2014, doi: 10.1016/j.jcis.2014.08.035.
Q. Y. Chen, M. Tyrer, C. D. Hills, X. M. Yang, and P. Carey, “Immobilisation of heavy metal in cement-based solidification/stabilisation: A review,” Waste Manag., vol. 29, no. 1, pp. 390–403, 2009, doi: 10.1016/j.wasman.2008.01.019.
B. Tang, L. Yuan, T. Shi, L. Yu, and Y. Zhu, “Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation,” J. Hazard. Mater., vol. 163, no. 2–3, pp. 1173–1178, 2009, doi: 10.1016/j.jhazmat.2008.07.095.
P. Dvořák and J. Jandová, “Hydrometallurgical recovery of zinc from hot dip galvanizing ash,” Hydrometallurgy, vol. 77, no. 1–2, pp. 29–33, 2005, doi: 10.1016/j.hydromet.2004.10.007.
U. P. M. Ashik, S. Kudo, and J. Hayashi, An Overview of Metal Oxide Nanostructures. Elsevier Ltd., 2018. doi: 10.1016/b978-0-08-101975-7.00002-6.
A. H. M. Yusoff, M. N. Salimi, and M. F. Jamlos, “A review: Synthetic strategy control of magnetite nanoparticles production,” Adv. Nano Res., vol. 6, no. 1, pp. 1–19, 2018, doi: 10.12989/anr.2018.6.1.001.
S. Sanaei-Rad, M. A. Ghasemzadeh, and S. S. Aghaei, “Synthesis and structure elucidation of ZnFe2O4/IRMOF-3/GO for the drug delivery of tetracycline and evaluation of their antibacterial activities,” J. Organomet. Chem., vol. 960, p. 122221, 2022, doi: 10.1016/j.jorganchem.2021.122221.
J. Lian, Q. Ouyang, P. E. Tsang, and Z. Fang, “Fenton-like catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor,” Appl. Clay Sci., vol. 182, no. July, p. 105273, 2019, doi: 10.1016/j.clay.2019.105273.
K. Babooram and Z. G. Ye, “Novel solution routes to ferroelectrics and relaxors,” Handb. Adv. Dielectr. Piezoelectric Ferroelectr. Mater. Synth. Prop. Appl., vol. 3, pp. 852–883, 2008, doi: 10.1533/9781845694005.7.852.
C. P. Romao, K. J. Miller, C. A. Whitman, M. A. White, and B. A. Marinkovic, Negative Thermal Expansion (Thermomiotic) Materials, vol. 4. Elsevier Ltd., 2013. doi: 10.1016/B978-0-08-097774-4.00425-3.
M. C. Paganini, A. Giorgini, N. P. F. Gonçalves, C. Gionco, A. Bianco Prevot, and P. Calza, “New insight into zinc oxide doped with iron and its exploitation to pollutants abatement,” Catal. Today, vol. 328, no. September 2018, pp. 230–234, 2019, doi: 10.1016/j.cattod.2018.10.054.
R. Saleh and N. F. Djaja, “Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 130, pp. 581–590, 2014, doi: 10.1016/j.saa.2014.03.089.
A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, and E. Jabbari, “Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions,” Nano-Structures and Nano-Objects, vol. 14, pp. 19–48, 2018, doi: 10.1016/j.nanoso.2018.01.006.
P. Falak, S. A. Hassanzadeh-Tabrizi, and A. Saffar-Teluri, “Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity,” J. Magn. Magn. Mater., vol. 441, pp. 98–104, 2017, doi: 10.1016/j.jmmm.2017.05.044.
S. Choudhary, D. Hasina, M. Saini, M. Ranjan, and S. Mohapatra, “Facile synthesis, morphological, structural, photocatalytic and optical properties of ZnFe2O4-ZnO hybrid nanostructures,” J. Alloys Compd., vol. 895, p. 162723, 2022, doi: 10.1016/j.jallcom.2021.162723.
H. Derikvandi and A. Nezamzadeh-Ejhieh, “A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study,” J. Photochem. Photobiol. A Chem., vol. 348, pp. 68–78, 2017, doi: 10.1016/j.jphotochem.2017.08.007.
R. Srivastava and B. C. Yadav, “Ferrite materials: Introduction, synthesis techniques, and applications as sensors,” Int. J. Green Nanotechnol. Biomed., vol. 4, no. 2, pp. 141–154, 2012, doi: 10.1080/19430892.2012.676918.
T. T. Loan, D. K. Huy, N. P. Duong, T. D. Hoan, S. Soontaranon, and W. Klysubun, “Facile synthesis and characterization of ZnFe2O4/ZnO nanocomposite: An insight into structure and formation,” Radiat. Phys. Chem., vol. 193, no. January, p. 109977, 2022, doi: 10.1016/j.radphyschem.2022.109977.
M. Kuang et al., “Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity,” Solid State Sci., vol. 96, no. March, p. 105901, 2019, doi: 10.1016/j.solidstatesciences.2019.05.012.
T. R. Sobahi and M. S. Amin, “Synthesis of ZnO/ZnFe2O4/ Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity,” Ceram. Int., vol. 46, no. 3, pp. 3558–3564, 2020, doi: 10.1016/j.ceramint.2019.10.073.
S. Randazzo, D. La Corte, R. Gueccia, A. Cipollina, and G. Micale, “Metals recovery from waste pickling solutions by reactive precipitation,” Chem. Eng. Trans., vol. 86, no. i, pp. 1045–1050, 2021, doi: 10.3303/CET2186175.
K. R. Lee, J. Kim, and J. G. Jang, “Recovery of zinc in spent pickling solution with oxalic acid,” Korean Chem. Eng. Res., vol. 55, no. 6, pp. 785–790, 2017, doi: 10.9713/kcer.2017.55.6.785.
A. Verma, R. Kore, D. R. Corbin, and M. B. Shiflett, “Metal Recovery Using Oxalate Chemistry: A Technical Review,” Ind. Eng. Chem. Res., vol. 58, no. 34, pp. 15381–15393, 2019, doi: 10.1021/acs.iecr.9b02598.
A. Pathak, A. Roy, and M. Manna, “Recovery of zinc from industrial waste pickling liquor,” Hydrometallurgy, vol. 163, pp. 161–166, 2016, doi: 10.1016/j.hydromet.2016.04.006.
M. Z. Chekroun, M. A. Benali, I. E. Yahiaoui, M. Debab, M. Z. Belmehdi, and H. Tabet-derraz, “Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet – visible spectral range : Experimental and numerical study,” Opt. Mater. (Amst)., vol. 132, no. May, p. 112769, 2022, doi: 10.1016/j.optmat.2022.112769.
M. A. Benali et al., “Synthesis and analysis of SnO2/ZnO nanocomposites: Structural studies and optical investigations with Maxwell–Garnett model,” Mater. Chem. Phys., vol. 240, no. July 2019, p. 122254, 2020, doi: 10.1016/j.matchemphys.2019.122254.
D. A. Ferreira, L. M. Z. Prados, D. Majuste, and M. B. Mansur, “Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries,” J. Power Sources, vol. 187, no. 1, pp. 238–246, 2009, doi: 10.1016/j.jpowsour.2008.10.077.
Ministerio de Ambiente y Desarrollo sostenible, “Resolución 631 de 2015 (Ministerio de Ambiente y Desarrollo sostenible),” Por la cual se Establ. los parámetros y los valores límites máximos Permis. en los vertimientos puntuales a cuerpos aguas Superf. y a los Sist. alcantarillado público y se dictan otras disposiciones., vol. 2015, no. 49, p. 73, 2015, [Online]. Available: http://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdf
H. Mehrizadeh, A. Niaei, H. H. Tseng, D. Salari, and A. Khataee, “Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor,” J. Photochem. Photobiol. A Chem., vol. 332, pp. 188–195, 2017, doi: 10.1016/j.jphotochem.2016.08.028.
O. Bakina, E. Glazkova, N. Rodkevich, A. Mosunov, V. Chzhou, and M. Lerner, “Electroexplosive synthesis of composite ZnO/ZnFe2O4/Zn nanoparticles with photocatalytic and antibacterial activity,” Mater. Sci. Semicond. Process., vol. 152, no. August, p. 107076, 2022, doi: 10.1016/j.mssp.2022.107076.
M. Sundararajan et al., “Physica B : Physics of Condensed Matter A comparative study on NiFe 2 O 4 and ZnFe 2 O 4 spinel nanoparticles : Structural , surface chemistry , optical , morphology and magnetic studies,” Phys. B Phys. Condens. Matter, vol. 644, no. April, p. 414232, 2022, doi: 10.1016/j.physb.2022.414232.
B. Arunkumar, S. Johnson Jeyakumar, J. Vasudevan, M. Jothibas, and A. Sindhya, “Scrutiny of the magnetic properties of ZnO nanoparticles by solid state reaction method,” Mater. Today Proc., no. xxxx, 2022, doi: 10.1016/j.matpr.2022.06.036.
R. Rameshbabu, N. Kumar, A. Karthigeyan, and B. Neppolian, “Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants,” Mater. Chem. Phys., vol. 181, pp. 106–115, 2016, doi: 10.1016/j.matchemphys.2016.06.040.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 53 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83987/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83987/2/1152462665.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83987/3/1152462665.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
18da3da3992353147d8407fab344b047
76dba840be05f351b7dfb4b2b5d72584
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885941243019264
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ocampo Carmona, Luz Marina2814d5b689cd61103eab38d6b7ac6721Ramírez Marín, Alejandro07411ab536252baccc386a6d8b48186aCiencia y Tecnología de MaterialesRamírez Marín, Alejandro [0000-0001-8156-2125]A. Ramirez-MarinAlejandro Ramirez Marin2023-06-07T14:36:26Z2023-06-07T14:36:26Z2023https://repositorio.unal.edu.co/handle/unal/83987Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos efluentes de decapado de la industria de galvanizado por inmersión en caliente son altamente peligrosos y de difícil tratamiento debido a la concentración de ácido clorhídrico alrededor de 10% y contenido de metales pesados disueltos de Fe (~140g/L) y de Zn (~160g/L). Mediante a la técnica de coprecipitación química estos efluentes pueden ser aprovechados para la síntesis de partículas. En este trabajo investigativo se logra la obtención de partículas de óxido de hierro-zinc a partir de efluentes decapado oxidado de la industria de galvanizado en caliente; la oxidación del efluente se realiza con KMnO4 0,5 M o H2O2 13%, posteriormente se utiliza H2C2O4 como agente precipitante a 1 M, 1,5 M y 2 M. Los precipitados se calcinaron bajo atmósfera de aire, y se obtuvieron principalmente micro y nanopartículas de los óxidos de ferrita de zinc y oxido de zinc en proporciones similares que varían en un rango entre 30 y 40% p/p para cada uno de los compuestos metálicos presentes. Se encontró, que el Band-Gap obtenido en todas las síntesis fue alrededor de 1.2-1.4 eV, dichos valores están por debajo del rango reportado (1.9 Ev) en la literatura para este tipo materiales, siendo de gran interés para aplicaciones fotocatalíticas; por último, se evalúa su capacidad como fotocatalizador para la degradación de colorantes, obtenido un porcentaje de remoción del color en la solución mayor al 92% en el 91,6% de las muestras sintetizadas en presencia de un sistema de radiación UV-vis. (Texto tomado de la fuente)Pickling effluents from the hot-dip galvanizing industry are highly dangerous and difficult to treat due to the concentration of hydrochloric acid around 10% and the content of dissolved heavy metals of Fe (~140g/L) and Zn. (~160g/L). Through a chemical coprecipitation technique, these effluents can be used for the synthesis of particles. In this investigative work, we are able to obtain iron-zinc oxide particles from oxidized pickling effluents from the hot-dip galvanizing industry; different materials were synthesized by coprecipitation using 0.5 M KMnO4 or 13% H2O2 as oxidizing agents of the pickling solution and different concentrations of H2C2O4 as precipitating agent (1 M, 1.5 M and 2 M). The precipitates were calcined under an air atmosphere, and mainly micro and nanoparticles of zinc ferrite oxides and zinc oxide were acquired in similar proportions that vary in a range between 30 and 40% w/w for each of the metal compounds. It was found that the band Gap obtained in all the syntheses was around 1.2-1.4 eV, these values are below the reported range (1.9 Ev) in the literature for this type of materials, being of great interest for photocatalytic applications; they are evaluated as a photocatalyst for the degradation of dyes, obtaining a color removal percentage in the solution greater than 92% in 91.6% of the synthesized samples in the presence of a UV-vis radiation system.MaestríaMagíster en Ingeniería - Materiales y ProcesosValorización de residuos y Tratamiento de efluentesÁrea Curricular de Materiales y Nanotecnología53 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosGalvanizaciónDecapado de metalesGalvanizingMetals - picklingValorización de efluentesDecapadoGalvanizado en calienteNanopartículasFerrita de zincÓxido de zincÓxido de hierroFotocatálisisDegradación de colorantes.Effluent valorizationPicklingHot-dip galvanizingNanoparticlesZinc ferriteZinc oxideIron oxidePhotocatalysis and dye degradationValorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantesValorization of pickling effluents from hot-dip galvanizing for the development of zinc and iron oxide photocatalysts with potential applications in the degradation of dyesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAsociación Nacional de Empresarios de Colombia, “Guía práctica de galvanizado por inmersión en caliente,” p. 64, 2013, [Online]. Available: http://www.galvanizadocolombia.com/index.php/publicaciones?task=document.viewdoc&id=6“Asociación Latinoamericana de Zinc - LATIZA,” 2012.H. Samaniego Peña, “Valorización de efluentes de decapado ácido metálico. Recuperación de zinc,” Tesis Dr. en Red, 2006.M. Zhang, C. Chen, L. Mao, and Q. Wu, “Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation,” Constr. Build. Mater., vol. 159, pp. 27–36, 2018, doi: 10.1016/j.conbuildmat.2017.10.130.M. K. Sinha, S. Pramanik, S. K. Sahu, L. B. Prasad, M. K. Jha, and B. D. Pandey, “Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution,” Sep. Purif. Technol., vol. 167, pp. 37–44, 2016, doi: 10.1016/j.seppur.2016.04.049.S. Hu et al., “Recovery of zinc and iron from hot-dip galvanizing spent pickle liquor using solvent extraction,” J. Mol. Liq., vol. 362, p. 119741, 2022, doi: 10.1016/j.molliq.2022.119741.Sonu et al., “An overview of heterojunctioned ZnFe2O4photocatalyst for enhanced oxidative water purification,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105812, 2021, doi: 10.1016/j.jece.2021.105812.P. Dasta, A. Pratap Singh, and A. Pratap Singh, “Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel,” Mater. Today Proc., vol. 52, pp. 751–757, 2022, doi: 10.1016/j.matpr.2021.10.143.Q. Wang, L. Cao, Y. Wang, M. Qin, and Q. Wang, “Shell/core structure zinc oxide/iron oxide: A new sunscreen material against blue light,” Mater. Lett., vol. 322, no. February, p. 132529, 2022, doi: 10.1016/j.matlet.2022.132529.P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, and S. J. Das, “Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route,” Optik (Stuttg)., vol. 134, pp. 99–108, 2017, doi: 10.1016/j.ijleo.2017.01.018.S. Sharma et al., “Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review,” J. Clean. Prod., vol. 228, pp. 755–769, 2019, doi: 10.1016/j.jclepro.2019.04.292.Y. Li, D. Chen, S. Fan, and T. Yang, “Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater,” J. Taiwan Inst. Chem. Eng., vol. 96, no. xxxx, pp. 185–192, 2019, doi: 10.1016/j.jtice.2018.11.006.R. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol. Environ. Saf., vol. 231, p. 113160, 2022, doi: 10.1016/j.ecoenv.2021.113160.X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, and G. Chen, “Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol,” Chemosphere, vol. 82, no. 4, pp. 581–586, 2011, doi: 10.1016/j.chemosphere.2010.09.068.M. C. Valor, I. M. Muñoz, T. María Jesus Fernández, L. M. J. Rivera, F. I. Ferrero, O. J. V. Escrig, and N. E. Gisbert, “ÍNDICE PRESENTACIÓN: LA ECONOMÍA CIRCULAR: UNA OPCIÓN INTELIGENTE 4 Marta de la Cuesta González UNED y Economistas sin Fronteras ECONOMÍA CIRCULAR-ESPIRAL. OPCIONES ESTRATÉGICAS DESDE EL RECICLAJE AL CAMBIO SISTÉMICO 7 Luis M. Jiménez Herrero Asociación p,” Econ. sin Front., vol. 37, 2020, [Online]. Available: www.ecosfron.orgDANE, “Boletín Técnico Cuenta ambiental y económica de flujos de materiales – residuos sólidos,” Dane, pp. 1–19, 2020, [Online]. Available: https://www.dane.gov.co/files/investigaciones/pib/ambientales/cuentas_ambientales/cuentas-residuos/Bt-Cuenta-residuos-2018p.pdfS. Yang et al., “Linear α-olefin production with Na-promoted Fe-Zn catalysts via Fischer-Tropsch synthesis,” RSC Adv., vol. 9, no. 25, pp. 14176–14187, 2019, doi: 10.1039/c9ra02471a.J. M. Magalhães, J. E. Silva, F. P. Castro, and J. A. Labrincha, “Physical and chemical characterisation of metal finishing industrial wastes,” J. Environ. Manage., vol. 75, no. 2, pp. 157–166, 2005, doi: 10.1016/j.jenvman.2004.09.011.L. Pérez-Villarejo, S. Martínez-Martínez, B. Carrasco-Hurtado, D. Eliche-Quesada, C. Ureña-Nieto, and P. J. Sánchez-Soto, “Valorization and inertization of galvanic sludge waste in clay bricks,” Appl. Clay Sci., vol. 105–106, pp. 89–99, 2015, doi: 10.1016/j.clay.2014.12.022.Frias et al., “Novel process to recover by-products from the pickling baths of stainless steel,” Proj. Funded by Eur. Community under Ind. Mater. Technol. Program. (Brite-Euram III), Proj. BE-3501, Contract BRPR-CT 97-0407, pp. 1–3, 1997, [Online]. Available: https://cordis.europa.eu/project/rcn/37577/factsheet/enA. C. Silva et al., “Incorporation of galvanic waste (Cr, Ni, Cu, Zn, Pb) in a soda-lime-borosilicate glass,” J. Am. Ceram. Soc., vol. 91, no. 4, pp. 1300–1305, 2008, doi: 10.1111/j.1551-2916.2008.02311.x.J. P. Gong, K. Q. Luo, and Y. L. Huang, “Dynamic modeling & simulation for environmentally benign cleaning & rinsing,” Plat. Surf. Finish., vol. 84, no. 11, pp. 63–70, 1997.A. Culcasi, R. Gueccia, S. Randazzo, A. Cipollina, and G. Micale, “Design of a novel membrane-integrated waste acid recovery process from pickling solution,” J. Clean. Prod., vol. 236, p. 117623, 2019, doi: 10.1016/j.jclepro.2019.117623.V. y D. T. Ministerio de Ambiente, “Decreto 4741,” Minist. Ambient. Vivienda y Desarro. Territ., no. 4741, p. 30, 2005.S. Bao et al., “Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent,” J. Colloid Interface Sci., vol. 462, pp. 235–242, 2016, doi: 10.1016/j.jcis.2015.10.011.I. C. Chou, Y. M. Kuo, C. Lin, J. W. Wang, C. T. Wang, and G. P. Chang-Chien, “Electroplating sludge metal recovering with vitrification using mineral powder additive,” Resour. Conserv. Recycl., vol. 58, pp. 45–49, 2012, doi: 10.1016/j.resconrec.2011.10.006.A. Arguillarena, M. Margallo, A. Urtiaga, and A. Irabien, “Life-cycle assessment as a tool to evaluate the environmental impact of hot-dip galvanisation,” J. Clean. Prod., vol. 290, p. 125676, 2021, doi: 10.1016/j.jclepro.2020.125676.Z. Fang, X. Qiu, J. Chen, and X. Qiu, “Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor,” Appl. Catal. B Environ., vol. 100, no. 1–2, pp. 221–228, 2010, doi: 10.1016/j.apcatb.2010.07.035.H. I. S. A. Pablo Esteban Zaruma Arias, José Bernardo Proal Nájera, Isaías Chaires Hernández, “Los Colorantes Textiles Industriales Y Tratamientos Óptimos De Sus Efluentes De Agua Residual: Una Breve Revisión Textile Industrial Dyes and optimal wastewater effluents treatments: A short review,” Rev. la Fac. Ciencias Quìmicas, vol. 19, pp. 38–47, 2018.P. I. Bruto, “Boletín Técnico Producto Interno Bruto ( PIB ) Boletín Técnico,” pp. 1–47, 2022.L. F. Garcés and G. A. Penuela, “Fotocatálisis de las aguas residuales de la industria textil utilizando colector solar,” Rev. Lasallista Investig, vol. 4, no. 2, pp. 24–31, 2012, [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S1794-44492007000200004&script=sci_arttext&tlng=esJ. Tang, Y. Pei, Q. Hu, D. Pei, and J. Xu, “The Recycling of Ferric Salt in Steel Pickling Liquors: Preparation of Nano-sized Iron Oxide,” Procedia Environ. Sci., vol. 31, pp. 778–784, 2016, doi: 10.1016/j.proenv.2016.02.071.S. B. Zueva et al., “Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants,” Sustain., vol. 13, no. 1, pp. 1–8, 2021, doi: 10.3390/su13010407.V. N. Kalpana, B. A. S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and V. Devi Rajeswari, “Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies,” OpenNano, vol. 3, no. March, pp. 48–55, 2018, doi: 10.1016/j.onano.2018.06.001.S. Li, S. Krishnamoorthy, A. Li, G. D. Meitzner, and E. Iglesia, “Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties,” J. Catal., vol. 206, no. 2, pp. 202–217, 2002, doi: 10.1006/jcat.2001.3506.M. Mishra and D. M. Chun, “α-Fe<inf>2</inf>O<inf>3</inf> as a photocatalytic material: A review,” Appl. Catal. A Gen., vol. 498, pp. 126–141, 2015, doi: 10.1016/j.apcata.2015.03.023.S. D. Roy, K. C. Das, and S. S. Dhar, “Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review,” Inorg. Chem. Commun., vol. 134, no. September, p. 109050, 2021, doi: 10.1016/j.inoche.2021.109050.A. Fouda, S. EL-Din Hassan, S. S. Salem, and T. I. Shaheen, “In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications,” Microb. Pathog., vol. 125, no. September, pp. 252–261, 2018, doi: 10.1016/j.micpath.2018.09.030.N. A. Zakariya, S. Majeed, and W. H. W. Jusof, “Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium spp.,” Sensors Int., vol. 3, no. November 2021, pp. 1–9, 2022, doi: 10.1016/j.sintl.2022.100164.C. L. Doolette, T. L. Read, N. R. Howell, T. Cresswell, and E. Lombi, “Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers,” Sci. Total Environ., vol. 749, p. 142369, 2020, doi: 10.1016/j.scitotenv.2020.142369.S. Chareon, H. O. T. Dip, and C. Limited, “HOT DIP GALVANIZED COATING PROCEDURE SANG CHAREON HOT DIP GALVANIZE COMPANY LIMITED Tappan Zee Bridge,” 2008, [Online]. Available: http://www.sangchareongroup.com/images/brochure/Brochure.pdfS. L. McArthur, “Thin films of Vanadium Oxide Grown on Vanadium metal,” Surf. Interface Anal., vol. 38, no. c, pp. 1380–1385, 2006, doi: 10.1002/sia.B. Guo, B. Liu, J. Yang, and S. Zhang, “The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review,” J. Environ. Manage., vol. 193, pp. 410–422, 2017, doi: 10.1016/j.jenvman.2017.02.026.G. Scheer and M. Huckshold, Design and Manufacturing according to Hot-Dip Galvanizing Requirements. 2011. doi: 10.1002/9783527636884.ch7.J. D. Hernández, “Detection of the critical points of the hot-dip galvanizing process: a focus on sustainability and sustainable development,” p. 148, 2018.M. Regel-Rosocka, “A review on methods of regeneration of spent pickling solutions from steel processing,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 57–69, 2010, doi: 10.1016/j.jhazmat.2009.12.043.R. Huang, Z. Fang, X. Fang, and E. P. Tsang, “Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor,” J. Colloid Interface Sci., vol. 436, pp. 258–266, 2014, doi: 10.1016/j.jcis.2014.08.035.Q. Y. Chen, M. Tyrer, C. D. Hills, X. M. Yang, and P. Carey, “Immobilisation of heavy metal in cement-based solidification/stabilisation: A review,” Waste Manag., vol. 29, no. 1, pp. 390–403, 2009, doi: 10.1016/j.wasman.2008.01.019.B. Tang, L. Yuan, T. Shi, L. Yu, and Y. Zhu, “Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation,” J. Hazard. Mater., vol. 163, no. 2–3, pp. 1173–1178, 2009, doi: 10.1016/j.jhazmat.2008.07.095.P. Dvořák and J. Jandová, “Hydrometallurgical recovery of zinc from hot dip galvanizing ash,” Hydrometallurgy, vol. 77, no. 1–2, pp. 29–33, 2005, doi: 10.1016/j.hydromet.2004.10.007.U. P. M. Ashik, S. Kudo, and J. Hayashi, An Overview of Metal Oxide Nanostructures. Elsevier Ltd., 2018. doi: 10.1016/b978-0-08-101975-7.00002-6.A. H. M. Yusoff, M. N. Salimi, and M. F. Jamlos, “A review: Synthetic strategy control of magnetite nanoparticles production,” Adv. Nano Res., vol. 6, no. 1, pp. 1–19, 2018, doi: 10.12989/anr.2018.6.1.001.S. Sanaei-Rad, M. A. Ghasemzadeh, and S. S. Aghaei, “Synthesis and structure elucidation of ZnFe2O4/IRMOF-3/GO for the drug delivery of tetracycline and evaluation of their antibacterial activities,” J. Organomet. Chem., vol. 960, p. 122221, 2022, doi: 10.1016/j.jorganchem.2021.122221.J. Lian, Q. Ouyang, P. E. Tsang, and Z. Fang, “Fenton-like catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor,” Appl. Clay Sci., vol. 182, no. July, p. 105273, 2019, doi: 10.1016/j.clay.2019.105273.K. Babooram and Z. G. Ye, “Novel solution routes to ferroelectrics and relaxors,” Handb. Adv. Dielectr. Piezoelectric Ferroelectr. Mater. Synth. Prop. Appl., vol. 3, pp. 852–883, 2008, doi: 10.1533/9781845694005.7.852.C. P. Romao, K. J. Miller, C. A. Whitman, M. A. White, and B. A. Marinkovic, Negative Thermal Expansion (Thermomiotic) Materials, vol. 4. Elsevier Ltd., 2013. doi: 10.1016/B978-0-08-097774-4.00425-3.M. C. Paganini, A. Giorgini, N. P. F. Gonçalves, C. Gionco, A. Bianco Prevot, and P. Calza, “New insight into zinc oxide doped with iron and its exploitation to pollutants abatement,” Catal. Today, vol. 328, no. September 2018, pp. 230–234, 2019, doi: 10.1016/j.cattod.2018.10.054.R. Saleh and N. F. Djaja, “Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 130, pp. 581–590, 2014, doi: 10.1016/j.saa.2014.03.089.A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, and E. Jabbari, “Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions,” Nano-Structures and Nano-Objects, vol. 14, pp. 19–48, 2018, doi: 10.1016/j.nanoso.2018.01.006.P. Falak, S. A. Hassanzadeh-Tabrizi, and A. Saffar-Teluri, “Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity,” J. Magn. Magn. Mater., vol. 441, pp. 98–104, 2017, doi: 10.1016/j.jmmm.2017.05.044.S. Choudhary, D. Hasina, M. Saini, M. Ranjan, and S. Mohapatra, “Facile synthesis, morphological, structural, photocatalytic and optical properties of ZnFe2O4-ZnO hybrid nanostructures,” J. Alloys Compd., vol. 895, p. 162723, 2022, doi: 10.1016/j.jallcom.2021.162723.H. Derikvandi and A. Nezamzadeh-Ejhieh, “A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study,” J. Photochem. Photobiol. A Chem., vol. 348, pp. 68–78, 2017, doi: 10.1016/j.jphotochem.2017.08.007.R. Srivastava and B. C. Yadav, “Ferrite materials: Introduction, synthesis techniques, and applications as sensors,” Int. J. Green Nanotechnol. Biomed., vol. 4, no. 2, pp. 141–154, 2012, doi: 10.1080/19430892.2012.676918.T. T. Loan, D. K. Huy, N. P. Duong, T. D. Hoan, S. Soontaranon, and W. Klysubun, “Facile synthesis and characterization of ZnFe2O4/ZnO nanocomposite: An insight into structure and formation,” Radiat. Phys. Chem., vol. 193, no. January, p. 109977, 2022, doi: 10.1016/j.radphyschem.2022.109977.M. Kuang et al., “Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity,” Solid State Sci., vol. 96, no. March, p. 105901, 2019, doi: 10.1016/j.solidstatesciences.2019.05.012.T. R. Sobahi and M. S. Amin, “Synthesis of ZnO/ZnFe2O4/ Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity,” Ceram. Int., vol. 46, no. 3, pp. 3558–3564, 2020, doi: 10.1016/j.ceramint.2019.10.073.S. Randazzo, D. La Corte, R. Gueccia, A. Cipollina, and G. Micale, “Metals recovery from waste pickling solutions by reactive precipitation,” Chem. Eng. Trans., vol. 86, no. i, pp. 1045–1050, 2021, doi: 10.3303/CET2186175.K. R. Lee, J. Kim, and J. G. Jang, “Recovery of zinc in spent pickling solution with oxalic acid,” Korean Chem. Eng. Res., vol. 55, no. 6, pp. 785–790, 2017, doi: 10.9713/kcer.2017.55.6.785.A. Verma, R. Kore, D. R. Corbin, and M. B. Shiflett, “Metal Recovery Using Oxalate Chemistry: A Technical Review,” Ind. Eng. Chem. Res., vol. 58, no. 34, pp. 15381–15393, 2019, doi: 10.1021/acs.iecr.9b02598.A. Pathak, A. Roy, and M. Manna, “Recovery of zinc from industrial waste pickling liquor,” Hydrometallurgy, vol. 163, pp. 161–166, 2016, doi: 10.1016/j.hydromet.2016.04.006.M. Z. Chekroun, M. A. Benali, I. E. Yahiaoui, M. Debab, M. Z. Belmehdi, and H. Tabet-derraz, “Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet – visible spectral range : Experimental and numerical study,” Opt. Mater. (Amst)., vol. 132, no. May, p. 112769, 2022, doi: 10.1016/j.optmat.2022.112769.M. A. Benali et al., “Synthesis and analysis of SnO2/ZnO nanocomposites: Structural studies and optical investigations with Maxwell–Garnett model,” Mater. Chem. Phys., vol. 240, no. July 2019, p. 122254, 2020, doi: 10.1016/j.matchemphys.2019.122254.D. A. Ferreira, L. M. Z. Prados, D. Majuste, and M. B. Mansur, “Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries,” J. Power Sources, vol. 187, no. 1, pp. 238–246, 2009, doi: 10.1016/j.jpowsour.2008.10.077.Ministerio de Ambiente y Desarrollo sostenible, “Resolución 631 de 2015 (Ministerio de Ambiente y Desarrollo sostenible),” Por la cual se Establ. los parámetros y los valores límites máximos Permis. en los vertimientos puntuales a cuerpos aguas Superf. y a los Sist. alcantarillado público y se dictan otras disposiciones., vol. 2015, no. 49, p. 73, 2015, [Online]. Available: http://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdfH. Mehrizadeh, A. Niaei, H. H. Tseng, D. Salari, and A. Khataee, “Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor,” J. Photochem. Photobiol. A Chem., vol. 332, pp. 188–195, 2017, doi: 10.1016/j.jphotochem.2016.08.028.O. Bakina, E. Glazkova, N. Rodkevich, A. Mosunov, V. Chzhou, and M. Lerner, “Electroexplosive synthesis of composite ZnO/ZnFe2O4/Zn nanoparticles with photocatalytic and antibacterial activity,” Mater. Sci. Semicond. Process., vol. 152, no. August, p. 107076, 2022, doi: 10.1016/j.mssp.2022.107076.M. Sundararajan et al., “Physica B : Physics of Condensed Matter A comparative study on NiFe 2 O 4 and ZnFe 2 O 4 spinel nanoparticles : Structural , surface chemistry , optical , morphology and magnetic studies,” Phys. B Phys. Condens. Matter, vol. 644, no. April, p. 414232, 2022, doi: 10.1016/j.physb.2022.414232.B. Arunkumar, S. Johnson Jeyakumar, J. Vasudevan, M. Jothibas, and A. Sindhya, “Scrutiny of the magnetic properties of ZnO nanoparticles by solid state reaction method,” Mater. Today Proc., no. xxxx, 2022, doi: 10.1016/j.matpr.2022.06.036.R. Rameshbabu, N. Kumar, A. Karthigeyan, and B. Neppolian, “Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants,” Mater. Chem. Phys., vol. 181, pp. 106–115, 2016, doi: 10.1016/j.matchemphys.2016.06.040.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83987/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152462665.2023.pdf1152462665.2023.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf1767119https://repositorio.unal.edu.co/bitstream/unal/83987/2/1152462665.2023.pdf18da3da3992353147d8407fab344b047MD52THUMBNAIL1152462665.2023.pdf.jpg1152462665.2023.pdf.jpgGenerated Thumbnailimage/jpeg4709https://repositorio.unal.edu.co/bitstream/unal/83987/3/1152462665.2023.pdf.jpg76dba840be05f351b7dfb4b2b5d72584MD53unal/83987oai:repositorio.unal.edu.co:unal/839872023-08-09 23:04:11.573Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=