Modelo teórico del proceso de desarrollo de ingeniería electrónica

A theory is a common conceptual framework for structuring and organizing phenomena and knowledge in a concise and precise way. Electronic engineering endeavor (EEE) is the phenomenon in which a team solves an electronic system according an opportunity. Practitioner support such phenomenon by interes...

Full description

Autores:
Sánchez Dams, Rubén
Tipo de recurso:
Informe
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75744
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75744
Palabra clave:
Ingeniería y operaciones afines
Esfuerzo
Ingeniería Electrónica
Estándar de la Esencia
Semat
Electronic Engineering
Essence standard
Essence standard
Semat
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_f3742987de206bc79f7a94338c562e7f
oai_identifier_str oai:repositorio.unal.edu.co:unal/75744
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo teórico del proceso de desarrollo de ingeniería electrónica
dc.title.alternative.spa.fl_str_mv Theoretical model of electronic engineering development processes
title Modelo teórico del proceso de desarrollo de ingeniería electrónica
spellingShingle Modelo teórico del proceso de desarrollo de ingeniería electrónica
Ingeniería y operaciones afines
Esfuerzo
Ingeniería Electrónica
Estándar de la Esencia
Semat
Electronic Engineering
Essence standard
Essence standard
Semat
title_short Modelo teórico del proceso de desarrollo de ingeniería electrónica
title_full Modelo teórico del proceso de desarrollo de ingeniería electrónica
title_fullStr Modelo teórico del proceso de desarrollo de ingeniería electrónica
title_full_unstemmed Modelo teórico del proceso de desarrollo de ingeniería electrónica
title_sort Modelo teórico del proceso de desarrollo de ingeniería electrónica
dc.creator.fl_str_mv Sánchez Dams, Rubén
dc.contributor.advisor.spa.fl_str_mv Zapata Jaramillo, Carlos Mario
dc.contributor.author.spa.fl_str_mv Sánchez Dams, Rubén
dc.contributor.researchgroup.spa.fl_str_mv Lenguajes Computacionales
dc.subject.ddc.spa.fl_str_mv Ingeniería y operaciones afines
topic Ingeniería y operaciones afines
Esfuerzo
Ingeniería Electrónica
Estándar de la Esencia
Semat
Electronic Engineering
Essence standard
Essence standard
Semat
dc.subject.proposal.spa.fl_str_mv Esfuerzo
Ingeniería Electrónica
Estándar de la Esencia
Semat
dc.subject.proposal.eng.fl_str_mv Electronic Engineering
Essence standard
Essence standard
Semat
description A theory is a common conceptual framework for structuring and organizing phenomena and knowledge in a concise and precise way. Electronic engineering endeavor (EEE) is the phenomenon in which a team solves an electronic system according an opportunity. Practitioner support such phenomenon by interest theories of endeavor mainly describing it in textual form and with partial coverage. Such descriptions address EEE approach, general management approach, and EEE analogous field approach like software engineering. Despite the availability of such theories, people report problems related to the endeavors and EEE in the state of the art. In studies of this field, authors reveal that most of the projects evaluated are delayed or canceled. Such difficulties are related to changes or breaches in scope, cost overruns, delays and endeavor cancellation. Some authors analyze causes of challenges and they attribute them to an EEE immature understanding and a lack of a general knowledge representation mechanism of EEE. Such authors declare the need for improving the theory related to such phenomenon and having better tools to deal with it. In this PhD Thesis we propose an EEE Conceptualization, an Endeavor Theory, and its application to EEE to produce the theoretical model of electronic engineering development processes, identifying their premises, constructs, and propositions. We use a method consisting of a literature review, EEE conceptualization, conceptual verifications, expert judgment, and synthesis of theories. We validate this PhD Thesis with one case study carried out in research and development center. This PhD Thesis is a first common language approximation improving communication between professionals, covering the aforementioned approaches, including improvement and unification in a formal description with terminological coherence. Description has a quantitative intrinsic interpretation and a qualitative facilitating its adoption, compatible with the state of the art. This PhD Thesis is a thinking framework and a general knowledge representation mechanism of EEE, scalable to other domains particularly to software engineering and Essence standard, and a contribution to a better understanding and performance of endeavor and EEE.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-12-09
2019-12-09
dc.date.accessioned.spa.fl_str_mv 2020-02-25T21:31:34Z
dc.date.available.spa.fl_str_mv 2020-02-25T21:31:34Z
dc.type.spa.fl_str_mv Reporte
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/report
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTCASO
format http://purl.org/coar/resource_type/c_93fc
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75744
url https://repositorio.unal.edu.co/handle/unal/75744
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelhalim, M. B. y Habib, S.-D. (2011). An integrated high-level hardware/software partitioning methodology. Design Automation for Embedded Systems, 15(1), 19–50.
Adams, K. MacG., Hester, P. T., Bradley, J. M., Meyers, T. J. y Keating, C. B. (2014). Systems Theory as the Foundation for Understanding Systems. Systems Engineering, 17(1), 112–123.
Adams, K. MacG. y Meyers, T. J. (2011b). Perspective 1 of the SoSE methodology: framing the system under study. International Journal of System of Systems Engineering, 2(2–3), 163–192
Ambler, S. y Lines, M. (2016). The Disciplined Agile Process Decision Framework. En D. Winkler, S. Biffl y J. Bergsmann (Eds.), Software Quality. The Future of Systems- and Software Development. SWQD 2016 (pp. 3–14). Berlin: Springer.
Appleyard, M., Hatch, N. W. y Mowery, D. C. (2001). Managing the development and transfer of process technologies in the semiconductor manufacturing industry. En G. Dosi, R. R. Nelson y S. Winter (Eds.), The nature and dynamics of organizational capabilities (pp. 183–208). New York: Oxford University Press.
Barón-Salazar, A. (2019). Modelo para la Definición Unificada de la Práctica como Constructo Teórico en Ingeniería de Software (Tesis Doctoral, Universidad Nacional de Colombia—Sede Medellín, Medellín, Colombia). Recuperado de http://bdigital.unal.edu.co/72763/
Bertoze Lima, G. L., Lopes Ferreira, G. A., Saotome, O., Marques da Cunha, A. y Vieira Dias, L. A. (2015). Hardware Development: Agile and Co-Design. En 12th International Conference on Information Technology - New Generations (pp. 784–787). Las Vegas, USA.
Brunswicker, S. y Chesbrough, H. (2018). The adoption of open innovation in large firms: practices, measures, and risks. Research-Technology Management, 61(1), 35–45
Bureau of Labor Statistics. (2015). Electrical and Electronics Engineers. En U.S. Department of Labor, Occupational Outlook Handbook (2016-17 ed.). Recuperado el 17 noviembre de 2018, de http://www.bls.gov/ooh/architecture-and-engineering/electrical-and-electronics-engineers.htm
Carloni, L. P., Passerone, R., Pinto, A. y Sangiovanni-Vincentelli, A. L. (2006). Languages and Tools for Hybrid Systems Design. Foundations and Trends® in Electronic Design Automation, 1(1/2), 1–193.
Chong, S., Wong, C.-B., Jia, H., Pan, H., Moore, P., Kalawsky, R. y O’Brien, J. (2011). Model Driven System Engineering for vehicle system utilizing Model Driven Architecture approach and hardware-in-the-loop simulation. En 2011 IEEE International Conference on Mechatronics and Automation (pp. 1451–1456). Beijing, China.
Clark, John O. (2009). System of Systems Engineering and Family of Systems Engineering from a standards, V-Model, and Dual-V Model perspective. En 3 rd Annual IEEE Systems Conference (pp. 381– 387). Vancouver, Canadá.
Cross, N. (2001). Designerly Ways of Knowing: Design Discipline Versus Design Science. Design Issues, 17(3), 49–55.
Dahmen, U. y Rossmann, J. (2018). Experimentable Digital Twins for a Modeling and Simulationbased Engineering Approach. En 2018 IEEE International Systems Engineering Symposium (ISSE) (pp.1– 8). Roma, Italia.
Díaz González, F. A., Andrés Andrade, J. M., Cáceres Prado, M. X. y Corredor Bedoya, A. C. (2013). Development Model for Technological Products. International Journal of Applied, 3(8).
Ekstedt, M. (2013). An empirical approach to a general theory of software (engineering). En 2 nd SEMAT Workshop on a General Theory of Software Engineering (GTSE) (pp. 23–26). San Francisco, USA.
Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D. y Philippsen, M. (2010). eSPEM – A SPEM Extension for Enactable Behavior Modeling. In Proceedings of the 6th European Conference on Modelling Foundations and Applications, 116–131. Berlin: Springer-Verlag.
Esposito, W. J., Mujica, F. A., Garcia, D. G. y Kovacs, G. T. A. (2015). The Lab-In-A-Box project: an arduino compatible signals and electronics teaching system. En IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE) (pp. 301–306). Salt Lake City, USA
Flyvbjerg, B. (2013). Quality control and due diligence in project management: Getting decisions right by taking the outside view. International Journal of Project Management, 31(5), 760–774.
Flyvbjerg, B., Ansar, A., Budzier, A., Buhl, S., Cantarelli, C., Garbuio, M. y Van Wee, B. (2018). Five things you should know about cost overrun. Transportation Research Part A: Policy and Practice, 118, 174–190.
Franke, David W. y Purvis, M. K. (1991). Hardware/software codesign: a perspective. En 13th International Conference on Software Engineering (pp. 344–352). Austin, USA.
Gallina, B., Pitchai, K. R. y Lundqvist, K. (2014). S-TunExSPEM: Towards an Extension of SPEM 2.0 to Model and Exchange Tunable Safety-Oriented Processes. En R. Lee (Ed.), Software Engineering Research, Management and Applications (pp. 215–230). Heidelberg: Springer.
Gregor, S. y Jones, D. (2007). The Anatomy of a Design Theory. Journal of the Association for Information Systems, 8(5), 312–335.
Gustavsson, T. y Rönnlund, P. (2013). Agile adoption at Ericsson hardware product development. En 22nd Nordic Academy of Management Conference NNF (pp. 7-16). Reykjavik, Iceland.
Henao, A. d J. (2018). Towards a theory for defining a project management multidisciplinary kernel: an approach based on Abstract Level Progress Health Attributes (Tesis de Maestría, Universidad Nacional de Colombia—Sede Medellín, Medellín, Colombia). Recuperado de http://www.bdigital.unal.edu.co/71042/
Huang, P. M., Knuth, A. A., Krueger, R. O. y Garrison-Darrin, M. A. (2012b). Agile hardware and software systems engineering for critical military space applications. En SPIE Defense, Security, and Sensing (Vol. 8385, pp. 83850F-83850F – 9). Baltimore, USA.
IBM. (2013, septiembre 6). IBM Rational solutions for product and embedded systems development [CT401]. Recuperado el 22 de septiembre de 2013, de http://www-03.ibm.com/software/products/us/en/category/SWV00
International Labour Organization. (2004a, octubre 8). Electrical engineers, 2143. Recuperado el 10 de octubre de 2015, de https://www.ilo.org/public/english/bureau/stat/isco/isco88/2143.htm
Jacobson, I. (2010). A Smarter Way: The Software Engineering Method and Theory Initiative (Semat). En M. Nordio, M. Joseph, B. Meyer y A. Terekhov (Eds.), Software Engineering Approaches for Offshore and Outsourced Development: 4th International Conference, SEAFOOD 2010 (pp. 1–1). St. Petersburg: Springer.
Juan, L., Yang, C. y Jian-Lin, J. (2005). Transaction-level object-oriented framework for SOC design. En 2005 International Conference on Communications, Circuits and Systems (Vol. 2, pp. 1343–1347). Hong Kong, China.
Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T. y Lehtonen, T. (2013). Agile methods for embedded systems development - a literature review and a mapping study. EURASIP Journal on Embedded Systems, 2013(1), 1–16.
Kopec, D. y Tamang, S. (2007). Failures in complex systems: case studies, causes, and possible remedies. ACM SIGCSE Bulletin, 39(2), 180–184.
Kundert, K., Chang, H., Jefferies, D., Lamant, G., Malavasi, E. y Sendig, F. (2000). Design of mixed-signal systems-on-a-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12), 1561–1571.
Leffingwell, D. y Knaster, R. (2018). SAFe 4.5 Distilled: Applying the Scaled Agile Framework for Lean Enterprises (2a ed.). Boston, MA: Addison-Wesley Professional.
Martínez Carazo, P. C. (2011). El método de estudio de caso Estrategia metodológica de la investigación científica. Revista científica Pensamiento y Gestión, (20), 165–193.
Nacif, J. A., Silva, T. S., Vieira, L. F. M., Vieira, A. B., Fernandes, A. O. y Coelho, C. (2011). Tracking hardware evolution. En 2011 12th International Symposium on Quality Electronic Design (pp. 1–6). Santa Clara, USA
Nguyen-Duc, A., Weng, X. y Abrahamsson, P. (2018). A preliminary study of agility in business and production: cases of early-stage hardware startups (p. 51). En Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. Oulu, Finland.
Oktaba, H., Alquicira Esquivel, C., Su Ramos, A., Martínez, A., Quintanilla Osorio, G., Ruvalcaba López, M., … Flores Lemus, M. Á. (2005). Modelo de Procesos para la Industria de Software MoProSoft v1.3: Por Niveles de Capacidad de Procesos (Estándar Núm. NMX-059/02-NYCE-2005). México D.F.: Secretaría de Economía – México.
PMI. (2010b, septiembre 9). What is Project Management? Recuperado el 13 de mayo de 2015, de Project Management Institute website: http://www.pmi.org/About-Us/About-Us-What-is-ProjectManagement.aspx
Rompaey, K. V., Verkest, D., Bolsens, I. y Man, H. D. (1996). CoWare-a design environment for heterogeneous hardware/software systems. En European Design Automation Conference with EUROVHDL ’96 and Exhibition Proceedings EURO-DAC ’96 (pp. 252–257). Geneva, Switzerland.
Sifakis, J. (2011). A vision for computer science—the system perspective. Central European Journal of Computer Science, 1(1), 108–116.
Simonette, M. J., Magalhães, M. E. S. y Spina, E. (2017). PMBOK and Essence: Partners for IoT Projects. En Software Engineering: Methods, Modeling, and Teaching (Vol. 4, pp. 211–223). Bogotá, Colombia: Bonaventuriana.
Stol, K., Ralph, P. y Fitzgerald, B. (2016). Grounded Theory in Software Engineering Research: A Critical Review and Guidelines. En 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) (pp. 120–131). Austin, USA.
Teodorov, C., Picard, D. y Lagadec, L. (2011). FPGA physical-design automation using ModelDriven Engineering. En 6 th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC) (pp. 1–6). Montpellier, France
Xue, R., Baron, C., Esteban, P. y Zheng, L. (2015). Analysis and comparison of project management standards and guides. Recent Advances in Mechanical Engineering Series. En International Conference on Mechanics, Materials, Mechanical Engineering and Chemical Engineering (MMMCE 2015). Barcelona, Spain.
Zapater, M., Malagon, P., de Goyeneche, J.-M. y Moya, J. M. (2013). Project-Based Learning and Agile Methodologies in Electronic Courses: Effect of Student Population and Open Issues. Electronics, 17(2), 82–88.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 177
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.sucursal.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75744/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75744/1/72000984.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75744/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75744/4/72000984.2019.pdf.jpg
bitstream.checksum.fl_str_mv 6f3f13b02594d02ad110b3ad534cd5df
0cb5f2bd2102267ed472856cf80de66b
217700a34da79ed616c2feb68d4c5e06
a1dd13d887375179952e81159209c5cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089975728177152
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata Jaramillo, Carlos Marioe4b16e5b-41fd-40e8-ad3a-9257d9d84531-1Sánchez Dams, Rubénfd48429c-ce95-496f-b146-133035411f44Lenguajes Computacionales2020-02-25T21:31:34Z2020-02-25T21:31:34Z2019-12-092019-12-09https://repositorio.unal.edu.co/handle/unal/75744A theory is a common conceptual framework for structuring and organizing phenomena and knowledge in a concise and precise way. Electronic engineering endeavor (EEE) is the phenomenon in which a team solves an electronic system according an opportunity. Practitioner support such phenomenon by interest theories of endeavor mainly describing it in textual form and with partial coverage. Such descriptions address EEE approach, general management approach, and EEE analogous field approach like software engineering. Despite the availability of such theories, people report problems related to the endeavors and EEE in the state of the art. In studies of this field, authors reveal that most of the projects evaluated are delayed or canceled. Such difficulties are related to changes or breaches in scope, cost overruns, delays and endeavor cancellation. Some authors analyze causes of challenges and they attribute them to an EEE immature understanding and a lack of a general knowledge representation mechanism of EEE. Such authors declare the need for improving the theory related to such phenomenon and having better tools to deal with it. In this PhD Thesis we propose an EEE Conceptualization, an Endeavor Theory, and its application to EEE to produce the theoretical model of electronic engineering development processes, identifying their premises, constructs, and propositions. We use a method consisting of a literature review, EEE conceptualization, conceptual verifications, expert judgment, and synthesis of theories. We validate this PhD Thesis with one case study carried out in research and development center. This PhD Thesis is a first common language approximation improving communication between professionals, covering the aforementioned approaches, including improvement and unification in a formal description with terminological coherence. Description has a quantitative intrinsic interpretation and a qualitative facilitating its adoption, compatible with the state of the art. This PhD Thesis is a thinking framework and a general knowledge representation mechanism of EEE, scalable to other domains particularly to software engineering and Essence standard, and a contribution to a better understanding and performance of endeavor and EEE.Una teoría es un marco conceptual común para estructurar y organizar fenómenos y conocimiento de manera concisa y precisa. El esfuerzo de ingeniería electrónica (EIE) es el fenómeno en el que un equipo soluciona un sistema electrónico (SE) de acuerdo con una oportunidad. Este fenómeno se sustenta en teorías de interés para el esfuerzo, que se describen principalmente de forma textual y con cobertura parcial. Tales descripciones se abordan en el enfoque del EIE actual, el enfoque general de gestión y el enfoque de sectores análogos al EIE como la ingeniería de software. A pesar de la disponibilidad de estas teorías, en la literatura se evidencian problemas en los esfuerzos y EIE. En estudios relacionados con este sector se revela que la mayoría de los proyectos evaluados se retrasan o se can-celan. Tales dificultades se relacionan con cambios o incumplimientos del alcance, sobrecostos, retrasos y cancelaciones del esfuerzo. Algunos autores analizan las causas de las dificultades y las atribuyen a una comprensión inmadura del EIE y a la carencia de un mecanismo de representación general del conocimiento del EIE. Estos autores declaran la necesidad de mejorar la teorización relacionada con el fenómeno y de disponer de mejores herramientas para abordarlo. En esta Tesis Doctoral se propone una Conceptualización del EIE, una Teoría del Esfuerzo y su aplicación al EIE para producir el Modelo teórico del proceso de desarrollo de ingeniería electrónica, identificando sus premisas, constructos y proposiciones. El método que se utiliza se basa en una revisión de literatura, la Conceptualización del EIE, verificaciones conceptuales, verificaciones por juicio de expertos y síntesis de teorías. Esta Tesis Doctoral se valida con un caso de estudio del EIE en un centro de investigación y desarrollo. Como resultado de esta Tesis Doctoral se propone una primera aproximación a un lenguaje común para mejorar la comunicación entre profesionales, abarcando los enfoques antes mencionados e incluyendo mejoras unificadas en una descripción formal con coherencia terminológica. La descripción tiene una interpretación intrínseca cuantitativa y una cualitativa para facilitar su adopción, compatible con lo que se expresa en la literatura. La Tesis Doctoral es un marco de pensamiento y un mecanismo de representación general del conocimiento del EIE, extensible a otros dominios y en particular a la ingeniería de software y al estándar de la Esencia, contribuyendo a una mejor comprensión y desempeño del esfuerzo y del EIE.Modelo teórico del proceso de desarrollo de ingeniería electrónicaDoctor en Ingeniería—Sistemas e Informática177application/pdfspaIngeniería y operaciones afinesEsfuerzoIngeniería ElectrónicaEstándar de la EsenciaSematElectronic EngineeringEssence standardEssence standardSematModelo teórico del proceso de desarrollo de ingeniería electrónicaTheoretical model of electronic engineering development processesReporteinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fcTexthttp://purl.org/redcol/resource_type/ARTCASOUniversidad Nacional de Colombia - Sede MedellínUniversidad Nacional de Colombia - Sede MedellínAbdelhalim, M. B. y Habib, S.-D. (2011). An integrated high-level hardware/software partitioning methodology. Design Automation for Embedded Systems, 15(1), 19–50.Adams, K. MacG., Hester, P. T., Bradley, J. M., Meyers, T. J. y Keating, C. B. (2014). Systems Theory as the Foundation for Understanding Systems. Systems Engineering, 17(1), 112–123.Adams, K. MacG. y Meyers, T. J. (2011b). Perspective 1 of the SoSE methodology: framing the system under study. International Journal of System of Systems Engineering, 2(2–3), 163–192Ambler, S. y Lines, M. (2016). The Disciplined Agile Process Decision Framework. En D. Winkler, S. Biffl y J. Bergsmann (Eds.), Software Quality. The Future of Systems- and Software Development. SWQD 2016 (pp. 3–14). Berlin: Springer.Appleyard, M., Hatch, N. W. y Mowery, D. C. (2001). Managing the development and transfer of process technologies in the semiconductor manufacturing industry. En G. Dosi, R. R. Nelson y S. Winter (Eds.), The nature and dynamics of organizational capabilities (pp. 183–208). New York: Oxford University Press.Barón-Salazar, A. (2019). Modelo para la Definición Unificada de la Práctica como Constructo Teórico en Ingeniería de Software (Tesis Doctoral, Universidad Nacional de Colombia—Sede Medellín, Medellín, Colombia). Recuperado de http://bdigital.unal.edu.co/72763/Bertoze Lima, G. L., Lopes Ferreira, G. A., Saotome, O., Marques da Cunha, A. y Vieira Dias, L. A. (2015). Hardware Development: Agile and Co-Design. En 12th International Conference on Information Technology - New Generations (pp. 784–787). Las Vegas, USA.Brunswicker, S. y Chesbrough, H. (2018). The adoption of open innovation in large firms: practices, measures, and risks. Research-Technology Management, 61(1), 35–45Bureau of Labor Statistics. (2015). Electrical and Electronics Engineers. En U.S. Department of Labor, Occupational Outlook Handbook (2016-17 ed.). Recuperado el 17 noviembre de 2018, de http://www.bls.gov/ooh/architecture-and-engineering/electrical-and-electronics-engineers.htmCarloni, L. P., Passerone, R., Pinto, A. y Sangiovanni-Vincentelli, A. L. (2006). Languages and Tools for Hybrid Systems Design. Foundations and Trends® in Electronic Design Automation, 1(1/2), 1–193.Chong, S., Wong, C.-B., Jia, H., Pan, H., Moore, P., Kalawsky, R. y O’Brien, J. (2011). Model Driven System Engineering for vehicle system utilizing Model Driven Architecture approach and hardware-in-the-loop simulation. En 2011 IEEE International Conference on Mechatronics and Automation (pp. 1451–1456). Beijing, China.Clark, John O. (2009). System of Systems Engineering and Family of Systems Engineering from a standards, V-Model, and Dual-V Model perspective. En 3 rd Annual IEEE Systems Conference (pp. 381– 387). Vancouver, Canadá.Cross, N. (2001). Designerly Ways of Knowing: Design Discipline Versus Design Science. Design Issues, 17(3), 49–55.Dahmen, U. y Rossmann, J. (2018). Experimentable Digital Twins for a Modeling and Simulationbased Engineering Approach. En 2018 IEEE International Systems Engineering Symposium (ISSE) (pp.1– 8). Roma, Italia.Díaz González, F. A., Andrés Andrade, J. M., Cáceres Prado, M. X. y Corredor Bedoya, A. C. (2013). Development Model for Technological Products. International Journal of Applied, 3(8).Ekstedt, M. (2013). An empirical approach to a general theory of software (engineering). En 2 nd SEMAT Workshop on a General Theory of Software Engineering (GTSE) (pp. 23–26). San Francisco, USA.Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D. y Philippsen, M. (2010). eSPEM – A SPEM Extension for Enactable Behavior Modeling. In Proceedings of the 6th European Conference on Modelling Foundations and Applications, 116–131. Berlin: Springer-Verlag.Esposito, W. J., Mujica, F. A., Garcia, D. G. y Kovacs, G. T. A. (2015). The Lab-In-A-Box project: an arduino compatible signals and electronics teaching system. En IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE) (pp. 301–306). Salt Lake City, USAFlyvbjerg, B. (2013). Quality control and due diligence in project management: Getting decisions right by taking the outside view. International Journal of Project Management, 31(5), 760–774.Flyvbjerg, B., Ansar, A., Budzier, A., Buhl, S., Cantarelli, C., Garbuio, M. y Van Wee, B. (2018). Five things you should know about cost overrun. Transportation Research Part A: Policy and Practice, 118, 174–190.Franke, David W. y Purvis, M. K. (1991). Hardware/software codesign: a perspective. En 13th International Conference on Software Engineering (pp. 344–352). Austin, USA.Gallina, B., Pitchai, K. R. y Lundqvist, K. (2014). S-TunExSPEM: Towards an Extension of SPEM 2.0 to Model and Exchange Tunable Safety-Oriented Processes. En R. Lee (Ed.), Software Engineering Research, Management and Applications (pp. 215–230). Heidelberg: Springer.Gregor, S. y Jones, D. (2007). The Anatomy of a Design Theory. Journal of the Association for Information Systems, 8(5), 312–335.Gustavsson, T. y Rönnlund, P. (2013). Agile adoption at Ericsson hardware product development. En 22nd Nordic Academy of Management Conference NNF (pp. 7-16). Reykjavik, Iceland.Henao, A. d J. (2018). Towards a theory for defining a project management multidisciplinary kernel: an approach based on Abstract Level Progress Health Attributes (Tesis de Maestría, Universidad Nacional de Colombia—Sede Medellín, Medellín, Colombia). Recuperado de http://www.bdigital.unal.edu.co/71042/Huang, P. M., Knuth, A. A., Krueger, R. O. y Garrison-Darrin, M. A. (2012b). Agile hardware and software systems engineering for critical military space applications. En SPIE Defense, Security, and Sensing (Vol. 8385, pp. 83850F-83850F – 9). Baltimore, USA.IBM. (2013, septiembre 6). IBM Rational solutions for product and embedded systems development [CT401]. Recuperado el 22 de septiembre de 2013, de http://www-03.ibm.com/software/products/us/en/category/SWV00International Labour Organization. (2004a, octubre 8). Electrical engineers, 2143. Recuperado el 10 de octubre de 2015, de https://www.ilo.org/public/english/bureau/stat/isco/isco88/2143.htmJacobson, I. (2010). A Smarter Way: The Software Engineering Method and Theory Initiative (Semat). En M. Nordio, M. Joseph, B. Meyer y A. Terekhov (Eds.), Software Engineering Approaches for Offshore and Outsourced Development: 4th International Conference, SEAFOOD 2010 (pp. 1–1). St. Petersburg: Springer.Juan, L., Yang, C. y Jian-Lin, J. (2005). Transaction-level object-oriented framework for SOC design. En 2005 International Conference on Communications, Circuits and Systems (Vol. 2, pp. 1343–1347). Hong Kong, China.Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T. y Lehtonen, T. (2013). Agile methods for embedded systems development - a literature review and a mapping study. EURASIP Journal on Embedded Systems, 2013(1), 1–16.Kopec, D. y Tamang, S. (2007). Failures in complex systems: case studies, causes, and possible remedies. ACM SIGCSE Bulletin, 39(2), 180–184.Kundert, K., Chang, H., Jefferies, D., Lamant, G., Malavasi, E. y Sendig, F. (2000). Design of mixed-signal systems-on-a-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12), 1561–1571.Leffingwell, D. y Knaster, R. (2018). SAFe 4.5 Distilled: Applying the Scaled Agile Framework for Lean Enterprises (2a ed.). Boston, MA: Addison-Wesley Professional.Martínez Carazo, P. C. (2011). El método de estudio de caso Estrategia metodológica de la investigación científica. Revista científica Pensamiento y Gestión, (20), 165–193.Nacif, J. A., Silva, T. S., Vieira, L. F. M., Vieira, A. B., Fernandes, A. O. y Coelho, C. (2011). Tracking hardware evolution. En 2011 12th International Symposium on Quality Electronic Design (pp. 1–6). Santa Clara, USANguyen-Duc, A., Weng, X. y Abrahamsson, P. (2018). A preliminary study of agility in business and production: cases of early-stage hardware startups (p. 51). En Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. Oulu, Finland.Oktaba, H., Alquicira Esquivel, C., Su Ramos, A., Martínez, A., Quintanilla Osorio, G., Ruvalcaba López, M., … Flores Lemus, M. Á. (2005). Modelo de Procesos para la Industria de Software MoProSoft v1.3: Por Niveles de Capacidad de Procesos (Estándar Núm. NMX-059/02-NYCE-2005). México D.F.: Secretaría de Economía – México.PMI. (2010b, septiembre 9). What is Project Management? Recuperado el 13 de mayo de 2015, de Project Management Institute website: http://www.pmi.org/About-Us/About-Us-What-is-ProjectManagement.aspxRompaey, K. V., Verkest, D., Bolsens, I. y Man, H. D. (1996). CoWare-a design environment for heterogeneous hardware/software systems. En European Design Automation Conference with EUROVHDL ’96 and Exhibition Proceedings EURO-DAC ’96 (pp. 252–257). Geneva, Switzerland.Sifakis, J. (2011). A vision for computer science—the system perspective. Central European Journal of Computer Science, 1(1), 108–116.Simonette, M. J., Magalhães, M. E. S. y Spina, E. (2017). PMBOK and Essence: Partners for IoT Projects. En Software Engineering: Methods, Modeling, and Teaching (Vol. 4, pp. 211–223). Bogotá, Colombia: Bonaventuriana.Stol, K., Ralph, P. y Fitzgerald, B. (2016). Grounded Theory in Software Engineering Research: A Critical Review and Guidelines. En 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) (pp. 120–131). Austin, USA.Teodorov, C., Picard, D. y Lagadec, L. (2011). FPGA physical-design automation using ModelDriven Engineering. En 6 th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC) (pp. 1–6). Montpellier, FranceXue, R., Baron, C., Esteban, P. y Zheng, L. (2015). Analysis and comparison of project management standards and guides. Recent Advances in Mechanical Engineering Series. En International Conference on Mechanics, Materials, Mechanical Engineering and Chemical Engineering (MMMCE 2015). Barcelona, Spain.Zapater, M., Malagon, P., de Goyeneche, J.-M. y Moya, J. M. (2013). Project-Based Learning and Agile Methodologies in Electronic Courses: Effect of Student Population and Open Issues. Electronics, 17(2), 82–88.LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75744/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52ORIGINAL72000984.2019.pdf72000984.2019.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf4008516https://repositorio.unal.edu.co/bitstream/unal/75744/1/72000984.2019.pdf0cb5f2bd2102267ed472856cf80de66bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/75744/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL72000984.2019.pdf.jpg72000984.2019.pdf.jpgGenerated Thumbnailimage/jpeg4492https://repositorio.unal.edu.co/bitstream/unal/75744/4/72000984.2019.pdf.jpga1dd13d887375179952e81159209c5cdMD54unal/75744oai:repositorio.unal.edu.co:unal/757442024-07-08 23:40:20.621Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==