Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
ilustraciones, diagramas, tablas
- Autores:
-
Amariles Franco, Diego Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81436
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado
Buildings - Energy Conservation
Edificios - Conservación de energía
Architecture and energy conservation
Arquitectura y conservación de energía
Dwellings - air conditioning
Aire acondicionado en viviendas
Air conditioning - Energy consumption
Aire acondicionado - Consumo de energía
Diseño HVAC
Eficiencia energética
Edificaciones
HVAC Design
Energy Efficciency
Buildings
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_f2f3b1e3f1b88cde116092e479d3958b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81436 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
dc.title.translated.eng.fl_str_mv |
Methodological guide for design based on the efficient use of energy for HVAC projects in buildings in tropical countries |
title |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
spellingShingle |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado Buildings - Energy Conservation Edificios - Conservación de energía Architecture and energy conservation Arquitectura y conservación de energía Dwellings - air conditioning Aire acondicionado en viviendas Air conditioning - Energy consumption Aire acondicionado - Consumo de energía Diseño HVAC Eficiencia energética Edificaciones HVAC Design Energy Efficciency Buildings |
title_short |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
title_full |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
title_fullStr |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
title_full_unstemmed |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
title_sort |
Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales |
dc.creator.fl_str_mv |
Amariles Franco, Diego Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Ospina Montoya, Álvaro León Franco Cardona, Carlos Jaime (Thesis advisor) |
dc.contributor.author.none.fl_str_mv |
Amariles Franco, Diego Alejandro |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado |
topic |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado Buildings - Energy Conservation Edificios - Conservación de energía Architecture and energy conservation Arquitectura y conservación de energía Dwellings - air conditioning Aire acondicionado en viviendas Air conditioning - Energy consumption Aire acondicionado - Consumo de energía Diseño HVAC Eficiencia energética Edificaciones HVAC Design Energy Efficciency Buildings |
dc.subject.lemb.none.fl_str_mv |
Buildings - Energy Conservation Edificios - Conservación de energía Architecture and energy conservation Arquitectura y conservación de energía Dwellings - air conditioning Aire acondicionado en viviendas Air conditioning - Energy consumption Aire acondicionado - Consumo de energía |
dc.subject.proposal.spa.fl_str_mv |
Diseño HVAC Eficiencia energética Edificaciones |
dc.subject.proposal.eng.fl_str_mv |
HVAC Design Energy Efficciency Buildings |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-04-04T13:45:25Z |
dc.date.available.none.fl_str_mv |
2022-04-04T13:45:25Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81436 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81436 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Airflow. (2015). Manual de difusión del Aire. Aparicio Ruiz, P., Sánchez De La Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74–84. https://doi.org/10.1016/j.enbuild.2016.03.023 Arroyo, P., Tommelein, I. D., Ballard, G., & Rumsey, P. (2016). Choosing by advantages: A case study for selecting an HVAC system for a net zero energy museum. Energy and Buildings, 111, 26–36. https://doi.org/10.1016/j.enbuild.2015.10.023 Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017a). Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy and Buildings, 144, 303–319. https://doi.org/10.1016/j.enbuild.2017.03.056 Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017b). Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167. https://doi.org/10.1016/j.enbuild.2017.08.004 ASHRAE. (2014). 2014 ASHRAE HANDBOOK. ASHRAE. (2015). 2015 ASHRAE HANDBOOK. AUTODESK. (2021a). ECOTEC. Retrieved May 17, 2021, from https://www.asidek.es/arquitectura-e-ingenieria/autodesk-ecotect-analysis/ AUTODESK. (2021b). Green Building Studio. Retrieved May 17, 2021, from https://gbs.autodesk.com/GBS/ AUTODESK. (2021c). Insight. Retrieved May 17, 2021, from https://insight360.autodesk.com/oneenergy Avgelis, A., & Papadopoulos, A. M. (2009). Application of multicriteria analysis in designing HVAC systems. Energy and Buildings, 41(7), 774–780. https://doi.org/10.1016/j.enbuild.2009.02.011 Bac, U., Alaloosi, K. A. M. S., & Turhan, C. (2021). A comprehensive evaluation of the most suitable HVAC system for an industrial building by using a hybrid building energy simulation and multi criteria decision making framework. Journal of Building Engineering, 37(January), 102153. https://doi.org/10.1016/j.jobe.2021.102153 Becchio, C., Corgnati, S. P., Orlietti, L., & Spigliantini, G. (2015). Proposal for a modified cost-optimal approach by introducing benefits evaluation. Energy Procedia, 82, 445–451. https://doi.org/10.1016/j.egypro.2015.11.835 Bennett, D., Edeling, A., Muller, C., & Zouggari, Y. (2015). Energy conservation and improved IAQ with existing ventilation standards. Healthy Buildings Europe 2015, HB 2015 - Conference Proceedings, 2015-May(September). BERKELEY LAB. (2021). WINDOW. Retrieved May 17, 2021, from https://windows.lbl.gov/software/window Berquist, J., Tessier, A., O’brien, W., Attar, R., & Khan, A. (2017). An investigation of generative design for heating, ventilation, and air-conditioning. Simulation Series, 49(11), 132–139. https://doi.org/10.22360/simaud.2017.simaud.018 Brown, H. L. (1985). Energy Analysis of 108 Industrial Processes (THE FAIRMONT PRESS INC, Ed.). CARRIER. (1970). Carrier Manual de Aire Acondicionado.pdf. CARRIER. (2020). Carrier air conditioning, heating, refrigeration and HVACR products and services. Retrieved July 8, 2020, from https://www.carrier.com/carrier/en/worldwide/ Chatzopoulou, M. A., Fisk, D., Keirstead, J., & Markides, C. N. (2016). Informing low carbon HVAC systems modelling and design, using a global sensitivity analysis framework. ASME 2016 10th International Conference on Energy Sustainability, ES 2016, Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 1(December). https://doi.org/10.1115/ES2016-59593 Chen, C. J., Chen, S. Y., Li, S. H., & Chiu, H. T. (2017). Green BIM-based building energy performance analysis. Computer-Aided Design and Applications, 14(5), 650–660. https://doi.org/10.1080/16864360.2016.1273582 Chen, S. Y. (2018). A green building information modelling approach: Building energy performance analysis and design optimization. MATEC Web of Conferences, 169. https://doi.org/10.1051/matecconf/201816901004 Cho, J., Kim, Y., Koo, J., & Park, W. (2018). Energy-cost analysis of HVAC system for office buildings: Development of a multiple prediction methodology for HVAC system cost estimation. Energy and Buildings, 173, 562–576. https://doi.org/10.1016/j.enbuild.2018.05.019 Comision Federal de Energia. (2020). cO. Retrieved from https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/GranDemandaMTO.aspx Commission, E. (2009). Reference Document on Best Available Techniques for PROCESS. (February). Connecticut, & Protection, D. of E. and E. (n.d.). Energy Efficiency. Retrieved from https://portal.ct.gov/DEEP/Energy/Energy-Efficiency CYPE. (2021). CYPETHERMS LOAD. Retrieved May 17, 2021, from http://cypetherm-loads.cype.es/ DAIKIN. (2020). Daikin Global. Retrieved July 8, 2020, from https://www.daikin.com/ DANE. (2021). Producto Interno Bruto -PIB- nacional trimestral. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnica DesignBuilder. (2021). DesignBuilder. Retrieved May 17, 2021, from https://www.designbuilder-lat.com/caracteristicas/descripcion-general DEXMA. (2020). LEGISLACIÓN DE ENERGÍA Y SOSTENIBILIDAD UNA GUÍA GLOBAL PARA GESTORES ENERGÉTICOS. Dongellini, M., & Morini, G. L. (2019). On-off cycling losses of reversible air-to-water heat pump systems as a function of the unit power modulation capacity. Energy Conversion and Management, 196(March), 966–978. https://doi.org/10.1016/j.enconman.2019.06.022 EDERSA. (2020). CUADRO TARIFARIO PROVISORIO Aprobado por. 21, 2020. Retrieved from http://www.edersa.com.ar/V3.0/wp-content/uploads/2020/05/CT-Mayo-2020-Julio-2020.pdf Efficiency, E. (2019a). BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS FOR THE 2019 BUILDING. (December 2018). Retrieved from https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency Efficiency, E. (2019b). REFERENCE APPENDICES FOR THE 2019 BUILDING. (December 2018). EIA. (2020). Electric Power Monthly. Retrieved from https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a Elnabawi, M. H. (2020). Building Information Modeling-Based Building Energy Modeling: Investigation of Interoperability and Simulation Results. Frontiers in Built Environment, 6(December), 1–19. https://doi.org/10.3389/fbuil.2020.573971 EPM. Octubre 2019 Industrial y Comercial. , (2019). ESP-r. (2021). ESP-r. Retrieved May 17, 2021, from http://www.esru.strath.ac.uk/Courseware/ESP-r/tour/ EUROSTAT. (2020a). Electricity prices for household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do EUROSTAT. (2020b). Electricity prices for non-household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288. https://doi.org/10.1016/j.rser.2013.03.004 FRAUNHOFER. (2021). WUFI. Retrieved May 17, 2021, from https://wufi.de/en/ Funds, I., & Schemes, E. O. (2019). Clean energy for all The new Energy efficiency measures. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_energyefficiency.pdf Gagarin, V. G., Lushin, K. I., Kozlov, V. V., & Neklyudov, A. Y. (2016). Path of Optimized Engineering of HVAC Systems. Procedia Engineering, 146, 103–111. https://doi.org/10.1016/j.proeng.2016.06.359 Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238(December 2018), 320–343. https://doi.org/10.1016/j.apenergy.2019.01.032 Gatley, D. P. (2013). Understanding Psychrometrics Third Edition. GLACIAR. (2020). Glaciar Ingeniería | Sistemas de enfriamiento evaporativo. Retrieved July 8, 2020, from https://glaciaringenieria.com.co/ global petrol prices. (2020). Brazil electricity prices. Retrieved from https://www.globalpetrolprices.com/Brazil/electricity_prices/ Goberna, R. (n.d.). Ventilacion Industrial.pdf (1st ed.). 1992. Gourlis, G., & Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings – A case study. Renewable and Sustainable Energy Reviews, 68, 953–963. https://doi.org/10.1016/j.rser.2016.02.009 Government Canada. (2021). RETScreen. Retrieved May 17, 2021, from https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465 Government, F. (2017). Saving Energy in Industrial Companies : Case Studies of Energy Efficiency Programs in Large U . S . Industrial Corporations and the Role of Ratepayer-Funded Support Industrial Energy Efficiency and Combined Heat and Power. (March 2017). Hamedani, M. N., & Smith, R. E. (2015). Evaluation of Performance Modelling: Optimizing Simulation Tools to Stages of Architectural Design. Procedia Engineering, 118, 774–780. https://doi.org/10.1016/j.proeng.2015.08.513 Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90–106. https://doi.org/10.1016/j.apenergy.2014.03.052 Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81–90. https://doi.org/10.1016/j.buildenv.2013.07.019 Ionescu, C., Baracu, T., Vlad, G., Necula, H., & Badea, A. (2015). The historical evolution of the energy ef fi cient buildings. 49, 243–253. https://doi.org/10.1016/j.rser.2015.04.062 Jallow, A. K., Lee, S., Castronovo, F., Zhang, Y., Chunduri, S., & Messner, J. I. (2013). Process-based information exchanges mapping for energy efficient retrofit projects. Computing in Civil Engineering - Proceedings of the 2013 ASCE International Workshop on Computing in Civil Engineering, 234–241. https://doi.org/10.1061/9780784413029.030 James J. Hirsch. (2021). DOE-2. Retrieved May 17, 2021, from https://www.doe2.com/ Kamel, E., & Memari, A. M. (2018). Automated Building Energy Modeling and Assessment Tool (ABEMAT). Energy, 147, 15–24. https://doi.org/10.1016/j.energy.2018.01.023 Kim, D., Cho, H., Koh, J., & Im, P. (2020). Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems. Renewable and Sustainable Energy Reviews, 118(November 2019), 109508. https://doi.org/10.1016/j.rser.2019.109508 Kim, Y. J., Ahn, K. U., & Park, C. S. (2014). Decision making of HVAC system using Bayesian Markov chain Monte Carlo method. Energy and Buildings, 72, 112–121. https://doi.org/10.1016/j.enbuild.2013.12.039 Kolokotsa, D., Diakaki, C., Grigoroudis, E., Stavrakakis, G., & Kalaitzakis, K. (2009). Decision support methodologies on the energy efficiency and energy management in buildings. 3, 121–146. https://doi.org/10.3763/aber.2009.0305 Koulamas, C., Kalogeras, A. P., Pacheco-Torres, R., Casillas, J., & Ferrarini, L. (2018). Suitability analysis of modeling and assessment approaches in energy efficiency in buildings. Energy and Buildings, 158, 1662–1682. https://doi.org/10.1016/j.enbuild.2017.12.002 Law, P. (2005). ENERGY POLICY ACT OF 2005 An Act. 1–551. Retrieved from https://www.govinfo.gov/content/pkg/PLAW-109publ58/pdf/PLAW-109publ58.pdf LG. (2020). LG Air Conditioning Technologies. Retrieved July 8, 2020, from https://www.lghvac.com/ Luigi Schibuola , Massimiliano Scarpa, and C. T. (2013). MODELLING OF HVAC SYSTEM COMPONENTS FOR BUILDING DYNAMIC SIMULATION Air-to-water on-off control. 1103–1109. Mahiwal, S. G., Bhoi, M. K., & Bhatt, N. (2021). Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology. Asian Journal of Civil Engineering, (0123456789). https://doi.org/10.1007/s42107-021-00352-5 Mauro, G. M., Hamdy, M., Vanoli, G. P., Bianco, N., & Hensen, J. L. M. (2015). A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy and Buildings, 107, 456–478. https://doi.org/10.1016/j.enbuild.2015.08.044 Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577–591. https://doi.org/10.1016/j.apenergy.2015.04.090 NREL, ANL, LBNL, ORNL, and P. (2021). OpenStudio. Retrieved May 17, 2021, from https://www.openstudio.net/ Office of Energy Efficiency & Renewable Energy. (2020). Federal Laws and Requirements Search. Retrieved from https://www4.eere.energy.gov/femp/requirements/ OLADE. (2018). MRV Methodology For Energy Efficiency Implementation Measures In Commercial And Public Buildings For Countries Of The Caribbean Region 1. Pantelic, J., Raphael, B., & Tham, K. W. (2012). A preference driven multi-criteria optimization tool for HVAC design and operation. Energy and Buildings, 55, 118–126. https://doi.org/10.1016/j.enbuild.2012.04.021 Petersen, P. M., & Sullivan, J. O. (2012). Energy Efficient Design – a methodology applied in major international projects. 181–192. Picallo-Perez, A., Catrini, P., Piacentino, A., & Sala, J. M. (2019). A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy, 180, 819–837. https://doi.org/10.1016/j.energy.2019.05.098 Rafati Sokhangoo, L., Orenga Panizza, R., Nik-Bakht, M., & Han, S. H. (2019). Conceptual cost models for energy simulation in building projects. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2019-June(Jalaei 2015), 1–10. Romain Farel, A. B., & Loges, chemin de la P. des. (2014). Energy Efficiency of Industrial Systems : A Design Research Perspective. (August). https://doi.org/10.1115/DETC2014-35056 Roman, N. D., Bre, F., Fachinotti, V. D., & Lamberts, R. (2020). Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy and Buildings, 217. https://doi.org/10.1016/j.enbuild.2020.109972 RWTH Aachen University, E.ON Energy Research Center, I. for E. E. B. and I. C. (EBC). (2021). AixLib. Retrieved May 17, 2021, from https://github.com/RWTH-EBC/AixLib SAMSUNG. (2000). Technical Data Book VRF STANDAR. SAMSUNG. (2020). Samsung HVAC. Retrieved July 8, 2020, from https://www.samsunghvac.com/ Shahrestani, M., Yao, R., & Cook, G. K. (2018). A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy and Buildings, 159, 398–418. https://doi.org/10.1016/j.enbuild.2017.10.089 Shahrestani, M., Yao, R., Cook, G. K., & Clements-Croome, D. (2018). Decision-making on HVAC&R systems selection: a critical review. Intelligent Buildings International, 10(3), 133–153. https://doi.org/10.1080/17508975.2017.1333948 Sharif, S. A., & Hammad, A. (2019). Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment. Journal of Building Engineering, 21(November 2018), 429–445. https://doi.org/10.1016/j.jobe.2018.11.006 Singh, M. M., Singaravel, S., Klein, R., & Geyer, P. (2020). Quick energy prediction and comparison of options at the early design stage. Advanced Engineering Informatics, 46(July), 101185. https://doi.org/10.1016/j.aei.2020.101185 SOLEMNA. (2021). DIVA. Retrieved May 17, 2021, from https://www.solemma.com/diva Soler & Palau. (1997). Manual práctico de Ventilación. In Real Farmacopea Española I Tomo. Madrid: (Vol. 1). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sistemas+de+Ventilaci?n#8 Solmaz, A. S. (2019). A critical review on building performance simulation tools. Alam Cipta, 12(2), 7–21. Stanescu, M., Kajl, S., & Lamarche, L. (2013). Simplified optimization method for preliminary design of HVAC system and real building application. HVAC and R Research, 19(3), 213–229. https://doi.org/10.1080/10789669.2012.755904 TECAM. (2020). TECAM S.A. | Sistemas de Aire Acondicionado y RefrigeraTción. Retrieved July 8, 2020, from http://tecam-sa.com/ The independent institute for outstanding energy efficiency in buildings. (2021). PHPP. Retrieved May 17, 2021, from https://passivehouse.com/04_phpp/04_phpp.htm The New York State Senate. (2020). The Laws Of New York. Retrieved from https://www.nysenate.gov/legislation/laws/ENG Tian, Z., Si, B., Shi, X., & Fang, Z. (2019). An application of Bayesian Network approach for selecting energy efficient HVAC systems. Journal of Building Engineering, Vol. 25. https://doi.org/10.1016/j.jobe.2019.100796 TRANE. (2020). TRANE. Retrieved July 8, 2020, from https://www.trane.com/commercial/north-america/us/en.html TRANE. (2021). TRACE 700. Retrieved May 17, 2021, from https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/trace-700.html TRNSYS. (2021). TRNSYS. Retrieved May 17, 2021, from http://www.trnsys.com/ UPB, & ACAIRE. (2017). Diplomado Aire Acondicionado UPB-ACAIRE. UPME. (2019a). Balance de Energía Útil 2015. UPME. (2019b). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. 20. Retrieved from https://www1.upme.gov.co/Hemeroteca/Paginas/estudio-primer-balance-energia-util-para-Colombia.aspx US Dept. of Energy. (2021). Best Directory. Retrieved from https://www.buildingenergysoftwaretools.com/ Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049 Zhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., … Zuo, J. (2016). The operational performance of “net zero energy building”: A study in China. Applied Energy, 177, 716–728. https://doi.org/10.1016/j.apenergy.2016.05.093 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 99 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81436/1/1017207725.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81436/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81436/3/1017207725.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
3d7c860e39b0bf9e29a39f3d79f09ec5 8153f7789df02f0a4c9e079953658ab2 e1f8c07016b197caf35321fff0a8ebae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089687673864192 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospina Montoya, Álvaro Leónd946e3493abefc93d3e3d71a826e382dFranco Cardona, Carlos Jaime (Thesis advisor)f4e7548d7a1872856f688990e99a72f4600Amariles Franco, Diego Alejandroc9d19c6650d3406e0cfa53850e6f78d42022-04-04T13:45:25Z2022-04-04T13:45:25Z2021https://repositorio.unal.edu.co/handle/unal/81436Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn el 2019 la UPME presento los resultados del primer balance de energía útil en Colombia, en este estudio, se identificó que en el año 2015 de la energía producida (1077 PJ), solo el 33% era útil, es decir 338,3 PJ, además, indicaba que si se reemplaza por tecnologías de referencia y mejores tecnologías se podría tener un ahorro potencial de 6,6 a 11 mil millones de dólares al año (UPME, 2019a). En el sector terciario, el aire acondicionado, podría tener un potencial de ahorro de energía de 3,5 a 5,5 PJ al año y en dinero de 140 a 250 millones de dólares al año (UPME, 2019a), lo cual podría representar 0,05 a 0,09% del PIB de Colombia (DANE, 2021). En la revisión de literatura se identificaron metodologías para mejorar la eficiencia energética de las edificaciones desde el diseño de los sistemas de aire acondicionado, abordando puntos específicos del diseño, como lo son la selección de sistemas primarios(Tian, Si, Shi, & Fang, 2019), selección de criterios(Bennett, Edeling, Muller, & Zouggari, 2015), con este análisis se encuentra que hace falta una visión holística y heurística en los diseños de los sistemas de aire acondicionado, por lo cual el objetivo de este trabajo es el desarrollo de una guía metodológica de diseño basado en el uso eficiente de energía para sistemas HVAC en edificaciones en países tropicales, esto se hace con base en tres pilares, comparación temprana de equipos y sistemas, selección de equipos teniendo en cuenta el corto y largo plazo y por último teniendo en cuenta las condiciones de operación y como esto afecta el rendimiento de los sistemas. (Terxto tomado de la fuente)In 2019, the UPME presented the results of the first useful energy balance in Colombia, in this study, it was identified that in 2015 of the energy produced (1077 PJ), only 33% was useful, that is, 338.3 PJ Furthermore, it indicated that if it is replaced by reference technologies and better technologies, there could be a potential saving of 6,6 to 11 billion dollars per year (UPME, 2019a). In the tertiary sector, air conditioning could have an energy saving potential of 3.5 to 5.5 PJ per year and in money of 140 to 250 million dollars per year (UPME, 2019a), which could represent 0.05 to 0.09% of Colombia's PIB (DANE, 2021). In the literature review, methodologies were identified to improve the energy efficiency of buildings from the design of air conditioning systems, addressing specific design points, such as the selection of primary systems (Tian, Si, Shi, & Fang, 2019), selection of criteria (Bennett, Edeling, Muller, & Zouggari, 2015), with this analysis it is found that a holistic and heuristic vision is needed in the designs of air conditioning systems, for which The objective of this work is the development of a design methodological guide based on the efficient use of energy for HVAC systems in buildings in tropical countries, this is done based on three pillars, early comparison of equipment and systems, selection of equipment having taking into account the short and long term and finally taking into account the operating conditions and how this affects the performance of the systems.MaestríaMagíster en Ingeniería - Sistemas EnergéticosEficiencia energética en edificacionesÁrea Curricular de Ingeniería de Sistemas e Informáticaxv, 99 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Sistemas EnergéticosDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionadoBuildings - Energy ConservationEdificios - Conservación de energíaArchitecture and energy conservationArquitectura y conservación de energíaDwellings - air conditioningAire acondicionado en viviendasAir conditioning - Energy consumptionAire acondicionado - Consumo de energíaDiseño HVACEficiencia energéticaEdificacionesHVAC DesignEnergy EfficciencyBuildingsGuía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicalesMethodological guide for design based on the efficient use of energy for HVAC projects in buildings in tropical countriesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAirflow. (2015). Manual de difusión del Aire.Aparicio Ruiz, P., Sánchez De La Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74–84. https://doi.org/10.1016/j.enbuild.2016.03.023Arroyo, P., Tommelein, I. D., Ballard, G., & Rumsey, P. (2016). Choosing by advantages: A case study for selecting an HVAC system for a net zero energy museum. Energy and Buildings, 111, 26–36. https://doi.org/10.1016/j.enbuild.2015.10.023Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017a). Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy and Buildings, 144, 303–319. https://doi.org/10.1016/j.enbuild.2017.03.056Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017b). Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167. https://doi.org/10.1016/j.enbuild.2017.08.004ASHRAE. (2014). 2014 ASHRAE HANDBOOK.ASHRAE. (2015). 2015 ASHRAE HANDBOOK.AUTODESK. (2021a). ECOTEC. Retrieved May 17, 2021, from https://www.asidek.es/arquitectura-e-ingenieria/autodesk-ecotect-analysis/AUTODESK. (2021b). Green Building Studio. Retrieved May 17, 2021, from https://gbs.autodesk.com/GBS/AUTODESK. (2021c). Insight. Retrieved May 17, 2021, from https://insight360.autodesk.com/oneenergyAvgelis, A., & Papadopoulos, A. M. (2009). Application of multicriteria analysis in designing HVAC systems. Energy and Buildings, 41(7), 774–780. https://doi.org/10.1016/j.enbuild.2009.02.011Bac, U., Alaloosi, K. A. M. S., & Turhan, C. (2021). A comprehensive evaluation of the most suitable HVAC system for an industrial building by using a hybrid building energy simulation and multi criteria decision making framework. Journal of Building Engineering, 37(January), 102153. https://doi.org/10.1016/j.jobe.2021.102153Becchio, C., Corgnati, S. P., Orlietti, L., & Spigliantini, G. (2015). Proposal for a modified cost-optimal approach by introducing benefits evaluation. Energy Procedia, 82, 445–451. https://doi.org/10.1016/j.egypro.2015.11.835Bennett, D., Edeling, A., Muller, C., & Zouggari, Y. (2015). Energy conservation and improved IAQ with existing ventilation standards. Healthy Buildings Europe 2015, HB 2015 - Conference Proceedings, 2015-May(September).BERKELEY LAB. (2021). WINDOW. Retrieved May 17, 2021, from https://windows.lbl.gov/software/windowBerquist, J., Tessier, A., O’brien, W., Attar, R., & Khan, A. (2017). An investigation of generative design for heating, ventilation, and air-conditioning. Simulation Series, 49(11), 132–139. https://doi.org/10.22360/simaud.2017.simaud.018Brown, H. L. (1985). Energy Analysis of 108 Industrial Processes (THE FAIRMONT PRESS INC, Ed.).CARRIER. (1970). Carrier Manual de Aire Acondicionado.pdf.CARRIER. (2020). Carrier air conditioning, heating, refrigeration and HVACR products and services. Retrieved July 8, 2020, from https://www.carrier.com/carrier/en/worldwide/Chatzopoulou, M. A., Fisk, D., Keirstead, J., & Markides, C. N. (2016). Informing low carbon HVAC systems modelling and design, using a global sensitivity analysis framework. ASME 2016 10th International Conference on Energy Sustainability, ES 2016, Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 1(December). https://doi.org/10.1115/ES2016-59593Chen, C. J., Chen, S. Y., Li, S. H., & Chiu, H. T. (2017). Green BIM-based building energy performance analysis. Computer-Aided Design and Applications, 14(5), 650–660. https://doi.org/10.1080/16864360.2016.1273582Chen, S. Y. (2018). A green building information modelling approach: Building energy performance analysis and design optimization. MATEC Web of Conferences, 169. https://doi.org/10.1051/matecconf/201816901004Cho, J., Kim, Y., Koo, J., & Park, W. (2018). Energy-cost analysis of HVAC system for office buildings: Development of a multiple prediction methodology for HVAC system cost estimation. Energy and Buildings, 173, 562–576. https://doi.org/10.1016/j.enbuild.2018.05.019Comision Federal de Energia. (2020). cO. Retrieved from https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/GranDemandaMTO.aspxCommission, E. (2009). Reference Document on Best Available Techniques for PROCESS. (February).Connecticut, & Protection, D. of E. and E. (n.d.). Energy Efficiency. Retrieved from https://portal.ct.gov/DEEP/Energy/Energy-EfficiencyCYPE. (2021). CYPETHERMS LOAD. Retrieved May 17, 2021, from http://cypetherm-loads.cype.es/DAIKIN. (2020). Daikin Global. Retrieved July 8, 2020, from https://www.daikin.com/DANE. (2021). Producto Interno Bruto -PIB- nacional trimestral. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnicaDesignBuilder. (2021). DesignBuilder. Retrieved May 17, 2021, from https://www.designbuilder-lat.com/caracteristicas/descripcion-generalDEXMA. (2020). LEGISLACIÓN DE ENERGÍA Y SOSTENIBILIDAD UNA GUÍA GLOBAL PARA GESTORES ENERGÉTICOS.Dongellini, M., & Morini, G. L. (2019). On-off cycling losses of reversible air-to-water heat pump systems as a function of the unit power modulation capacity. Energy Conversion and Management, 196(March), 966–978. https://doi.org/10.1016/j.enconman.2019.06.022EDERSA. (2020). CUADRO TARIFARIO PROVISORIO Aprobado por. 21, 2020. Retrieved from http://www.edersa.com.ar/V3.0/wp-content/uploads/2020/05/CT-Mayo-2020-Julio-2020.pdfEfficiency, E. (2019a). BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS FOR THE 2019 BUILDING. (December 2018). Retrieved from https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiencyEfficiency, E. (2019b). REFERENCE APPENDICES FOR THE 2019 BUILDING. (December 2018).EIA. (2020). Electric Power Monthly. Retrieved from https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_aElnabawi, M. H. (2020). Building Information Modeling-Based Building Energy Modeling: Investigation of Interoperability and Simulation Results. Frontiers in Built Environment, 6(December), 1–19. https://doi.org/10.3389/fbuil.2020.573971EPM. Octubre 2019 Industrial y Comercial. , (2019).ESP-r. (2021). ESP-r. Retrieved May 17, 2021, from http://www.esru.strath.ac.uk/Courseware/ESP-r/tour/EUROSTAT. (2020a). Electricity prices for household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doEUROSTAT. (2020b). Electricity prices for non-household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doFoucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288. https://doi.org/10.1016/j.rser.2013.03.004FRAUNHOFER. (2021). WUFI. Retrieved May 17, 2021, from https://wufi.de/en/Funds, I., & Schemes, E. O. (2019). Clean energy for all The new Energy efficiency measures. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_energyefficiency.pdfGagarin, V. G., Lushin, K. I., Kozlov, V. V., & Neklyudov, A. Y. (2016). Path of Optimized Engineering of HVAC Systems. Procedia Engineering, 146, 103–111. https://doi.org/10.1016/j.proeng.2016.06.359Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238(December 2018), 320–343. https://doi.org/10.1016/j.apenergy.2019.01.032Gatley, D. P. (2013). Understanding Psychrometrics Third Edition.GLACIAR. (2020). Glaciar Ingeniería | Sistemas de enfriamiento evaporativo. Retrieved July 8, 2020, from https://glaciaringenieria.com.co/global petrol prices. (2020). Brazil electricity prices. Retrieved from https://www.globalpetrolprices.com/Brazil/electricity_prices/Goberna, R. (n.d.). Ventilacion Industrial.pdf (1st ed.). 1992.Gourlis, G., & Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings – A case study. Renewable and Sustainable Energy Reviews, 68, 953–963. https://doi.org/10.1016/j.rser.2016.02.009Government Canada. (2021). RETScreen. Retrieved May 17, 2021, from https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465Government, F. (2017). Saving Energy in Industrial Companies : Case Studies of Energy Efficiency Programs in Large U . S . Industrial Corporations and the Role of Ratepayer-Funded Support Industrial Energy Efficiency and Combined Heat and Power. (March 2017).Hamedani, M. N., & Smith, R. E. (2015). Evaluation of Performance Modelling: Optimizing Simulation Tools to Stages of Architectural Design. Procedia Engineering, 118, 774–780. https://doi.org/10.1016/j.proeng.2015.08.513Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90–106. https://doi.org/10.1016/j.apenergy.2014.03.052Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81–90. https://doi.org/10.1016/j.buildenv.2013.07.019Ionescu, C., Baracu, T., Vlad, G., Necula, H., & Badea, A. (2015). The historical evolution of the energy ef fi cient buildings. 49, 243–253. https://doi.org/10.1016/j.rser.2015.04.062Jallow, A. K., Lee, S., Castronovo, F., Zhang, Y., Chunduri, S., & Messner, J. I. (2013). Process-based information exchanges mapping for energy efficient retrofit projects. Computing in Civil Engineering - Proceedings of the 2013 ASCE International Workshop on Computing in Civil Engineering, 234–241. https://doi.org/10.1061/9780784413029.030James J. Hirsch. (2021). DOE-2. Retrieved May 17, 2021, from https://www.doe2.com/Kamel, E., & Memari, A. M. (2018). Automated Building Energy Modeling and Assessment Tool (ABEMAT). Energy, 147, 15–24. https://doi.org/10.1016/j.energy.2018.01.023Kim, D., Cho, H., Koh, J., & Im, P. (2020). Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems. Renewable and Sustainable Energy Reviews, 118(November 2019), 109508. https://doi.org/10.1016/j.rser.2019.109508Kim, Y. J., Ahn, K. U., & Park, C. S. (2014). Decision making of HVAC system using Bayesian Markov chain Monte Carlo method. Energy and Buildings, 72, 112–121. https://doi.org/10.1016/j.enbuild.2013.12.039Kolokotsa, D., Diakaki, C., Grigoroudis, E., Stavrakakis, G., & Kalaitzakis, K. (2009). Decision support methodologies on the energy efficiency and energy management in buildings. 3, 121–146. https://doi.org/10.3763/aber.2009.0305Koulamas, C., Kalogeras, A. P., Pacheco-Torres, R., Casillas, J., & Ferrarini, L. (2018). Suitability analysis of modeling and assessment approaches in energy efficiency in buildings. Energy and Buildings, 158, 1662–1682. https://doi.org/10.1016/j.enbuild.2017.12.002Law, P. (2005). ENERGY POLICY ACT OF 2005 An Act. 1–551. Retrieved from https://www.govinfo.gov/content/pkg/PLAW-109publ58/pdf/PLAW-109publ58.pdfLG. (2020). LG Air Conditioning Technologies. Retrieved July 8, 2020, from https://www.lghvac.com/Luigi Schibuola , Massimiliano Scarpa, and C. T. (2013). MODELLING OF HVAC SYSTEM COMPONENTS FOR BUILDING DYNAMIC SIMULATION Air-to-water on-off control. 1103–1109.Mahiwal, S. G., Bhoi, M. K., & Bhatt, N. (2021). Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology. Asian Journal of Civil Engineering, (0123456789). https://doi.org/10.1007/s42107-021-00352-5Mauro, G. M., Hamdy, M., Vanoli, G. P., Bianco, N., & Hensen, J. L. M. (2015). A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy and Buildings, 107, 456–478. https://doi.org/10.1016/j.enbuild.2015.08.044Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577–591. https://doi.org/10.1016/j.apenergy.2015.04.090NREL, ANL, LBNL, ORNL, and P. (2021). OpenStudio. Retrieved May 17, 2021, from https://www.openstudio.net/Office of Energy Efficiency & Renewable Energy. (2020). Federal Laws and Requirements Search. Retrieved from https://www4.eere.energy.gov/femp/requirements/OLADE. (2018). MRV Methodology For Energy Efficiency Implementation Measures In Commercial And Public Buildings For Countries Of The Caribbean Region 1.Pantelic, J., Raphael, B., & Tham, K. W. (2012). A preference driven multi-criteria optimization tool for HVAC design and operation. Energy and Buildings, 55, 118–126. https://doi.org/10.1016/j.enbuild.2012.04.021Petersen, P. M., & Sullivan, J. O. (2012). Energy Efficient Design – a methodology applied in major international projects. 181–192.Picallo-Perez, A., Catrini, P., Piacentino, A., & Sala, J. M. (2019). A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy, 180, 819–837. https://doi.org/10.1016/j.energy.2019.05.098Rafati Sokhangoo, L., Orenga Panizza, R., Nik-Bakht, M., & Han, S. H. (2019). Conceptual cost models for energy simulation in building projects. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2019-June(Jalaei 2015), 1–10.Romain Farel, A. B., & Loges, chemin de la P. des. (2014). Energy Efficiency of Industrial Systems : A Design Research Perspective. (August). https://doi.org/10.1115/DETC2014-35056Roman, N. D., Bre, F., Fachinotti, V. D., & Lamberts, R. (2020). Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy and Buildings, 217. https://doi.org/10.1016/j.enbuild.2020.109972RWTH Aachen University, E.ON Energy Research Center, I. for E. E. B. and I. C. (EBC). (2021). AixLib. Retrieved May 17, 2021, from https://github.com/RWTH-EBC/AixLibSAMSUNG. (2000). Technical Data Book VRF STANDAR.SAMSUNG. (2020). Samsung HVAC. Retrieved July 8, 2020, from https://www.samsunghvac.com/Shahrestani, M., Yao, R., & Cook, G. K. (2018). A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy and Buildings, 159, 398–418. https://doi.org/10.1016/j.enbuild.2017.10.089Shahrestani, M., Yao, R., Cook, G. K., & Clements-Croome, D. (2018). Decision-making on HVAC&R systems selection: a critical review. Intelligent Buildings International, 10(3), 133–153. https://doi.org/10.1080/17508975.2017.1333948Sharif, S. A., & Hammad, A. (2019). Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment. Journal of Building Engineering, 21(November 2018), 429–445. https://doi.org/10.1016/j.jobe.2018.11.006Singh, M. M., Singaravel, S., Klein, R., & Geyer, P. (2020). Quick energy prediction and comparison of options at the early design stage. Advanced Engineering Informatics, 46(July), 101185. https://doi.org/10.1016/j.aei.2020.101185SOLEMNA. (2021). DIVA. Retrieved May 17, 2021, from https://www.solemma.com/divaSoler & Palau. (1997). Manual práctico de Ventilación. In Real Farmacopea Española I Tomo. Madrid: (Vol. 1). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sistemas+de+Ventilaci?n#8Solmaz, A. S. (2019). A critical review on building performance simulation tools. Alam Cipta, 12(2), 7–21.Stanescu, M., Kajl, S., & Lamarche, L. (2013). Simplified optimization method for preliminary design of HVAC system and real building application. HVAC and R Research, 19(3), 213–229. https://doi.org/10.1080/10789669.2012.755904TECAM. (2020). TECAM S.A. | Sistemas de Aire Acondicionado y RefrigeraTción. Retrieved July 8, 2020, from http://tecam-sa.com/The independent institute for outstanding energy efficiency in buildings. (2021). PHPP. Retrieved May 17, 2021, from https://passivehouse.com/04_phpp/04_phpp.htmThe New York State Senate. (2020). The Laws Of New York. Retrieved from https://www.nysenate.gov/legislation/laws/ENGTian, Z., Si, B., Shi, X., & Fang, Z. (2019). An application of Bayesian Network approach for selecting energy efficient HVAC systems. Journal of Building Engineering, Vol. 25. https://doi.org/10.1016/j.jobe.2019.100796TRANE. (2020). TRANE. Retrieved July 8, 2020, from https://www.trane.com/commercial/north-america/us/en.htmlTRANE. (2021). TRACE 700. Retrieved May 17, 2021, from https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/trace-700.htmlTRNSYS. (2021). TRNSYS. Retrieved May 17, 2021, from http://www.trnsys.com/UPB, & ACAIRE. (2017). Diplomado Aire Acondicionado UPB-ACAIRE.UPME. (2019a). Balance de Energía Útil 2015.UPME. (2019b). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. 20. Retrieved from https://www1.upme.gov.co/Hemeroteca/Paginas/estudio-primer-balance-energia-util-para-Colombia.aspxUS Dept. of Energy. (2021). Best Directory. Retrieved from https://www.buildingenergysoftwaretools.com/Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049Zhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., … Zuo, J. (2016). The operational performance of “net zero energy building”: A study in China. Applied Energy, 177, 716–728. https://doi.org/10.1016/j.apenergy.2016.05.093EstudiantesInvestigadoresMaestrosResponsables políticosORIGINAL1017207725.2021.pdf1017207725.2021.pdfTesis de Maestría en Ingeniería - Sistemas Energéticosapplication/pdf2636927https://repositorio.unal.edu.co/bitstream/unal/81436/1/1017207725.2021.pdf3d7c860e39b0bf9e29a39f3d79f09ec5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81436/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1017207725.2021.pdf.jpg1017207725.2021.pdf.jpgGenerated Thumbnailimage/jpeg5281https://repositorio.unal.edu.co/bitstream/unal/81436/3/1017207725.2021.pdf.jpge1f8c07016b197caf35321fff0a8ebaeMD53unal/81436oai:repositorio.unal.edu.co:unal/814362023-10-06 16:12:30.841Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |