Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones
El trabajo final de maestría que aquí se presenta es una revisión de literatura de los avances en la extracción de metales mediante el uso de plantas, tema que ha tomado relevancia actualmente dado el principio de sostenibilidad en el cual está enmarcado. Esta tecnología usa la capacidad de algunas...
- Autores:
-
Bustos Contreras, Yordy Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79356
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/79356
- Palabra clave:
- 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Extracción de metales
Biomasa
Fitoremediación
Fitominería
Plantas hiperacumuladoras
Fitoextracción
Fitoestabilización
Sostenibilidad Minera
Minería metálica
Phytomining
Hyperaccumulators Plants
Bio- ores
Phyto-stabilization
Mining Sustainability
Metal Mining
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_f2fc08207d16191acaf95953919b16a0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79356 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
dc.title.translated.none.fl_str_mv |
Use of hyperacumulator plants in mining: concepts and applications |
title |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
spellingShingle |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados Extracción de metales Biomasa Fitoremediación Fitominería Plantas hiperacumuladoras Fitoextracción Fitoestabilización Sostenibilidad Minera Minería metálica Phytomining Hyperaccumulators Plants Bio- ores Phyto-stabilization Mining Sustainability Metal Mining |
title_short |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
title_full |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
title_fullStr |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
title_full_unstemmed |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
title_sort |
Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones |
dc.creator.fl_str_mv |
Bustos Contreras, Yordy Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Restrepo Baena, Oscar Jaime |
dc.contributor.author.none.fl_str_mv |
Bustos Contreras, Yordy Alejandro |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados |
topic |
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados Extracción de metales Biomasa Fitoremediación Fitominería Plantas hiperacumuladoras Fitoextracción Fitoestabilización Sostenibilidad Minera Minería metálica Phytomining Hyperaccumulators Plants Bio- ores Phyto-stabilization Mining Sustainability Metal Mining |
dc.subject.armarc.none.fl_str_mv |
Extracción de metales Biomasa Fitoremediación |
dc.subject.proposal.none.fl_str_mv |
Fitominería Plantas hiperacumuladoras Fitoextracción Fitoestabilización Sostenibilidad Minera Minería metálica Phytomining Hyperaccumulators Plants Bio- ores Phyto-stabilization Mining Sustainability Metal Mining |
description |
El trabajo final de maestría que aquí se presenta es una revisión de literatura de los avances en la extracción de metales mediante el uso de plantas, tema que ha tomado relevancia actualmente dado el principio de sostenibilidad en el cual está enmarcado. Esta tecnología usa la capacidad de algunas plantas de acumular metales para dar origen a “bio-menas” que además de remediar ambientes contaminados inmovilizando o capturando contaminantes, podría generar un beneficio económico adicional mediante la extracción y posterior comercialización de los metales asimilados. Así como la minería involucra diversos procesos para lograr la recuperación de los diferentes metales, la fitominería involucra especies particulares de plantas con la capacidad de acumular altas concentraciones de metales y generar biomasa que puede ser incluida en varias etapas del ciclo minero, por ejemplo como herramienta para la ubicación de objetivos en exploración, extracción de elementos con valor económico y en la mitigación de impactos por contaminación en el cierre de minas o remediación de pasivos ambientales. Este trabajo pretende mostrar las ventajas de los desarrollos de esta aplicación en los procesos de mayor relevancia dentro del ciclo minero e incentivar la investigación a nivel nacional, ya que existen problemas reales de contaminación como pasivos ambientales en pequeña minería metálica, presencia de metales pesados en fuentes hídricas, productos de un crecimiento industrial y poblacional desordenado, que aportan al medio ambiente metales tales como, cadmio, mercurio, plomo y arsénico los cuales podrían ser tóxicos para los organismos vivientes y requieren ser controlados. De igual forma se aportan otros iones metálicos como Ni, Au, Ag, Mn, Cu entre otros, los cuales pueden tener un aprovechamiento económico con el uso de esta tecnología, además, esta tecnología toma relevancia ya que es posible la existencia de las plantas identificadas por los autores estudiados con especies endémicas en el país, con lo cual es posible diseñar proyectos de interés económico con la aplicación de técnicas de fito-extracción y fito-estabilización del cual se presenta un caso de estudio. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-03-12T22:50:26Z |
dc.date.available.none.fl_str_mv |
2021-03-12T22:50:26Z |
dc.date.issued.none.fl_str_mv |
2021-02-28 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79356 |
url |
https://repositorio.unal.edu.co/handle/unal/79356 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
|
dc.relation.references.spa.fl_str_mv |
Ahlfeld, D. P., Mulvey, J. M., & Pinder, G. F. (1988). Contaminated groundwater remediation design using simulation, optimization and sensitivity theory: Analysis of a field site. Water Resources Research, 443–452. Anderson, C, Brooks, R. R., Chiarucci, A., Lacoste, C. J., Leblanc, M., Robinson, B. H., Simcock, R., & Stewart, R. B. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67(1–3), 407–415. https://doi.org/10.1016/S0375-6742(99)00055-2 Anderson, Christopher, Moreno, F., & Meech, J. (2005). A field demonstration of gold phytoextraction technology. Minerals Engineering, 18(4), 385–392. https://doi.org/10.1016/j.mineng.2004.07.002 Chaney, R. L., & Baklanov, I. A. (2017). Phytoremediation and Phytomining: Status and Promise. In Advances in Botanical Research (Vol. 83). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2016.12.006 Chaney, R. L., & Mahoney, M. (2014). Phytostabilization and Phytomining: Principles and successes. Advances in Botanical Research, April, 189–221. https://doi.org/10.1016/bs.abr.2016.12.006 Demkova, L., Jezny, T., & Bobulska, L. (2017). Assessment of soil heavy metal pollution in a former mining area - Before y after the end of mining activities. Soil and Water Resources Dunn, C., & Heberlein, D. R. (2020). Geochemical Investigation of Halogens in Spruce Treetops and Integration with Existing Multi-Element Data from the Blackwater Region and TREK Project Area , Central British Columbia ( NTS 093C , F ). 101–108. Farago, M. E. (2008). Plants and the chemical elements, Biochemistry, Uptake, Tolerance and toxicity. https://doi.org/10.1002/9783527615919.ch8 Ghori, Z., Iftikhar, H., Bhatti, M. F., Nasar-Um-Minullah, Sharma, I., Kazi, A. G., & Ahmad, P. (2015). Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction: Emerging Remediation Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803158-2.00015-1 Ghori, Z., Iftikhar, H., Bhatti, M. F., Nasar-Um-Minullah, Sharma, I., Kazi, A. G., & Ahmad, P. (2015). Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction: Emerging Remediation Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803158-2.00015-1 González Valdez, E., Alarcón, A., Ferrera Cerrato, R., Vega Carrillo, H. R., Maldonado Vega, M., Salas Luévano, M. Á., & Argumed Delira, R. (2018). Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds. Ecotoxicology and Environmental Safety, 154, 180–186. Kruckeberg, A. L., & Wu, L. (1992). Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines. Ecotoxicology and Environmental Safety, 23(3), 307–319. https://doi.org/10.1016/0147-6513(92)90080-M Martinez, R. E., Pourret, O., Faucon, M. P., & Dian, C. (2018). Effect of rare earth elements on rice plant growth. Chemical Geology, 489(April), 28–37.https://doi.org/10.1016/j.chemgeo.2018.05.012 Murphy, K., Efremov, A., Davidson, T. A., Molina-Navarro, E., Fidanza, K., Crivelari Betiol, T. C., Chambers, P., Tapia Grimaldo, J., Varandas Martins, S., Springuel, I., Kennedy, M., Mormul, R. P., Dibble, E., Hofstra, D., Lukács, B. A., Gebler, D., Baastrup-Spohr, L., & Urrutia-Estrada, J. (2019). World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany, 158(January), 103127. https://doi.org/10.1016/j.aquabot.2019.06.006 Pandey, V. C., & Bajpai, O. (2018). Phytoremediation: From Theory Toward Practice. In Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813912-7.00001-6 Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016 Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental Pollution. Series A, Ecological and Biological, 31(4), 277–285. https://doi.org/10.1016/0143-1471(83)90064-8 Tognacchini, A., Rosenkranz, T., van der Ent, A., Machinet, G. E., Echevarria, G., & Puschenreiter, M. (2020). Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 254. https://doi.org/10.1016/j.jenvman.2019.109798 Warra, A. A., & Prasad, M. N. V. (2018). Artisanal and Small-Scale Gold Mining Waste Rehabilitation With Energy Crops and Native Flora-A Case Study From Nigeria. In Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812986-9.00026-9 Wither, E. D., & Brooks, R. R. (1977). Hyperaccumulation of nickel by some plants of South-East Asia. Journal of Geochemical Exploration, 8, 579–583. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
92 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Minerales |
dc.publisher.department.spa.fl_str_mv |
Departamento de Materiales y Minerales |
dc.publisher.faculty.spa.fl_str_mv |
Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79356/3/1017153992_2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79356/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/79356/5/1017153992_2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
0b7616ce4c899b5b28a6ee480f0a7cac cccfe52f796b7c63423298c2d3365fc6 81ad32e2ebcc1e197283a8cf52836413 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089242182156288 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Restrepo Baena, Oscar Jaime34d86eb7-9838-43c7-b792-71fa7f181fbbBustos Contreras, Yordy Alejandro90c0fe5e-e304-4b29-a1b3-8c74df2319532021-03-12T22:50:26Z2021-03-12T22:50:26Z2021-02-28https://repositorio.unal.edu.co/handle/unal/79356El trabajo final de maestría que aquí se presenta es una revisión de literatura de los avances en la extracción de metales mediante el uso de plantas, tema que ha tomado relevancia actualmente dado el principio de sostenibilidad en el cual está enmarcado. Esta tecnología usa la capacidad de algunas plantas de acumular metales para dar origen a “bio-menas” que además de remediar ambientes contaminados inmovilizando o capturando contaminantes, podría generar un beneficio económico adicional mediante la extracción y posterior comercialización de los metales asimilados. Así como la minería involucra diversos procesos para lograr la recuperación de los diferentes metales, la fitominería involucra especies particulares de plantas con la capacidad de acumular altas concentraciones de metales y generar biomasa que puede ser incluida en varias etapas del ciclo minero, por ejemplo como herramienta para la ubicación de objetivos en exploración, extracción de elementos con valor económico y en la mitigación de impactos por contaminación en el cierre de minas o remediación de pasivos ambientales. Este trabajo pretende mostrar las ventajas de los desarrollos de esta aplicación en los procesos de mayor relevancia dentro del ciclo minero e incentivar la investigación a nivel nacional, ya que existen problemas reales de contaminación como pasivos ambientales en pequeña minería metálica, presencia de metales pesados en fuentes hídricas, productos de un crecimiento industrial y poblacional desordenado, que aportan al medio ambiente metales tales como, cadmio, mercurio, plomo y arsénico los cuales podrían ser tóxicos para los organismos vivientes y requieren ser controlados. De igual forma se aportan otros iones metálicos como Ni, Au, Ag, Mn, Cu entre otros, los cuales pueden tener un aprovechamiento económico con el uso de esta tecnología, además, esta tecnología toma relevancia ya que es posible la existencia de las plantas identificadas por los autores estudiados con especies endémicas en el país, con lo cual es posible diseñar proyectos de interés económico con la aplicación de técnicas de fito-extracción y fito-estabilización del cual se presenta un caso de estudio.The final master’s degree paper presented here is a literature review of the advances in the extraction of metals through the use of plants, a topic that has now taken on relevance given the principle of sustainability in which it is framed. This technology uses the capacity of some plants to accumulate metals to give rise to "bio-ores" that in addition to remediating contaminated environments by immobilizing or capturing pollutants, could generate additional economic benefit through the extraction and subsequent marketing of the assimilated metals. Just as mining involves various processes to achieve the recovery of different metals, plant health involves particular plant species with the ability to accumulate high concentrations of metals and to generate biomass that can be included in several stages of the mining cycle, for example as a tool for locating targets under exploration, extraction of elements with economic value and in mitigation of pollution impacts in the closure of mines or remediation of environmental liabilities. This paper aims to show the advantages of the developments of this application in the most relevant processes within the mining cycle and to encourage research at national level, because there are real problems of pollution such as environmental liabilities in small metal mining, presence of heavy metals in water sources products of a disorderly industrial and population growth, which provide the environment with metals such as cadmium, mercury, lead and arsenic to be toxic to living organisms and need to be controlled. Other metal ions, such as Ni, Au, Ag, Mn, Cu, among others, which can be used economically with the application of this technology, in addition, this technology takes on relevance since it is possible the existence of the plants identified by the authors studied with endemic species in the country, with which it is possible to design projects of economic interest with the application of phyto-extraction and phyto-stabilization techniques, of which a case study is presented.Maestría92 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos MineralesDepartamento de Materiales y MineralesMinasMedellínUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosExtracción de metalesBiomasaFitoremediaciónFitomineríaPlantas hiperacumuladorasFitoextracciónFitoestabilizaciónSostenibilidad MineraMinería metálicaPhytominingHyperaccumulators PlantsBio- oresPhyto-stabilizationMining SustainabilityMetal MiningUso de plantas hiperacumuladoras en minería conceptos y aplicacionesUse of hyperacumulator plants in mining: concepts and applicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhlfeld, D. P., Mulvey, J. M., & Pinder, G. F. (1988). Contaminated groundwater remediation design using simulation, optimization and sensitivity theory: Analysis of a field site. Water Resources Research, 443–452.Anderson, C, Brooks, R. R., Chiarucci, A., Lacoste, C. J., Leblanc, M., Robinson, B. H., Simcock, R., & Stewart, R. B. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67(1–3), 407–415. https://doi.org/10.1016/S0375-6742(99)00055-2Anderson, Christopher, Moreno, F., & Meech, J. (2005). A field demonstration of gold phytoextraction technology. Minerals Engineering, 18(4), 385–392. https://doi.org/10.1016/j.mineng.2004.07.002Chaney, R. L., & Baklanov, I. A. (2017). Phytoremediation and Phytomining: Status and Promise. In Advances in Botanical Research (Vol. 83). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2016.12.006Chaney, R. L., & Mahoney, M. (2014). Phytostabilization and Phytomining: Principles and successes. Advances in Botanical Research, April, 189–221. https://doi.org/10.1016/bs.abr.2016.12.006Demkova, L., Jezny, T., & Bobulska, L. (2017). Assessment of soil heavy metal pollution in a former mining area - Before y after the end of mining activities. Soil and Water ResourcesDunn, C., & Heberlein, D. R. (2020). Geochemical Investigation of Halogens in Spruce Treetops and Integration with Existing Multi-Element Data from the Blackwater Region and TREK Project Area , Central British Columbia ( NTS 093C , F ). 101–108.Farago, M. E. (2008). Plants and the chemical elements, Biochemistry, Uptake, Tolerance and toxicity. https://doi.org/10.1002/9783527615919.ch8Ghori, Z., Iftikhar, H., Bhatti, M. F., Nasar-Um-Minullah, Sharma, I., Kazi, A. G., & Ahmad, P. (2015). Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction: Emerging Remediation Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803158-2.00015-1Ghori, Z., Iftikhar, H., Bhatti, M. F., Nasar-Um-Minullah, Sharma, I., Kazi, A. G., & Ahmad, P. (2015). Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction: Emerging Remediation Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803158-2.00015-1González Valdez, E., Alarcón, A., Ferrera Cerrato, R., Vega Carrillo, H. R., Maldonado Vega, M., Salas Luévano, M. Á., & Argumed Delira, R. (2018). Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds. Ecotoxicology and Environmental Safety, 154, 180–186.Kruckeberg, A. L., & Wu, L. (1992). Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines. Ecotoxicology and Environmental Safety, 23(3), 307–319. https://doi.org/10.1016/0147-6513(92)90080-MMartinez, R. E., Pourret, O., Faucon, M. P., & Dian, C. (2018). Effect of rare earth elements on rice plant growth. Chemical Geology, 489(April), 28–37.https://doi.org/10.1016/j.chemgeo.2018.05.012Murphy, K., Efremov, A., Davidson, T. A., Molina-Navarro, E., Fidanza, K., Crivelari Betiol, T. C., Chambers, P., Tapia Grimaldo, J., Varandas Martins, S., Springuel, I., Kennedy, M., Mormul, R. P., Dibble, E., Hofstra, D., Lukács, B. A., Gebler, D., Baastrup-Spohr, L., & Urrutia-Estrada, J. (2019). World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany, 158(January), 103127. https://doi.org/10.1016/j.aquabot.2019.06.006Pandey, V. C., & Bajpai, O. (2018). Phytoremediation: From Theory Toward Practice. In Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813912-7.00001-6Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental Pollution. Series A, Ecological and Biological, 31(4), 277–285. https://doi.org/10.1016/0143-1471(83)90064-8Tognacchini, A., Rosenkranz, T., van der Ent, A., Machinet, G. E., Echevarria, G., & Puschenreiter, M. (2020). Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 254. https://doi.org/10.1016/j.jenvman.2019.109798Warra, A. A., & Prasad, M. N. V. (2018). Artisanal and Small-Scale Gold Mining Waste Rehabilitation With Energy Crops and Native Flora-A Case Study From Nigeria. In Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812986-9.00026-9Wither, E. D., & Brooks, R. R. (1977). Hyperaccumulation of nickel by some plants of South-East Asia. Journal of Geochemical Exploration, 8, 579–583.ORIGINAL1017153992_2021.pdf1017153992_2021.pdfTesis de Maestría en Ingeniería - Recursos Mineralesapplication/pdf1677417https://repositorio.unal.edu.co/bitstream/unal/79356/3/1017153992_2021.pdf0b7616ce4c899b5b28a6ee480f0a7cacMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79356/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54THUMBNAIL1017153992_2021.pdf.jpg1017153992_2021.pdf.jpgGenerated Thumbnailimage/jpeg5032https://repositorio.unal.edu.co/bitstream/unal/79356/5/1017153992_2021.pdf.jpg81ad32e2ebcc1e197283a8cf52836413MD55unal/79356oai:repositorio.unal.edu.co:unal/793562024-07-10 23:22:27.599Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |