Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico
Ilustraciones, fotografías, gráficos
- Autores:
-
Villa Cardona, Faber Esneider
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86615
- Palabra clave:
- 690 - Construcción de edificios::691 - Materiales de construcción
Polímeros
Compuestos poliméricos
Cemento impregnado de polimeros
Hormigón - Procesos químicos
Aprovechamiento de residuos
Agregado polimérico
Concreto
PRF
Poliéster
Polímero
Reciclaje
Polymeric aggregate
Waste
Concrete
FRP
Polyester
Polymer
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f37db664c127c072a1c0adbdda0f0b1f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86615 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
dc.title.translated.eng.fl_str_mv |
Evaluation of chemical and thermal methods to improve selected physical and mechanical properties in concrete made with polymeric aggregate |
title |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
spellingShingle |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico 690 - Construcción de edificios::691 - Materiales de construcción Polímeros Compuestos poliméricos Cemento impregnado de polimeros Hormigón - Procesos químicos Aprovechamiento de residuos Agregado polimérico Concreto PRF Poliéster Polímero Reciclaje Polymeric aggregate Waste Concrete FRP Polyester Polymer |
title_short |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
title_full |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
title_fullStr |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
title_full_unstemmed |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
title_sort |
Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico |
dc.creator.fl_str_mv |
Villa Cardona, Faber Esneider |
dc.contributor.advisor.none.fl_str_mv |
Ochoa Botero, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Villa Cardona, Faber Esneider |
dc.contributor.researchgroup.spa.fl_str_mv |
Materiales Compuestos Innovación en Producto y Construcción Sostenible Innovación en Producto y Construcción Sostenible |
dc.contributor.orcid.spa.fl_str_mv |
Villa Cardona, Faber Esneider [0000-0001-8683-8063] |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841039 |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Faber_Esneider_Villa_Cardona |
dc.subject.ddc.spa.fl_str_mv |
690 - Construcción de edificios::691 - Materiales de construcción |
topic |
690 - Construcción de edificios::691 - Materiales de construcción Polímeros Compuestos poliméricos Cemento impregnado de polimeros Hormigón - Procesos químicos Aprovechamiento de residuos Agregado polimérico Concreto PRF Poliéster Polímero Reciclaje Polymeric aggregate Waste Concrete FRP Polyester Polymer |
dc.subject.lemb.none.fl_str_mv |
Polímeros Compuestos poliméricos Cemento impregnado de polimeros Hormigón - Procesos químicos Aprovechamiento de residuos |
dc.subject.proposal.spa.fl_str_mv |
Agregado polimérico Concreto PRF Poliéster Polímero Reciclaje |
dc.subject.proposal.eng.fl_str_mv |
Polymeric aggregate Waste Concrete FRP Polyester Polymer |
description |
Ilustraciones, fotografías, gráficos |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-25T13:45:23Z |
dc.date.available.none.fl_str_mv |
2024-07-25T13:45:23Z |
dc.date.issued.none.fl_str_mv |
2024-07-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86615 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86615 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
ACI. (2019). Reglamento para Concreto Estructural (Patent ACi 318-19). Agencia Nacional de Minería. (2020). RESUMEN MINERIA COLOMBIA Vista. https://www.datos.gov.co/Minas-y-Energ-a/RESUMEN-MINERIA-COLOMBIA/9gcr-rggw Aïtcin, P. C., & Flatt, R. J. (2015). Science and technology of concrete admixtures. In Science and Technology of Concrete Admixtures (Issue 59). https://doi.org/10.1016/C2015-0-00150-2 Ajam, A., Tehrani-Bagha, A., Mustapha, S., & Harb, M. (2020). Zero-Waste Recycling of Shelf-Cured Pre-Impregnated Carbon Fiber Reinforced Epoxy Laminae. Applied Composite Materials, 27(4), 357–373. https://doi.org/10.1007/s10443-020-09821-7 Alam, M. S., Slater, E., Billah, A. H. M. M., & Asce, S. M. (2013). Green Concrete Made with RCA and FRP Scrap Aggregate : Fresh and Hardened Properties. December, 1783–1794. https://doi.org/10.1061/(ASCE)MT.1943-5533 Alexander, M. G. (1993). Two experimental techniques for studying the effects of the interfacial zone between cement paste and rock. Cement and Concrete Research, 23(3), 567–575. https://doi.org/10.1016/0008-8846(93)90006-U Alezander, M., & Mindess, S. (2010). Aggregate in Concrete. In A. Bentur (Ed.), Civil Engineering (1st Editio). CRC Press. https://doi.org/https://doi.org/10.1201/9781482264647 Almeida, N., Branco, F., & Santos, J. R. (2007). Recycling of stone slurry in industrial activities: Application to concrete mixtures. Building and Environment, 42(2), 810–819. https://doi.org/10.1016/j.buildenv.2005.09.018 Altuki, R., Tyler Ley, M., Cook, D., Jagan Gudimettla, M., & Praul, M. (2022). Increasing sustainable aggregate usage in concrete by quantifying the shape and gradation of manufactured sand. Construction and Building Materials, 321(November 2021), 125593. https://doi.org/10.1016/j.conbuildmat.2021.125593 AMVA. (2017). Plan de gestión integral de residuos sólidos regional. In Pgirs-R 2017-2030 (Vol. 24). Asokan, P., Osmani, M., & Price, A. (2010). Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete. Construction and Building Materials, 24(4), 448–460. https://doi.org/10.1016/j.conbuildmat.2009.10.017 Asokan, P., Osmani, M., & Price, A. D. F. (2009a). Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821–829. https://doi.org/10.1016/j.jclepro.2008.12.004 Asokan, P., Osmani, M., & Price, A. D. F. (2009b). Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821–829. https://doi.org/10.1016/j.jclepro.2008.12.004 Bank, L. C., & Yazdanbakhsh, A. (2016). Concrete containing coarse aggregate recycled from scrap FRP rebars. Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016, 1410–1415. https://doi.org/10.1201/9781315641645-231 Barbudo, M. A. (2012). Aplicaciones de los áridos reciclados procedentes de residuos de construcción y demolición en la construcción de infraestructuras viarias. Universidad de Cordoba. Departamento de Ingeniería Rural. Área de Ingeniería de La Construcción, 119. Barrrett, Peter. J. (1980). The shape of rock particles, a critical review. Sedimentology, 27(3), 291–303. https://doi.org/10.1111/j.1365-3091.1980.tb01179.x Beeldens, A., Van Gemert, D., Schorn, H., Ohama, Y., & Czarnecki, L. (2005). From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Materials and Structures/Materiaux et Constructions, 38(280), 601–607. https://doi.org/10.1617/14215 Bensted, J., & Barnes, P. (2002). Structure and Performance of Cements (2nd ed.). CRC Press. Busch, A. L. (2001). Construction Materials : Lightweight. In P. V. K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan (Ed.), Encyclopedia of Materials: Science and Technology, (Second edi, pp. 1550–1558). https://doi.org/https://doi.org/10.1016/B0-08-043152-6/00277-1 Chan Yam, J. L., Carcaño, R. S., & Moreno, E. I. (2003). Influencia de los agregados pétreos en las características del concreto. Ingeniería, 7(2), 39–46 Chandra, S., & Berntsson, L. (2002). LIGHTWEIGHT AGGREGATE CONCRETE Science, Technology, and Applications. Noyes Publications. Collivignarelli, M. C., Cillari, G., Ricciardi, P., Miino, M. C., Torretta, V., Rada, E. C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1–34. https://doi.org/10.3390/SU12197903 Conti, C., Catrambone, M., Colombo, C., Possenti, E., Rectenwald, K. M., Realini, M., & Strobbia, P. (2022). Scientific investigation to look into the conservation history of a Tang Dynasty terracotta Dancing Horse. Heritage Science, 10(1), 1–12. https://doi.org/10.1186/s40494-022-00758-7 Corinaldesi, V. (2012). Influence of lightweight aggregates and GRP by-product powders on the properties of self-compacting concretes. Advanced Materials Research, 548, 215–220. https://doi.org/10.4028/www.scientific.net/AMR.548.215 Correia, J. R., Almeida, N. M., & Figueira, J. R. (2011). Recycling of FRP composites: Reusing fine GFRP waste in concrete mixtures. Journal of Cleaner Production, 19(15), 1745–1753. https://doi.org/10.1016/j.jclepro.2011.05.018 Da Silva Spinacé, M. A., & De Paoli, M. A. (2005). A tecnologia da reciclagem de polímeros. Quimica Nova, 28(1), 65–72. https://doi.org/10.1590/s0100-40422005000100014 De La Cruz Mora, C. Y. (2009). Desarrollo de hormigones autocompactantes de resistencia media (HAC-RM), en colombia. Dehghan, A., Peterson, K., & Shvarzman, A. (2017). Recycled glass fiber reinforced polymer additions to Portland cement concrete. Construction and Building Materials, 146, 238–250. https://doi.org/10.1016/j.conbuildmat.2017.04.011 Djerbi, A. (2018). Effect of recycled coarse aggregate on the new interfacial transition zone concrete. Construction and Building Materials, 190, 1023–1033. https://doi.org/10.1016/j.conbuildmat.2018.09.180 Farinha, C. B., de Brito, J., & Veiga, R. (2019). Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. Journal of Cleaner Production, 210, 1579–1594. https://doi.org/10.1016/j.jclepro.2018.11.080 Ferraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy. Academic Press. Fox, T. R. (2016). Recycling wind turbine blade composite material as aggregate in concrete. In Graduate Theses and Dissertations. Iowa State University. García, J. A. R., Mireles, E. N. A., Ceballos, R. R. L., Rangel, E. R., Arriaga, C. A. C., & García, R. D. L. (2019). Synthesis and characterization of concrete mortars reinforced with thermostable polymer from industrial waste. Revista de La Construccion, 17(3), 465–472. https://doi.org/10.7764/RDLC.17.3.465 Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782 Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005 Gutiérrez De López, L. (2003). El Concreto Y Otros Materiales Para La Construcción. In 2003. Hong, L., Gu, X., & Lin, F. (2014). Influence of aggregate surface roughness on mechanical properties of interface and concrete. Construction and Building Materials, 65, 338–349. https://doi.org/10.1016/j.conbuildmat.2014.04.131 ICONTEC. (2018). Especificaciones de los agregados para concreto ICONTEC. (2019a). Agregados livianos para concreto estructural. ICONTEC. (2019b). Método de ensayo para determinar el módulo de elasticidad estático y la relación de poisson en concreto a compresión. ICONTEC. (2019c). Método de ensayo para la determinación de la densidad volumétrica (masa unitaria) y vacíos en agregados. ICONTEC. (2020). Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino. ISO. (2008). Representation of results of particle size analysis — Part 6: Descriptive and quantitative representation of particle shape and morphology. In ISO 9276-6. Job, S. (2013). Recycling glass fibre reinforced composites - History and progress. Reinforced Plastics, 57(5), 19–23. https://doi.org/10.1016/S0034-3617(13)70151-6 Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A review on concrete fracture energy and effective parameters. Cement and Concrete Research, 120(January), 294–321. https://doi.org/10.1016/j.cemconres.2019.03.013 Kimm, M., Pico, D., & Gries, T. (2020). Investigation of surface modification and volume content of glass and carbon fibres from fibre reinforced polymer waste for reinforcing concrete. Journal of Hazardous Materials, 390(February 2019), 121797. https://doi.org/10.1016/j.jhazmat.2019.121797 Kiran, E., Debenedetti, P. G., & Peters, C. J. (2000). Supercritical Fluids: Fundamentals and Applications (NATO Science Series, Ed.; 1st editio). NATO ASI Series. Knapen, E., & Van Gemert, D. (2015). Polymer film formation in cement mortars modified with water-soluble polymers. Cement and Concrete Composites, 58, 23–28. https://doi.org/10.1016/j.cemconcomp.2014.11.015 Knight, C. C. (2013). Recycling High-Performance Carbon Fiber Reinforced Polymer Composites Using Sub- Critical and Supercritical Water. 83–90. Kobayashi, K. (2000). Characteristics of Self-Compacting by Concrete in Fresh State with Artificial Aggregate. 50. https://doi.org/10.2472/jsms.50.1021 Kong, L., & Du, Y. (2015). Interfacial interaction of aggregate-cement paste in concrete. Journal Wuhan University of Technology, Materials Science Edition, 30(1), 117–121. https://doi.org/10.1007/s11595-015-1111-z Kosmatka, S. H., Kerkhoff.Kerkhoff, & Panarese, William. C. (2008). Design and Control of Concrete MIxtures. Kosmatka, S. H., & Wilson, M. L. (Architectural engineer). (2011). Design and control of concrete mixtures (15th ed.). Portland Cement Association. Kramer, C. A., & Basu, P. (2014). Performance of a model geothermal pile in sand. Physical Modelling in Geotechnics - Proceedings of the 8th International Conference on Physical Modelling in Geotechnics 2014, ICPMG 2014, 2(August 2013), 771–777. https://doi.org/10.1201/b16200-106 Kumar, P., Pasla, D., & Jothi Saravanan, T. (2023). Self-compacting lightweight aggregate concrete and its properties: A review. Construction and Building Materials, 375(February), 130861. Kumar, S., & Barai, S. V. (2019a). Concrete Fracture Models and Applications. In Journal of Chemical Information and Modeling (Vol. 1, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 Kumar, S., & Barai, S. V. (2019b). Concrete Fracture Models and Applications. In Journal of Chemical Information and Modeling (Vol. 1, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 León, M. P., & Ramírez, F. (2010). Caracterización morfológica de agregados para concreto mediante el análisis de imágenes Morphological characterization of concrete aggregates by means of image analysis. Revista Ingeniería de Construcción, 25, 215–240. Li, Q., Liu, P., Wang, M., & Xia, H. (2023). Effects of elevated temperature on the mechanical properties of concrete with aggregate of waste porcelain tile. Journal of Building Engineering, 64(July 2022), 105585. https://doi.org/10.1016/j.jobe.2022.105585 Liu, T., Zhang, M., Guo, X., Liu, C., Liu, T., Xin, J., & Zhang, J. (2017). Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin. Polymer Degradation and Stability, 139, 20–27. https://doi.org/10.1016/j.polymdegradstab.2017.03.017 Ma, G., Zhou, B., Zhang, M., & Sanjayan, J. (2022). Understanding and eliminating of expansion caused by recycled glass fiber reinforced plastic powder in concrete. Construction and Building Materials, 347(February), 128542. https://doi.org/10.1016/j.conbuildmat.2022.128542 Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131 Martinez Ponce, D. D. (1993). Hormigones de altas prestaciones. RE: Revista de Edificación, 15, 71–78. Martínez Ponce, D. D. (1993). Hormigones de altas prestaciones. RE: Revista de Edificación, 15, 71–78. Maso, J. C. (1992). Interfaces in Cementitious Composites. In Interfaces in Cementitious Composites. https://doi.org/10.1201/9781482271256 Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties and materials. In International Journal of Cement Composites and Lightweight Concrete (Vol. 3, Issue 4). https://doi.org/10.1016/0262-5075(86)90055- Neville, A. M. (2011). Properties of concrete (5th ed.). Pearson. https://doi.org/10.4324/9780203967874-11 Newman, J., & Owens, P. (2003). Properties of lightweight concrete. In Advanced Concrete Technology. Woodhead Publishing Limited. https://doi.org/10.1016/B978-075065686-3/50288-3 Ogi, K., Shinoda, T., & Mizui, M. (2005). Strength in concrete reinforced with recycled CFRP pieces. Composites Part A: Applied Science and Manufacturing, 36(7), 893–902. https://doi.org/10.1016/j.compositesa.2004.12.009 Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004 Ollivier, J. P., Maso, J. C., & Bourdette, B. (1995). Interfacial transition zone in concrete. Advanced Cement Based Materials, 2(1), 30–38. https://doi.org/10.1016/1065-7355(95)90037-3 Osmani, M., & Asokan, P. (2010). An assessment of the compressive strength of glass reinforced plastic waste filled concrete for potential applications in construction. Concrete Research Letters 1.1, 1(May), 1–5. Patel, S. H., Gonsalves, K. E., Stivala, S. S., Reich, L., & Trivedi, D. H. (1993). Alternative procedures for the recycling of sheet molding compounds. Advances in Polymer Technology, 12(1), 35–45. https://doi.org/10.1002/adv.1993.060120104 Pickering, S. J. (2006). Recycling technologies for thermoset composite materials-current status. Composites Part A: Applied Science and Manufacturing, 37(8), 1206–1215. https://doi.org/10.1016/j.compositesa.2005.05.030 Piñero-Hernanz, R., García-Serna, J., Dodds, C., Hyde, J., Poliakoff, M., Cocero, M. J., Kingman, S., Pickering, S., & Lester, E. (2008). Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. Journal of Supercritical Fluids, 46(1), 83–92. https://doi.org/10.1016/j.supflu.2008.02.008 PlascticEurope-Association of Plastics Manufactures. (2020). Plastics – the Facts 2020. PlasticEurope, 1–64. Prokopski, G., & Halbiniak, J. (2000). Interfacial transition zone in cementitious materials. Cement and Concrete Research, 30(4), 579–583. https://doi.org/10.1016/S0008-8846(00)00210-6 Ramachandran, V. S. (1995). Concrete Admixtures Handbook: Properties, Science, and Technology. In Concr Admixtures Handb, Prop, Sci, and Technol (2nd ed.). Noyes Publications. Rao, A. S., & Rao, G. A. (2014). Fracture Mechanics of Fiber Reinforced Concrete: An Overview. International Journal of Engineering Innovations and Research, 3(4), 517 Ribeiro, M. C. S., Fiúza, A., & Ferreira, A. J. M. (2017). Recycling and reuse of fiber reinforced polymer wastes in concrete composite materials. Handbook of Composites from Renewable Materials, 1–8, 155–173. https://doi.org/10.1002/9781119441632.ch46 Schneider, U. (1988). Concrete at high temperatures - A general review. Fire Safety Journal, 13(1), 55–68. https://doi.org/10.1016/0379-7112(88)90033-1 Scrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c Shen, J., & Xu, Q. (2019). Effect of elevated temperatures on compressive strength of concrete. Construction and Building Materials, 229, 116846. https://doi.org/10.1016/j.conbuildmat.2019.116846 Sidorova, A. (2013). Estudio del efecto de la naturaleza del árido reciclado en la microestructura y propiedades de la zona de transición árido-pasta de cemento. Universidad Politécnica de Catalunya, 1–171. Son, H. N., & Hosoda, A. (2010). Detection of microcracking in concrete subjected to elevated temperature at very early age by acoustic emission. Journal of Advanced Concrete Technology, 8(2), 201–211. https://doi.org/10.3151/jact.8.201 Soroka, I. (1979). Portland Cement Paste and Concrete. In Portland Cement Paste and Concrete (First). THE MACMILLAN PRESS LTD. https://doi.org/10.1007/978-1-349-03994-4 Súarez Durán, M. (2012). Descripcion del uso de concretos especiales en colombia desde el 2000 hasta el 2010. Universidad Pontificia Bolivariana. Tian, Y., Jin, X. Y., Jin, N. G., Zhao, R., Li, Z. J., & Ma, H. Y. (2013). Research on the microstructure formation of polyacrylate latex modified mortars. Construction and Building Materials, 47, 1381–1394. https://doi.org/10.1016/j.conbuildmat.2013.06.016 Tittarelli, F. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 2. Construction and Building Materials, 47, 1539–1543. https://doi.org/10.1016/j.conbuildmat.2013.06.086 Tittarelli, F., Kawashima, S., Tregger, N., Moriconi, G., & Shah, S. P. (2010). Effect of GRP by-product addition on plastic and hardened properties of cement mortars. 2nd International Conference on Sustainable Construction Materials and Technologies, 677–687. Tittarelli, F., & Shah, S. P. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1. Construction and Building Materials, 47, 1532–1538. https://doi.org/10.1016/j.conbuildmat.2013.06.043 Torres, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., Legarreta, J. A., Cabrero, M. A., González, A., Chomón, M. J., & Gondra, K. (2000). Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel, 79(8), 897–902. https://doi.org/10.1016/S0016-2361(99)00220-3 Utekar, S., V K, S., More, N., & Rao, A. (2021). Comprehensive study of recycling of thermosetting polymer composites – Driving force, challenges and methods. Composites Part B: Engineering, 207(September 2020), 108596. https://doi.org/10.1016/j.compositesb.2020.108596 Van Gemert, D., Czarnecki, L., Maultzsch, M., Schorn, H., Beeldens, A., Łukowski, P., & Knapen, E. (2005). Cement concrete and concrete-polymer composites: Two merging worlds: A report from 11th ICPIC Congress in Berlin, 2004. Cement and Concrete Composites, 27(9–10), 926–933. https://doi.org/10.1016/j.cemconcomp.2005.05.004 Vargas Samboni, P. (2016). Evaluación de la influencia de propiedades físicas y morfolígicas de agregados livianos, en la microestructura de la Zona de Transición Interfacial (ITZ), en concretos. 122. Vo Dong, P. A., Azzaro-Pantel, C., & Cadene, A. L. (2018). Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resources, Conservation and Recycling, 133(January), 63–75. https://doi.org/10.1016/j.resconrec.2018.01.024 Wang, X., Saifullah, H. A., Nishikawa, H., & Nakarai, K. (2020). Effect of water–cement ratio, aggregate type, and curing temperature on the fracture energy of concrete. Construction and Building Materials, 259, 119646. https://doi.org/10.1016/j.conbuildmat.2020.119646 Winter, H., Mostert, H. A. M., Smeets, P. J. H. M., & Paas, G. (1995). Recycling of sheet‐molding compounds by chemical routes. Journal of Applied Polymer Science, 57(11), 1409–1417. https://doi.org/10.1002/app.1995.070571116 Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. https://doi.org/10.1016/j.conbuildmat.2014.04.054 Xu, Y., Wong, Y. L., Poon, C. S., & Anson, M. (2001). Impact of high temperature on PFA concrete. Cement and Concrete Research, 31(7), 1065–1073. https://doi.org/10.1016/S0008-8846(01)00513-0 Yazdanbakhsh, A., & Bank, L. C. (2014). A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers, 6(6), 1810–1826. https://doi.org/10.3390/polym6061810 Yazdanbakhsh, A., Bank, L. C., & Chen, C. (2016). Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Construction and Building Materials, 121, 278–284. https://doi.org/10.1016/j.conbuildmat.2016.05.165 Yazdanbakhsh, A., Bank, L. C., Rieder, K. A., Tian, Y., & Chen, C. (2018). Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resources, Conservation and Recycling, 128(August 2017), 11–21. https://doi.org/10.1016/j.resconrec.2017.08.005 Yuan, P., Zhang, B., Yang, Y., Jiang, T., Li, J., Qiu, J., & He, H. (2023). Application of polymer cement repair mortar in underground engineering: A review. Case Studies in Construction Materials, 19(October), e02555. https://doi.org/10.1016/j.cscm.2023.e02555 Zambrano, A. M. (2014). Aproximación Conceptual al Análisis Térmico y sus Principales Aplicaciones. Universidad Nacional de Colombia, 1–92. Zhang, C., Yang, X., & Gao, H. (2018a). Air-Void-Affected Zone in Concrete Beam Under Four-Point Bending Fracture. Journal of Civil Engineering and Management, 24(2), 130–137. https://doi.org/10.3846/jcem.2018.456 Zhang, C., Yang, X., & Gao, H. (2018b). Effect of Randomness of Interfacial Properties on Fracture Behavior of Concrete Under Uniaxial Tension. Acta Mechanica Solida Sinica, 31(2), 174–186. https://doi.org/10.1007/s10338-018-0014-x Zhang, J., Chevali, V. S., Wang, H., & Wang, C. H. (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering, 193(April), 108053. https://doi.org/10.1016/j.compositesb.2020.108053 Zhang, M. H., & Gjørv, O. E. (1990). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610–618. https://doi.org/10.1016/0008-8846(90)90103-5 Zhao, L., Zhang, S., Huang, D., & Wang, X. (2020). A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate. Construction and Building Materials, 247, 117906. https://doi.org/10.1016/j.conbuildmat.2019.117906 Zheng, J. J., Li, C. Q., & Zhou, X. Z. (2005). Thickness of interfacial transition zone and cement content profiles around aggregates. Magazine of Concrete Research, 57(7), 397–406. https://doi.org/10.1680/macr.2005.57.7.397 Zhou, Y., Weng, Y., Li, L., Hu, B., Huang, X., & Zhu, Z. (2022). Recycled GFRP Aggregate Concrete Considering Aggregate Grading: Compressive Behavior and Stress–Strain Modeling. 1–20. Zhu, J. H., Chen, P. Y., Su, M. N., Pei, C., & Xing, F. (2019). Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin. Green Chemistry, 21(7), 1635–1647. https://doi.org/10.1039/c8gc03672a |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
177 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Arquitectura - Maestría en Construcción |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86615/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86615/4/8125589.2024%20%281%29.pdf https://repositorio.unal.edu.co/bitstream/unal/86615/3/8125589.2024.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/86615/5/8125589.2024%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 9b563ae987343fc95fc275267e544e1b 44f98b15d769c2f6fa33de20ddb60755 44f98b15d769c2f6fa33de20ddb60755 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089965822279680 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ochoa Botero, Juan Carlosa5d06cb07fe2d4f2f743df57c2f80ae6Villa Cardona, Faber Esneiderda001250c8e528c2d7ba4d2e1f6d70bcMateriales CompuestosInnovación en Producto y Construcción SostenibleInnovación en Producto y Construcción SostenibleVilla Cardona, Faber Esneider [0000-0001-8683-8063]https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841039https://www.researchgate.net/profile/Faber_Esneider_Villa_Cardona2024-07-25T13:45:23Z2024-07-25T13:45:23Z2024-07-24https://repositorio.unal.edu.co/handle/unal/86615Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, gráficosLa fabricación de concretos y morteros que emplean Cemento Portland Ordinario (OPC) demanda cantidades significativas de materiales pétreos naturales. Los agregados pétreos naturales, derivados de la explotación de canteras, en particular aquellos obtenidos mediante técnicas de lavado, muestran efectos adversos en los ecosistemas naturales, incluyendo las fuentes de agua, la calidad del aire y la deforestación. En consecuencia, existe una necesidad apremiante de investigar nuevos materiales capaces de sustituir a los agregados naturales. Este estudio propone la utilización de residuos de resina de poliéster catalizada, un subproducto de la fabricación de postes para redes eléctricas, como posible sustituto de los agregados naturales en el concreto. A pesar de demostraciones previas que indican que el uso de estas resinas y materiales plásticos como agregados resulta en una disminución de la resistencia a la compresión del concreto, los esfuerzos se dirigen hacia tratamientos destinados a mejorar la interacción entre el agregado polimérico y la pasta de cemento. Para lograr este objetivo, se investigaron de manera sistemática tanto alternativas químicas (modificación polimérica con látex y SBR) como alternativas térmicas (post-curado a temperaturas de 23, 50, 80 y 110 ºC). Se evaluó la resistencia a la compresión para ambos tratamientos, revelando valores de 20,61 MPa en muestras no tratadas y de 17 a 7,60 MPa en muestras tratadas. Para muestras modificadas con SBR, las evaluaciones adicionales incluyeron la resistencia a la flexión (3,19 MPa sin aditivo y 4,31 MPa con SBR), la resistencia a la tensión indirecta (1,62 MPa sin aditivo y 2,02 MPa con SBR) y el módulo de elasticidad estático (0,61 GPa sin aditivo y 0,42 GPa con SBR). Los resultados indican que, si bien los efectos de los tratamientos influyeron negativamente en la resistencia a la compresión, las muestras modificadas con SBR tuvieron un impacto positivo en las otras propiedades evaluadas, exhibiendo resultados superiores. (Tomado de la fuente)The production of concrete and mortars using Ordinary Portland Cement (OPC) requires significant amounts of natural stone materials. Natural stone aggregates, derived from quarry exploitation, especially those obtained through washing techniques, exhibit adverse effects on natural ecosystems, including water sources, air quality, and deforestation. Consequently, there is an urgent need to investigate new materials capable of replacing natural aggregates. This study proposes the use of waste from catalyzed polyester resin, a byproduct of manufacturing utility poles for power grids, as a potential substitute for natural aggregates in concrete. Despite previous demonstrations indicating that the use of these resins and plastic materials as aggregates results in a decrease in the compressive strength of concrete, efforts are directed toward treatments aimed at improving the interaction between the polymeric aggregate and the cement paste. To achieve this goal, both chemical alternatives (polymeric modification with latex and SBR) and thermal alternatives (postcuring at temperatures of 23, 50, 80, and 110 ºC) were systematically investigated. Compressive strength was evaluated for both treatments, revealing values of 20,61 MPa in untreated samples and 17 to 7,60 MPa in treated samples. For samples modified with SBR, additional assessments included flexural strength (3,19 MPa without additive and 4,31 MPa with SBR), indirect tensile strength (1,62 MPa without additive and 2,02 MPa with SBR), and static modulus of elasticity (0,61 GPa without additive and 0,42 GPa with SBR). The results indicate that while the effects of the treatments negatively influenced compressive strength, SBR-modified samples had a positive impact on other evaluated properties, exhibiting superior results.MaestríaMagíster en ConstrucciónMateriales y sostenibilidadConstrucción Y Hábitat.Sede Medellín177 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Arquitectura - Maestría en ConstrucciónFacultad de ArquitecturaMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín690 - Construcción de edificios::691 - Materiales de construcciónPolímerosCompuestos poliméricosCemento impregnado de polimerosHormigón - Procesos químicosAprovechamiento de residuosAgregado poliméricoConcretoPRFPoliésterPolímeroReciclajePolymeric aggregateWasteConcreteFRPPolyesterPolymerEvaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado poliméricoEvaluation of chemical and thermal methods to improve selected physical and mechanical properties in concrete made with polymeric aggregateTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaACI. (2019). Reglamento para Concreto Estructural (Patent ACi 318-19).Agencia Nacional de Minería. (2020). RESUMEN MINERIA COLOMBIA Vista. https://www.datos.gov.co/Minas-y-Energ-a/RESUMEN-MINERIA-COLOMBIA/9gcr-rggwAïtcin, P. C., & Flatt, R. J. (2015). Science and technology of concrete admixtures. In Science and Technology of Concrete Admixtures (Issue 59). https://doi.org/10.1016/C2015-0-00150-2Ajam, A., Tehrani-Bagha, A., Mustapha, S., & Harb, M. (2020). Zero-Waste Recycling of Shelf-Cured Pre-Impregnated Carbon Fiber Reinforced Epoxy Laminae. Applied Composite Materials, 27(4), 357–373. https://doi.org/10.1007/s10443-020-09821-7Alam, M. S., Slater, E., Billah, A. H. M. M., & Asce, S. M. (2013). Green Concrete Made with RCA and FRP Scrap Aggregate : Fresh and Hardened Properties. December, 1783–1794. https://doi.org/10.1061/(ASCE)MT.1943-5533Alexander, M. G. (1993). Two experimental techniques for studying the effects of the interfacial zone between cement paste and rock. Cement and Concrete Research, 23(3), 567–575. https://doi.org/10.1016/0008-8846(93)90006-UAlezander, M., & Mindess, S. (2010). Aggregate in Concrete. In A. Bentur (Ed.), Civil Engineering (1st Editio). CRC Press. https://doi.org/https://doi.org/10.1201/9781482264647Almeida, N., Branco, F., & Santos, J. R. (2007). Recycling of stone slurry in industrial activities: Application to concrete mixtures. Building and Environment, 42(2), 810–819. https://doi.org/10.1016/j.buildenv.2005.09.018Altuki, R., Tyler Ley, M., Cook, D., Jagan Gudimettla, M., & Praul, M. (2022). Increasing sustainable aggregate usage in concrete by quantifying the shape and gradation of manufactured sand. Construction and Building Materials, 321(November 2021), 125593. https://doi.org/10.1016/j.conbuildmat.2021.125593AMVA. (2017). Plan de gestión integral de residuos sólidos regional. In Pgirs-R 2017-2030 (Vol. 24).Asokan, P., Osmani, M., & Price, A. (2010). Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete. Construction and Building Materials, 24(4), 448–460. https://doi.org/10.1016/j.conbuildmat.2009.10.017Asokan, P., Osmani, M., & Price, A. D. F. (2009a). Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821–829. https://doi.org/10.1016/j.jclepro.2008.12.004Asokan, P., Osmani, M., & Price, A. D. F. (2009b). Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821–829. https://doi.org/10.1016/j.jclepro.2008.12.004Bank, L. C., & Yazdanbakhsh, A. (2016). Concrete containing coarse aggregate recycled from scrap FRP rebars. Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016, 1410–1415. https://doi.org/10.1201/9781315641645-231Barbudo, M. A. (2012). Aplicaciones de los áridos reciclados procedentes de residuos de construcción y demolición en la construcción de infraestructuras viarias. Universidad de Cordoba. Departamento de Ingeniería Rural. Área de Ingeniería de La Construcción, 119.Barrrett, Peter. J. (1980). The shape of rock particles, a critical review. Sedimentology, 27(3), 291–303. https://doi.org/10.1111/j.1365-3091.1980.tb01179.xBeeldens, A., Van Gemert, D., Schorn, H., Ohama, Y., & Czarnecki, L. (2005). From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Materials and Structures/Materiaux et Constructions, 38(280), 601–607. https://doi.org/10.1617/14215Bensted, J., & Barnes, P. (2002). Structure and Performance of Cements (2nd ed.). CRC Press.Busch, A. L. (2001). Construction Materials : Lightweight. In P. V. K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan (Ed.), Encyclopedia of Materials: Science and Technology, (Second edi, pp. 1550–1558). https://doi.org/https://doi.org/10.1016/B0-08-043152-6/00277-1Chan Yam, J. L., Carcaño, R. S., & Moreno, E. I. (2003). Influencia de los agregados pétreos en las características del concreto. Ingeniería, 7(2), 39–46Chandra, S., & Berntsson, L. (2002). LIGHTWEIGHT AGGREGATE CONCRETE Science, Technology, and Applications. Noyes Publications.Collivignarelli, M. C., Cillari, G., Ricciardi, P., Miino, M. C., Torretta, V., Rada, E. C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1–34. https://doi.org/10.3390/SU12197903Conti, C., Catrambone, M., Colombo, C., Possenti, E., Rectenwald, K. M., Realini, M., & Strobbia, P. (2022). Scientific investigation to look into the conservation history of a Tang Dynasty terracotta Dancing Horse. Heritage Science, 10(1), 1–12. https://doi.org/10.1186/s40494-022-00758-7Corinaldesi, V. (2012). Influence of lightweight aggregates and GRP by-product powders on the properties of self-compacting concretes. Advanced Materials Research, 548, 215–220. https://doi.org/10.4028/www.scientific.net/AMR.548.215Correia, J. R., Almeida, N. M., & Figueira, J. R. (2011). Recycling of FRP composites: Reusing fine GFRP waste in concrete mixtures. Journal of Cleaner Production, 19(15), 1745–1753. https://doi.org/10.1016/j.jclepro.2011.05.018Da Silva Spinacé, M. A., & De Paoli, M. A. (2005). A tecnologia da reciclagem de polímeros. Quimica Nova, 28(1), 65–72. https://doi.org/10.1590/s0100-40422005000100014De La Cruz Mora, C. Y. (2009). Desarrollo de hormigones autocompactantes de resistencia media (HAC-RM), en colombia.Dehghan, A., Peterson, K., & Shvarzman, A. (2017). Recycled glass fiber reinforced polymer additions to Portland cement concrete. Construction and Building Materials, 146, 238–250. https://doi.org/10.1016/j.conbuildmat.2017.04.011Djerbi, A. (2018). Effect of recycled coarse aggregate on the new interfacial transition zone concrete. Construction and Building Materials, 190, 1023–1033. https://doi.org/10.1016/j.conbuildmat.2018.09.180Farinha, C. B., de Brito, J., & Veiga, R. (2019). Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. Journal of Cleaner Production, 210, 1579–1594. https://doi.org/10.1016/j.jclepro.2018.11.080Ferraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy. Academic Press.Fox, T. R. (2016). Recycling wind turbine blade composite material as aggregate in concrete. In Graduate Theses and Dissertations. Iowa State University.García, J. A. R., Mireles, E. N. A., Ceballos, R. R. L., Rangel, E. R., Arriaga, C. A. C., & García, R. D. L. (2019). Synthesis and characterization of concrete mortars reinforced with thermostable polymer from industrial waste. Revista de La Construccion, 17(3), 465–472. https://doi.org/10.7764/RDLC.17.3.465Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005Gutiérrez De López, L. (2003). El Concreto Y Otros Materiales Para La Construcción. In 2003.Hong, L., Gu, X., & Lin, F. (2014). Influence of aggregate surface roughness on mechanical properties of interface and concrete. Construction and Building Materials, 65, 338–349. https://doi.org/10.1016/j.conbuildmat.2014.04.131ICONTEC. (2018). Especificaciones de los agregados para concretoICONTEC. (2019a). Agregados livianos para concreto estructural.ICONTEC. (2019b). Método de ensayo para determinar el módulo de elasticidad estático y la relación de poisson en concreto a compresión.ICONTEC. (2019c). Método de ensayo para la determinación de la densidad volumétrica (masa unitaria) y vacíos en agregados.ICONTEC. (2020). Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino.ISO. (2008). Representation of results of particle size analysis — Part 6: Descriptive and quantitative representation of particle shape and morphology. In ISO 9276-6.Job, S. (2013). Recycling glass fibre reinforced composites - History and progress. Reinforced Plastics, 57(5), 19–23. https://doi.org/10.1016/S0034-3617(13)70151-6Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A review on concrete fracture energy and effective parameters. Cement and Concrete Research, 120(January), 294–321. https://doi.org/10.1016/j.cemconres.2019.03.013Kimm, M., Pico, D., & Gries, T. (2020). Investigation of surface modification and volume content of glass and carbon fibres from fibre reinforced polymer waste for reinforcing concrete. Journal of Hazardous Materials, 390(February 2019), 121797. https://doi.org/10.1016/j.jhazmat.2019.121797Kiran, E., Debenedetti, P. G., & Peters, C. J. (2000). Supercritical Fluids: Fundamentals and Applications (NATO Science Series, Ed.; 1st editio). NATO ASI Series.Knapen, E., & Van Gemert, D. (2015). Polymer film formation in cement mortars modified with water-soluble polymers. Cement and Concrete Composites, 58, 23–28. https://doi.org/10.1016/j.cemconcomp.2014.11.015Knight, C. C. (2013). Recycling High-Performance Carbon Fiber Reinforced Polymer Composites Using Sub- Critical and Supercritical Water. 83–90.Kobayashi, K. (2000). Characteristics of Self-Compacting by Concrete in Fresh State with Artificial Aggregate. 50. https://doi.org/10.2472/jsms.50.1021Kong, L., & Du, Y. (2015). Interfacial interaction of aggregate-cement paste in concrete. Journal Wuhan University of Technology, Materials Science Edition, 30(1), 117–121. https://doi.org/10.1007/s11595-015-1111-zKosmatka, S. H., Kerkhoff.Kerkhoff, & Panarese, William. C. (2008). Design and Control of Concrete MIxtures.Kosmatka, S. H., & Wilson, M. L. (Architectural engineer). (2011). Design and control of concrete mixtures (15th ed.). Portland Cement Association.Kramer, C. A., & Basu, P. (2014). Performance of a model geothermal pile in sand. Physical Modelling in Geotechnics - Proceedings of the 8th International Conference on Physical Modelling in Geotechnics 2014, ICPMG 2014, 2(August 2013), 771–777. https://doi.org/10.1201/b16200-106Kumar, P., Pasla, D., & Jothi Saravanan, T. (2023). Self-compacting lightweight aggregate concrete and its properties: A review. Construction and Building Materials, 375(February), 130861.Kumar, S., & Barai, S. V. (2019a). Concrete Fracture Models and Applications. In Journal of Chemical Information and Modeling (Vol. 1, Issue 9). https://doi.org/10.1017/CBO9781107415324.004Kumar, S., & Barai, S. V. (2019b). Concrete Fracture Models and Applications. In Journal of Chemical Information and Modeling (Vol. 1, Issue 9). https://doi.org/10.1017/CBO9781107415324.004León, M. P., & Ramírez, F. (2010). Caracterización morfológica de agregados para concreto mediante el análisis de imágenes Morphological characterization of concrete aggregates by means of image analysis. Revista Ingeniería de Construcción, 25, 215–240.Li, Q., Liu, P., Wang, M., & Xia, H. (2023). Effects of elevated temperature on the mechanical properties of concrete with aggregate of waste porcelain tile. Journal of Building Engineering, 64(July 2022), 105585. https://doi.org/10.1016/j.jobe.2022.105585Liu, T., Zhang, M., Guo, X., Liu, C., Liu, T., Xin, J., & Zhang, J. (2017). Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin. Polymer Degradation and Stability, 139, 20–27. https://doi.org/10.1016/j.polymdegradstab.2017.03.017Ma, G., Zhou, B., Zhang, M., & Sanjayan, J. (2022). Understanding and eliminating of expansion caused by recycled glass fiber reinforced plastic powder in concrete. Construction and Building Materials, 347(February), 128542. https://doi.org/10.1016/j.conbuildmat.2022.128542Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131Martinez Ponce, D. D. (1993). Hormigones de altas prestaciones. RE: Revista de Edificación, 15, 71–78.Martínez Ponce, D. D. (1993). Hormigones de altas prestaciones. RE: Revista de Edificación, 15, 71–78.Maso, J. C. (1992). Interfaces in Cementitious Composites. In Interfaces in Cementitious Composites. https://doi.org/10.1201/9781482271256Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties and materials. In International Journal of Cement Composites and Lightweight Concrete (Vol. 3, Issue 4). https://doi.org/10.1016/0262-5075(86)90055-Neville, A. M. (2011). Properties of concrete (5th ed.). Pearson. https://doi.org/10.4324/9780203967874-11Newman, J., & Owens, P. (2003). Properties of lightweight concrete. In Advanced Concrete Technology. Woodhead Publishing Limited. https://doi.org/10.1016/B978-075065686-3/50288-3Ogi, K., Shinoda, T., & Mizui, M. (2005). Strength in concrete reinforced with recycled CFRP pieces. Composites Part A: Applied Science and Manufacturing, 36(7), 893–902. https://doi.org/10.1016/j.compositesa.2004.12.009Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004Ollivier, J. P., Maso, J. C., & Bourdette, B. (1995). Interfacial transition zone in concrete. Advanced Cement Based Materials, 2(1), 30–38. https://doi.org/10.1016/1065-7355(95)90037-3Osmani, M., & Asokan, P. (2010). An assessment of the compressive strength of glass reinforced plastic waste filled concrete for potential applications in construction. Concrete Research Letters 1.1, 1(May), 1–5.Patel, S. H., Gonsalves, K. E., Stivala, S. S., Reich, L., & Trivedi, D. H. (1993). Alternative procedures for the recycling of sheet molding compounds. Advances in Polymer Technology, 12(1), 35–45. https://doi.org/10.1002/adv.1993.060120104Pickering, S. J. (2006). Recycling technologies for thermoset composite materials-current status. Composites Part A: Applied Science and Manufacturing, 37(8), 1206–1215. https://doi.org/10.1016/j.compositesa.2005.05.030Piñero-Hernanz, R., García-Serna, J., Dodds, C., Hyde, J., Poliakoff, M., Cocero, M. J., Kingman, S., Pickering, S., & Lester, E. (2008). Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. Journal of Supercritical Fluids, 46(1), 83–92. https://doi.org/10.1016/j.supflu.2008.02.008PlascticEurope-Association of Plastics Manufactures. (2020). Plastics – the Facts 2020. PlasticEurope, 1–64.Prokopski, G., & Halbiniak, J. (2000). Interfacial transition zone in cementitious materials. Cement and Concrete Research, 30(4), 579–583. https://doi.org/10.1016/S0008-8846(00)00210-6Ramachandran, V. S. (1995). Concrete Admixtures Handbook: Properties, Science, and Technology. In Concr Admixtures Handb, Prop, Sci, and Technol (2nd ed.). Noyes Publications.Rao, A. S., & Rao, G. A. (2014). Fracture Mechanics of Fiber Reinforced Concrete: An Overview. International Journal of Engineering Innovations and Research, 3(4), 517Ribeiro, M. C. S., Fiúza, A., & Ferreira, A. J. M. (2017). Recycling and reuse of fiber reinforced polymer wastes in concrete composite materials. Handbook of Composites from Renewable Materials, 1–8, 155–173. https://doi.org/10.1002/9781119441632.ch46Schneider, U. (1988). Concrete at high temperatures - A general review. Fire Safety Journal, 13(1), 55–68. https://doi.org/10.1016/0379-7112(88)90033-1Scrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–421. https://doi.org/10.1023/B:INTS.0000042339.92990.4cShen, J., & Xu, Q. (2019). Effect of elevated temperatures on compressive strength of concrete. Construction and Building Materials, 229, 116846. https://doi.org/10.1016/j.conbuildmat.2019.116846Sidorova, A. (2013). Estudio del efecto de la naturaleza del árido reciclado en la microestructura y propiedades de la zona de transición árido-pasta de cemento. Universidad Politécnica de Catalunya, 1–171.Son, H. N., & Hosoda, A. (2010). Detection of microcracking in concrete subjected to elevated temperature at very early age by acoustic emission. Journal of Advanced Concrete Technology, 8(2), 201–211. https://doi.org/10.3151/jact.8.201Soroka, I. (1979). Portland Cement Paste and Concrete. In Portland Cement Paste and Concrete (First). THE MACMILLAN PRESS LTD. https://doi.org/10.1007/978-1-349-03994-4Súarez Durán, M. (2012). Descripcion del uso de concretos especiales en colombia desde el 2000 hasta el 2010. Universidad Pontificia Bolivariana.Tian, Y., Jin, X. Y., Jin, N. G., Zhao, R., Li, Z. J., & Ma, H. Y. (2013). Research on the microstructure formation of polyacrylate latex modified mortars. Construction and Building Materials, 47, 1381–1394. https://doi.org/10.1016/j.conbuildmat.2013.06.016Tittarelli, F. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 2. Construction and Building Materials, 47, 1539–1543. https://doi.org/10.1016/j.conbuildmat.2013.06.086Tittarelli, F., Kawashima, S., Tregger, N., Moriconi, G., & Shah, S. P. (2010). Effect of GRP by-product addition on plastic and hardened properties of cement mortars. 2nd International Conference on Sustainable Construction Materials and Technologies, 677–687.Tittarelli, F., & Shah, S. P. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1. Construction and Building Materials, 47, 1532–1538. https://doi.org/10.1016/j.conbuildmat.2013.06.043Torres, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., Legarreta, J. A., Cabrero, M. A., González, A., Chomón, M. J., & Gondra, K. (2000). Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel, 79(8), 897–902. https://doi.org/10.1016/S0016-2361(99)00220-3Utekar, S., V K, S., More, N., & Rao, A. (2021). Comprehensive study of recycling of thermosetting polymer composites – Driving force, challenges and methods. Composites Part B: Engineering, 207(September 2020), 108596. https://doi.org/10.1016/j.compositesb.2020.108596Van Gemert, D., Czarnecki, L., Maultzsch, M., Schorn, H., Beeldens, A., Łukowski, P., & Knapen, E. (2005). Cement concrete and concrete-polymer composites: Two merging worlds: A report from 11th ICPIC Congress in Berlin, 2004. Cement and Concrete Composites, 27(9–10), 926–933. https://doi.org/10.1016/j.cemconcomp.2005.05.004Vargas Samboni, P. (2016). Evaluación de la influencia de propiedades físicas y morfolígicas de agregados livianos, en la microestructura de la Zona de Transición Interfacial (ITZ), en concretos. 122.Vo Dong, P. A., Azzaro-Pantel, C., & Cadene, A. L. (2018). Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resources, Conservation and Recycling, 133(January), 63–75. https://doi.org/10.1016/j.resconrec.2018.01.024Wang, X., Saifullah, H. A., Nishikawa, H., & Nakarai, K. (2020). Effect of water–cement ratio, aggregate type, and curing temperature on the fracture energy of concrete. Construction and Building Materials, 259, 119646. https://doi.org/10.1016/j.conbuildmat.2020.119646Winter, H., Mostert, H. A. M., Smeets, P. J. H. M., & Paas, G. (1995). Recycling of sheet‐molding compounds by chemical routes. Journal of Applied Polymer Science, 57(11), 1409–1417. https://doi.org/10.1002/app.1995.070571116Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. https://doi.org/10.1016/j.conbuildmat.2014.04.054Xu, Y., Wong, Y. L., Poon, C. S., & Anson, M. (2001). Impact of high temperature on PFA concrete. Cement and Concrete Research, 31(7), 1065–1073. https://doi.org/10.1016/S0008-8846(01)00513-0Yazdanbakhsh, A., & Bank, L. C. (2014). A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers, 6(6), 1810–1826. https://doi.org/10.3390/polym6061810Yazdanbakhsh, A., Bank, L. C., & Chen, C. (2016). Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Construction and Building Materials, 121, 278–284. https://doi.org/10.1016/j.conbuildmat.2016.05.165Yazdanbakhsh, A., Bank, L. C., Rieder, K. A., Tian, Y., & Chen, C. (2018). Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resources, Conservation and Recycling, 128(August 2017), 11–21. https://doi.org/10.1016/j.resconrec.2017.08.005Yuan, P., Zhang, B., Yang, Y., Jiang, T., Li, J., Qiu, J., & He, H. (2023). Application of polymer cement repair mortar in underground engineering: A review. Case Studies in Construction Materials, 19(October), e02555. https://doi.org/10.1016/j.cscm.2023.e02555Zambrano, A. M. (2014). Aproximación Conceptual al Análisis Térmico y sus Principales Aplicaciones. Universidad Nacional de Colombia, 1–92.Zhang, C., Yang, X., & Gao, H. (2018a). Air-Void-Affected Zone in Concrete Beam Under Four-Point Bending Fracture. Journal of Civil Engineering and Management, 24(2), 130–137. https://doi.org/10.3846/jcem.2018.456Zhang, C., Yang, X., & Gao, H. (2018b). Effect of Randomness of Interfacial Properties on Fracture Behavior of Concrete Under Uniaxial Tension. Acta Mechanica Solida Sinica, 31(2), 174–186. https://doi.org/10.1007/s10338-018-0014-xZhang, J., Chevali, V. S., Wang, H., & Wang, C. H. (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering, 193(April), 108053. https://doi.org/10.1016/j.compositesb.2020.108053Zhang, M. H., & Gjørv, O. E. (1990). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610–618. https://doi.org/10.1016/0008-8846(90)90103-5Zhao, L., Zhang, S., Huang, D., & Wang, X. (2020). A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate. Construction and Building Materials, 247, 117906. https://doi.org/10.1016/j.conbuildmat.2019.117906Zheng, J. J., Li, C. Q., & Zhou, X. Z. (2005). Thickness of interfacial transition zone and cement content profiles around aggregates. Magazine of Concrete Research, 57(7), 397–406. https://doi.org/10.1680/macr.2005.57.7.397Zhou, Y., Weng, Y., Li, L., Hu, B., Huang, X., & Zhu, Z. (2022). Recycled GFRP Aggregate Concrete Considering Aggregate Grading: Compressive Behavior and Stress–Strain Modeling. 1–20.Zhu, J. H., Chen, P. Y., Su, M. N., Pei, C., & Xing, F. (2019). Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin. Green Chemistry, 21(7), 1635–1647. https://doi.org/10.1039/c8gc03672aInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86615/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL8125589.2024 (1).pdf8125589.2024 (1).pdfTesis de Maestría en Construcciónapplication/pdf19121933https://repositorio.unal.edu.co/bitstream/unal/86615/4/8125589.2024%20%281%29.pdf9b563ae987343fc95fc275267e544e1bMD54THUMBNAIL8125589.2024.pdf.jpg8125589.2024.pdf.jpgGenerated Thumbnailimage/jpeg6233https://repositorio.unal.edu.co/bitstream/unal/86615/3/8125589.2024.pdf.jpg44f98b15d769c2f6fa33de20ddb60755MD538125589.2024 (1).pdf.jpg8125589.2024 (1).pdf.jpgGenerated Thumbnailimage/jpeg6233https://repositorio.unal.edu.co/bitstream/unal/86615/5/8125589.2024%20%281%29.pdf.jpg44f98b15d769c2f6fa33de20ddb60755MD55unal/86615oai:repositorio.unal.edu.co:unal/866152024-08-09 23:10:08.893Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |