Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales

ilustraciones, diagramas, tablas

Autores:
Amariles Franco, Diego Alejandro
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81436
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81436
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado
Buildings - Energy Conservation
Edificios - Conservación de energía
Architecture and energy conservation
Arquitectura y conservación de energía
Dwellings - air conditioning
Aire acondicionado en viviendas
Air conditioning - Energy consumption
Aire acondicionado - Consumo de energía
Diseño HVAC
Eficiencia energética
Edificaciones
HVAC Design
Energy Efficciency
Buildings
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f2f3b1e3f1b88cde116092e479d3958b
oai_identifier_str oai:repositorio.unal.edu.co:unal/81436
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
dc.title.translated.eng.fl_str_mv Methodological guide for design based on the efficient use of energy for HVAC projects in buildings in tropical countries
title Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
spellingShingle Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado
Buildings - Energy Conservation
Edificios - Conservación de energía
Architecture and energy conservation
Arquitectura y conservación de energía
Dwellings - air conditioning
Aire acondicionado en viviendas
Air conditioning - Energy consumption
Aire acondicionado - Consumo de energía
Diseño HVAC
Eficiencia energética
Edificaciones
HVAC Design
Energy Efficciency
Buildings
title_short Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
title_full Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
title_fullStr Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
title_full_unstemmed Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
title_sort Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales
dc.creator.fl_str_mv Amariles Franco, Diego Alejandro
dc.contributor.advisor.none.fl_str_mv Ospina Montoya, Álvaro León
Franco Cardona, Carlos Jaime (Thesis advisor)
dc.contributor.author.none.fl_str_mv Amariles Franco, Diego Alejandro
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado
Buildings - Energy Conservation
Edificios - Conservación de energía
Architecture and energy conservation
Arquitectura y conservación de energía
Dwellings - air conditioning
Aire acondicionado en viviendas
Air conditioning - Energy consumption
Aire acondicionado - Consumo de energía
Diseño HVAC
Eficiencia energética
Edificaciones
HVAC Design
Energy Efficciency
Buildings
dc.subject.lemb.none.fl_str_mv Buildings - Energy Conservation
Edificios - Conservación de energía
Architecture and energy conservation
Arquitectura y conservación de energía
Dwellings - air conditioning
Aire acondicionado en viviendas
Air conditioning - Energy consumption
Aire acondicionado - Consumo de energía
dc.subject.proposal.spa.fl_str_mv Diseño HVAC
Eficiencia energética
Edificaciones
dc.subject.proposal.eng.fl_str_mv HVAC Design
Energy Efficciency
Buildings
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-04-04T13:45:25Z
dc.date.available.none.fl_str_mv 2022-04-04T13:45:25Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81436
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81436
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Airflow. (2015). Manual de difusión del Aire.
Aparicio Ruiz, P., Sánchez De La Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74–84. https://doi.org/10.1016/j.enbuild.2016.03.023
Arroyo, P., Tommelein, I. D., Ballard, G., & Rumsey, P. (2016). Choosing by advantages: A case study for selecting an HVAC system for a net zero energy museum. Energy and Buildings, 111, 26–36. https://doi.org/10.1016/j.enbuild.2015.10.023
Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017a). Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy and Buildings, 144, 303–319. https://doi.org/10.1016/j.enbuild.2017.03.056
Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017b). Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167. https://doi.org/10.1016/j.enbuild.2017.08.004
ASHRAE. (2014). 2014 ASHRAE HANDBOOK.
ASHRAE. (2015). 2015 ASHRAE HANDBOOK.
AUTODESK. (2021a). ECOTEC. Retrieved May 17, 2021, from https://www.asidek.es/arquitectura-e-ingenieria/autodesk-ecotect-analysis/
AUTODESK. (2021b). Green Building Studio. Retrieved May 17, 2021, from https://gbs.autodesk.com/GBS/
AUTODESK. (2021c). Insight. Retrieved May 17, 2021, from https://insight360.autodesk.com/oneenergy
Avgelis, A., & Papadopoulos, A. M. (2009). Application of multicriteria analysis in designing HVAC systems. Energy and Buildings, 41(7), 774–780. https://doi.org/10.1016/j.enbuild.2009.02.011
Bac, U., Alaloosi, K. A. M. S., & Turhan, C. (2021). A comprehensive evaluation of the most suitable HVAC system for an industrial building by using a hybrid building energy simulation and multi criteria decision making framework. Journal of Building Engineering, 37(January), 102153. https://doi.org/10.1016/j.jobe.2021.102153
Becchio, C., Corgnati, S. P., Orlietti, L., & Spigliantini, G. (2015). Proposal for a modified cost-optimal approach by introducing benefits evaluation. Energy Procedia, 82, 445–451. https://doi.org/10.1016/j.egypro.2015.11.835
Bennett, D., Edeling, A., Muller, C., & Zouggari, Y. (2015). Energy conservation and improved IAQ with existing ventilation standards. Healthy Buildings Europe 2015, HB 2015 - Conference Proceedings, 2015-May(September).
BERKELEY LAB. (2021). WINDOW. Retrieved May 17, 2021, from https://windows.lbl.gov/software/window
Berquist, J., Tessier, A., O’brien, W., Attar, R., & Khan, A. (2017). An investigation of generative design for heating, ventilation, and air-conditioning. Simulation Series, 49(11), 132–139. https://doi.org/10.22360/simaud.2017.simaud.018
Brown, H. L. (1985). Energy Analysis of 108 Industrial Processes (THE FAIRMONT PRESS INC, Ed.).
CARRIER. (1970). Carrier Manual de Aire Acondicionado.pdf.
CARRIER. (2020). Carrier air conditioning, heating, refrigeration and HVACR products and services. Retrieved July 8, 2020, from https://www.carrier.com/carrier/en/worldwide/
Chatzopoulou, M. A., Fisk, D., Keirstead, J., & Markides, C. N. (2016). Informing low carbon HVAC systems modelling and design, using a global sensitivity analysis framework. ASME 2016 10th International Conference on Energy Sustainability, ES 2016, Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 1(December). https://doi.org/10.1115/ES2016-59593
Chen, C. J., Chen, S. Y., Li, S. H., & Chiu, H. T. (2017). Green BIM-based building energy performance analysis. Computer-Aided Design and Applications, 14(5), 650–660. https://doi.org/10.1080/16864360.2016.1273582
Chen, S. Y. (2018). A green building information modelling approach: Building energy performance analysis and design optimization. MATEC Web of Conferences, 169. https://doi.org/10.1051/matecconf/201816901004
Cho, J., Kim, Y., Koo, J., & Park, W. (2018). Energy-cost analysis of HVAC system for office buildings: Development of a multiple prediction methodology for HVAC system cost estimation. Energy and Buildings, 173, 562–576. https://doi.org/10.1016/j.enbuild.2018.05.019
Comision Federal de Energia. (2020). cO. Retrieved from https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/GranDemandaMTO.aspx
Commission, E. (2009). Reference Document on Best Available Techniques for PROCESS. (February).
Connecticut, & Protection, D. of E. and E. (n.d.). Energy Efficiency. Retrieved from https://portal.ct.gov/DEEP/Energy/Energy-Efficiency
CYPE. (2021). CYPETHERMS LOAD. Retrieved May 17, 2021, from http://cypetherm-loads.cype.es/
DAIKIN. (2020). Daikin Global. Retrieved July 8, 2020, from https://www.daikin.com/
DANE. (2021). Producto Interno Bruto -PIB- nacional trimestral. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnica
DesignBuilder. (2021). DesignBuilder. Retrieved May 17, 2021, from https://www.designbuilder-lat.com/caracteristicas/descripcion-general
DEXMA. (2020). LEGISLACIÓN DE ENERGÍA Y SOSTENIBILIDAD UNA GUÍA GLOBAL PARA GESTORES ENERGÉTICOS.
Dongellini, M., & Morini, G. L. (2019). On-off cycling losses of reversible air-to-water heat pump systems as a function of the unit power modulation capacity. Energy Conversion and Management, 196(March), 966–978. https://doi.org/10.1016/j.enconman.2019.06.022
EDERSA. (2020). CUADRO TARIFARIO PROVISORIO Aprobado por. 21, 2020. Retrieved from http://www.edersa.com.ar/V3.0/wp-content/uploads/2020/05/CT-Mayo-2020-Julio-2020.pdf
Efficiency, E. (2019a). BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS FOR THE 2019 BUILDING. (December 2018). Retrieved from https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency
Efficiency, E. (2019b). REFERENCE APPENDICES FOR THE 2019 BUILDING. (December 2018).
EIA. (2020). Electric Power Monthly. Retrieved from https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
Elnabawi, M. H. (2020). Building Information Modeling-Based Building Energy Modeling: Investigation of Interoperability and Simulation Results. Frontiers in Built Environment, 6(December), 1–19. https://doi.org/10.3389/fbuil.2020.573971
EPM. Octubre 2019 Industrial y Comercial. , (2019).
ESP-r. (2021). ESP-r. Retrieved May 17, 2021, from http://www.esru.strath.ac.uk/Courseware/ESP-r/tour/
EUROSTAT. (2020a). Electricity prices for household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
EUROSTAT. (2020b). Electricity prices for non-household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288. https://doi.org/10.1016/j.rser.2013.03.004
FRAUNHOFER. (2021). WUFI. Retrieved May 17, 2021, from https://wufi.de/en/
Funds, I., & Schemes, E. O. (2019). Clean energy for all The new Energy efficiency measures. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_energyefficiency.pdf
Gagarin, V. G., Lushin, K. I., Kozlov, V. V., & Neklyudov, A. Y. (2016). Path of Optimized Engineering of HVAC Systems. Procedia Engineering, 146, 103–111. https://doi.org/10.1016/j.proeng.2016.06.359
Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238(December 2018), 320–343. https://doi.org/10.1016/j.apenergy.2019.01.032
Gatley, D. P. (2013). Understanding Psychrometrics Third Edition.
GLACIAR. (2020). Glaciar Ingeniería | Sistemas de enfriamiento evaporativo. Retrieved July 8, 2020, from https://glaciaringenieria.com.co/
global petrol prices. (2020). Brazil electricity prices. Retrieved from https://www.globalpetrolprices.com/Brazil/electricity_prices/
Goberna, R. (n.d.). Ventilacion Industrial.pdf (1st ed.). 1992.
Gourlis, G., & Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings – A case study. Renewable and Sustainable Energy Reviews, 68, 953–963. https://doi.org/10.1016/j.rser.2016.02.009
Government Canada. (2021). RETScreen. Retrieved May 17, 2021, from https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465
Government, F. (2017). Saving Energy in Industrial Companies : Case Studies of Energy Efficiency Programs in Large U . S . Industrial Corporations and the Role of Ratepayer-Funded Support Industrial Energy Efficiency and Combined Heat and Power. (March 2017).
Hamedani, M. N., & Smith, R. E. (2015). Evaluation of Performance Modelling: Optimizing Simulation Tools to Stages of Architectural Design. Procedia Engineering, 118, 774–780. https://doi.org/10.1016/j.proeng.2015.08.513
Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90–106. https://doi.org/10.1016/j.apenergy.2014.03.052
Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81–90. https://doi.org/10.1016/j.buildenv.2013.07.019
Ionescu, C., Baracu, T., Vlad, G., Necula, H., & Badea, A. (2015). The historical evolution of the energy ef fi cient buildings. 49, 243–253. https://doi.org/10.1016/j.rser.2015.04.062
Jallow, A. K., Lee, S., Castronovo, F., Zhang, Y., Chunduri, S., & Messner, J. I. (2013). Process-based information exchanges mapping for energy efficient retrofit projects. Computing in Civil Engineering - Proceedings of the 2013 ASCE International Workshop on Computing in Civil Engineering, 234–241. https://doi.org/10.1061/9780784413029.030
James J. Hirsch. (2021). DOE-2. Retrieved May 17, 2021, from https://www.doe2.com/
Kamel, E., & Memari, A. M. (2018). Automated Building Energy Modeling and Assessment Tool (ABEMAT). Energy, 147, 15–24. https://doi.org/10.1016/j.energy.2018.01.023
Kim, D., Cho, H., Koh, J., & Im, P. (2020). Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems. Renewable and Sustainable Energy Reviews, 118(November 2019), 109508. https://doi.org/10.1016/j.rser.2019.109508
Kim, Y. J., Ahn, K. U., & Park, C. S. (2014). Decision making of HVAC system using Bayesian Markov chain Monte Carlo method. Energy and Buildings, 72, 112–121. https://doi.org/10.1016/j.enbuild.2013.12.039
Kolokotsa, D., Diakaki, C., Grigoroudis, E., Stavrakakis, G., & Kalaitzakis, K. (2009). Decision support methodologies on the energy efficiency and energy management in buildings. 3, 121–146. https://doi.org/10.3763/aber.2009.0305
Koulamas, C., Kalogeras, A. P., Pacheco-Torres, R., Casillas, J., & Ferrarini, L. (2018). Suitability analysis of modeling and assessment approaches in energy efficiency in buildings. Energy and Buildings, 158, 1662–1682. https://doi.org/10.1016/j.enbuild.2017.12.002
Law, P. (2005). ENERGY POLICY ACT OF 2005 An Act. 1–551. Retrieved from https://www.govinfo.gov/content/pkg/PLAW-109publ58/pdf/PLAW-109publ58.pdf
LG. (2020). LG Air Conditioning Technologies. Retrieved July 8, 2020, from https://www.lghvac.com/
Luigi Schibuola , Massimiliano Scarpa, and C. T. (2013). MODELLING OF HVAC SYSTEM COMPONENTS FOR BUILDING DYNAMIC SIMULATION Air-to-water on-off control. 1103–1109.
Mahiwal, S. G., Bhoi, M. K., & Bhatt, N. (2021). Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology. Asian Journal of Civil Engineering, (0123456789). https://doi.org/10.1007/s42107-021-00352-5
Mauro, G. M., Hamdy, M., Vanoli, G. P., Bianco, N., & Hensen, J. L. M. (2015). A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy and Buildings, 107, 456–478. https://doi.org/10.1016/j.enbuild.2015.08.044
Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577–591. https://doi.org/10.1016/j.apenergy.2015.04.090
NREL, ANL, LBNL, ORNL, and P. (2021). OpenStudio. Retrieved May 17, 2021, from https://www.openstudio.net/
Office of Energy Efficiency & Renewable Energy. (2020). Federal Laws and Requirements Search. Retrieved from https://www4.eere.energy.gov/femp/requirements/
OLADE. (2018). MRV Methodology For Energy Efficiency Implementation Measures In Commercial And Public Buildings For Countries Of The Caribbean Region 1.
Pantelic, J., Raphael, B., & Tham, K. W. (2012). A preference driven multi-criteria optimization tool for HVAC design and operation. Energy and Buildings, 55, 118–126. https://doi.org/10.1016/j.enbuild.2012.04.021
Petersen, P. M., & Sullivan, J. O. (2012). Energy Efficient Design – a methodology applied in major international projects. 181–192.
Picallo-Perez, A., Catrini, P., Piacentino, A., & Sala, J. M. (2019). A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy, 180, 819–837. https://doi.org/10.1016/j.energy.2019.05.098
Rafati Sokhangoo, L., Orenga Panizza, R., Nik-Bakht, M., & Han, S. H. (2019). Conceptual cost models for energy simulation in building projects. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2019-June(Jalaei 2015), 1–10.
Romain Farel, A. B., & Loges, chemin de la P. des. (2014). Energy Efficiency of Industrial Systems : A Design Research Perspective. (August). https://doi.org/10.1115/DETC2014-35056
Roman, N. D., Bre, F., Fachinotti, V. D., & Lamberts, R. (2020). Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy and Buildings, 217. https://doi.org/10.1016/j.enbuild.2020.109972
RWTH Aachen University, E.ON Energy Research Center, I. for E. E. B. and I. C. (EBC). (2021). AixLib. Retrieved May 17, 2021, from https://github.com/RWTH-EBC/AixLib
SAMSUNG. (2000). Technical Data Book VRF STANDAR.
SAMSUNG. (2020). Samsung HVAC. Retrieved July 8, 2020, from https://www.samsunghvac.com/
Shahrestani, M., Yao, R., & Cook, G. K. (2018). A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy and Buildings, 159, 398–418. https://doi.org/10.1016/j.enbuild.2017.10.089
Shahrestani, M., Yao, R., Cook, G. K., & Clements-Croome, D. (2018). Decision-making on HVAC&R systems selection: a critical review. Intelligent Buildings International, 10(3), 133–153. https://doi.org/10.1080/17508975.2017.1333948
Sharif, S. A., & Hammad, A. (2019). Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment. Journal of Building Engineering, 21(November 2018), 429–445. https://doi.org/10.1016/j.jobe.2018.11.006
Singh, M. M., Singaravel, S., Klein, R., & Geyer, P. (2020). Quick energy prediction and comparison of options at the early design stage. Advanced Engineering Informatics, 46(July), 101185. https://doi.org/10.1016/j.aei.2020.101185
SOLEMNA. (2021). DIVA. Retrieved May 17, 2021, from https://www.solemma.com/diva
Soler & Palau. (1997). Manual práctico de Ventilación. In Real Farmacopea Española I Tomo. Madrid: (Vol. 1). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sistemas+de+Ventilaci?n#8
Solmaz, A. S. (2019). A critical review on building performance simulation tools. Alam Cipta, 12(2), 7–21.
Stanescu, M., Kajl, S., & Lamarche, L. (2013). Simplified optimization method for preliminary design of HVAC system and real building application. HVAC and R Research, 19(3), 213–229. https://doi.org/10.1080/10789669.2012.755904
TECAM. (2020). TECAM S.A. | Sistemas de Aire Acondicionado y RefrigeraTción. Retrieved July 8, 2020, from http://tecam-sa.com/
The independent institute for outstanding energy efficiency in buildings. (2021). PHPP. Retrieved May 17, 2021, from https://passivehouse.com/04_phpp/04_phpp.htm
The New York State Senate. (2020). The Laws Of New York. Retrieved from https://www.nysenate.gov/legislation/laws/ENG
Tian, Z., Si, B., Shi, X., & Fang, Z. (2019). An application of Bayesian Network approach for selecting energy efficient HVAC systems. Journal of Building Engineering, Vol. 25. https://doi.org/10.1016/j.jobe.2019.100796
TRANE. (2020). TRANE. Retrieved July 8, 2020, from https://www.trane.com/commercial/north-america/us/en.html
TRANE. (2021). TRACE 700. Retrieved May 17, 2021, from https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/trace-700.html
TRNSYS. (2021). TRNSYS. Retrieved May 17, 2021, from http://www.trnsys.com/
UPB, & ACAIRE. (2017). Diplomado Aire Acondicionado UPB-ACAIRE.
UPME. (2019a). Balance de Energía Útil 2015.
UPME. (2019b). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. 20. Retrieved from https://www1.upme.gov.co/Hemeroteca/Paginas/estudio-primer-balance-energia-util-para-Colombia.aspx
US Dept. of Energy. (2021). Best Directory. Retrieved from https://www.buildingenergysoftwaretools.com/
Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049
Zhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., … Zuo, J. (2016). The operational performance of “net zero energy building”: A study in China. Applied Energy, 177, 716–728. https://doi.org/10.1016/j.apenergy.2016.05.093
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 99 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81436/1/1017207725.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81436/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81436/3/1017207725.2021.pdf.jpg
bitstream.checksum.fl_str_mv 3d7c860e39b0bf9e29a39f3d79f09ec5
8153f7789df02f0a4c9e079953658ab2
e1f8c07016b197caf35321fff0a8ebae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089687673864192
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospina Montoya, Álvaro Leónd946e3493abefc93d3e3d71a826e382dFranco Cardona, Carlos Jaime (Thesis advisor)f4e7548d7a1872856f688990e99a72f4600Amariles Franco, Diego Alejandroc9d19c6650d3406e0cfa53850e6f78d42022-04-04T13:45:25Z2022-04-04T13:45:25Z2021https://repositorio.unal.edu.co/handle/unal/81436Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn el 2019 la UPME presento los resultados del primer balance de energía útil en Colombia, en este estudio, se identificó que en el año 2015 de la energía producida (1077 PJ), solo el 33% era útil, es decir 338,3 PJ, además, indicaba que si se reemplaza por tecnologías de referencia y mejores tecnologías se podría tener un ahorro potencial de 6,6 a 11 mil millones de dólares al año (UPME, 2019a). En el sector terciario, el aire acondicionado, podría tener un potencial de ahorro de energía de 3,5 a 5,5 PJ al año y en dinero de 140 a 250 millones de dólares al año (UPME, 2019a), lo cual podría representar 0,05 a 0,09% del PIB de Colombia (DANE, 2021). En la revisión de literatura se identificaron metodologías para mejorar la eficiencia energética de las edificaciones desde el diseño de los sistemas de aire acondicionado, abordando puntos específicos del diseño, como lo son la selección de sistemas primarios(Tian, Si, Shi, & Fang, 2019), selección de criterios(Bennett, Edeling, Muller, & Zouggari, 2015), con este análisis se encuentra que hace falta una visión holística y heurística en los diseños de los sistemas de aire acondicionado, por lo cual el objetivo de este trabajo es el desarrollo de una guía metodológica de diseño basado en el uso eficiente de energía para sistemas HVAC en edificaciones en países tropicales, esto se hace con base en tres pilares, comparación temprana de equipos y sistemas, selección de equipos teniendo en cuenta el corto y largo plazo y por último teniendo en cuenta las condiciones de operación y como esto afecta el rendimiento de los sistemas. (Terxto tomado de la fuente)In 2019, the UPME presented the results of the first useful energy balance in Colombia, in this study, it was identified that in 2015 of the energy produced (1077 PJ), only 33% was useful, that is, 338.3 PJ Furthermore, it indicated that if it is replaced by reference technologies and better technologies, there could be a potential saving of 6,6 to 11 billion dollars per year (UPME, 2019a). In the tertiary sector, air conditioning could have an energy saving potential of 3.5 to 5.5 PJ per year and in money of 140 to 250 million dollars per year (UPME, 2019a), which could represent 0.05 to 0.09% of Colombia's PIB (DANE, 2021). In the literature review, methodologies were identified to improve the energy efficiency of buildings from the design of air conditioning systems, addressing specific design points, such as the selection of primary systems (Tian, Si, Shi, & Fang, 2019), selection of criteria (Bennett, Edeling, Muller, & Zouggari, 2015), with this analysis it is found that a holistic and heuristic vision is needed in the designs of air conditioning systems, for which The objective of this work is the development of a design methodological guide based on the efficient use of energy for HVAC systems in buildings in tropical countries, this is done based on three pillars, early comparison of equipment and systems, selection of equipment having taking into account the short and long term and finally taking into account the operating conditions and how this affects the performance of the systems.MaestríaMagíster en Ingeniería - Sistemas EnergéticosEficiencia energética en edificacionesÁrea Curricular de Ingeniería de Sistemas e Informáticaxv, 99 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Sistemas EnergéticosDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionadoBuildings - Energy ConservationEdificios - Conservación de energíaArchitecture and energy conservationArquitectura y conservación de energíaDwellings - air conditioningAire acondicionado en viviendasAir conditioning - Energy consumptionAire acondicionado - Consumo de energíaDiseño HVACEficiencia energéticaEdificacionesHVAC DesignEnergy EfficciencyBuildingsGuía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicalesMethodological guide for design based on the efficient use of energy for HVAC projects in buildings in tropical countriesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAirflow. (2015). Manual de difusión del Aire.Aparicio Ruiz, P., Sánchez De La Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74–84. https://doi.org/10.1016/j.enbuild.2016.03.023Arroyo, P., Tommelein, I. D., Ballard, G., & Rumsey, P. (2016). Choosing by advantages: A case study for selecting an HVAC system for a net zero energy museum. Energy and Buildings, 111, 26–36. https://doi.org/10.1016/j.enbuild.2015.10.023Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017a). Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy and Buildings, 144, 303–319. https://doi.org/10.1016/j.enbuild.2017.03.056Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017b). Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167. https://doi.org/10.1016/j.enbuild.2017.08.004ASHRAE. (2014). 2014 ASHRAE HANDBOOK.ASHRAE. (2015). 2015 ASHRAE HANDBOOK.AUTODESK. (2021a). ECOTEC. Retrieved May 17, 2021, from https://www.asidek.es/arquitectura-e-ingenieria/autodesk-ecotect-analysis/AUTODESK. (2021b). Green Building Studio. Retrieved May 17, 2021, from https://gbs.autodesk.com/GBS/AUTODESK. (2021c). Insight. Retrieved May 17, 2021, from https://insight360.autodesk.com/oneenergyAvgelis, A., & Papadopoulos, A. M. (2009). Application of multicriteria analysis in designing HVAC systems. Energy and Buildings, 41(7), 774–780. https://doi.org/10.1016/j.enbuild.2009.02.011Bac, U., Alaloosi, K. A. M. S., & Turhan, C. (2021). A comprehensive evaluation of the most suitable HVAC system for an industrial building by using a hybrid building energy simulation and multi criteria decision making framework. Journal of Building Engineering, 37(January), 102153. https://doi.org/10.1016/j.jobe.2021.102153Becchio, C., Corgnati, S. P., Orlietti, L., & Spigliantini, G. (2015). Proposal for a modified cost-optimal approach by introducing benefits evaluation. Energy Procedia, 82, 445–451. https://doi.org/10.1016/j.egypro.2015.11.835Bennett, D., Edeling, A., Muller, C., & Zouggari, Y. (2015). Energy conservation and improved IAQ with existing ventilation standards. Healthy Buildings Europe 2015, HB 2015 - Conference Proceedings, 2015-May(September).BERKELEY LAB. (2021). WINDOW. Retrieved May 17, 2021, from https://windows.lbl.gov/software/windowBerquist, J., Tessier, A., O’brien, W., Attar, R., & Khan, A. (2017). An investigation of generative design for heating, ventilation, and air-conditioning. Simulation Series, 49(11), 132–139. https://doi.org/10.22360/simaud.2017.simaud.018Brown, H. L. (1985). Energy Analysis of 108 Industrial Processes (THE FAIRMONT PRESS INC, Ed.).CARRIER. (1970). Carrier Manual de Aire Acondicionado.pdf.CARRIER. (2020). Carrier air conditioning, heating, refrigeration and HVACR products and services. Retrieved July 8, 2020, from https://www.carrier.com/carrier/en/worldwide/Chatzopoulou, M. A., Fisk, D., Keirstead, J., & Markides, C. N. (2016). Informing low carbon HVAC systems modelling and design, using a global sensitivity analysis framework. ASME 2016 10th International Conference on Energy Sustainability, ES 2016, Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 1(December). https://doi.org/10.1115/ES2016-59593Chen, C. J., Chen, S. Y., Li, S. H., & Chiu, H. T. (2017). Green BIM-based building energy performance analysis. Computer-Aided Design and Applications, 14(5), 650–660. https://doi.org/10.1080/16864360.2016.1273582Chen, S. Y. (2018). A green building information modelling approach: Building energy performance analysis and design optimization. MATEC Web of Conferences, 169. https://doi.org/10.1051/matecconf/201816901004Cho, J., Kim, Y., Koo, J., & Park, W. (2018). Energy-cost analysis of HVAC system for office buildings: Development of a multiple prediction methodology for HVAC system cost estimation. Energy and Buildings, 173, 562–576. https://doi.org/10.1016/j.enbuild.2018.05.019Comision Federal de Energia. (2020). cO. Retrieved from https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/GranDemandaMTO.aspxCommission, E. (2009). Reference Document on Best Available Techniques for PROCESS. (February).Connecticut, & Protection, D. of E. and E. (n.d.). Energy Efficiency. Retrieved from https://portal.ct.gov/DEEP/Energy/Energy-EfficiencyCYPE. (2021). CYPETHERMS LOAD. Retrieved May 17, 2021, from http://cypetherm-loads.cype.es/DAIKIN. (2020). Daikin Global. Retrieved July 8, 2020, from https://www.daikin.com/DANE. (2021). Producto Interno Bruto -PIB- nacional trimestral. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnicaDesignBuilder. (2021). DesignBuilder. Retrieved May 17, 2021, from https://www.designbuilder-lat.com/caracteristicas/descripcion-generalDEXMA. (2020). LEGISLACIÓN DE ENERGÍA Y SOSTENIBILIDAD UNA GUÍA GLOBAL PARA GESTORES ENERGÉTICOS.Dongellini, M., & Morini, G. L. (2019). On-off cycling losses of reversible air-to-water heat pump systems as a function of the unit power modulation capacity. Energy Conversion and Management, 196(March), 966–978. https://doi.org/10.1016/j.enconman.2019.06.022EDERSA. (2020). CUADRO TARIFARIO PROVISORIO Aprobado por. 21, 2020. Retrieved from http://www.edersa.com.ar/V3.0/wp-content/uploads/2020/05/CT-Mayo-2020-Julio-2020.pdfEfficiency, E. (2019a). BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS FOR THE 2019 BUILDING. (December 2018). Retrieved from https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiencyEfficiency, E. (2019b). REFERENCE APPENDICES FOR THE 2019 BUILDING. (December 2018).EIA. (2020). Electric Power Monthly. Retrieved from https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_aElnabawi, M. H. (2020). Building Information Modeling-Based Building Energy Modeling: Investigation of Interoperability and Simulation Results. Frontiers in Built Environment, 6(December), 1–19. https://doi.org/10.3389/fbuil.2020.573971EPM. Octubre 2019 Industrial y Comercial. , (2019).ESP-r. (2021). ESP-r. Retrieved May 17, 2021, from http://www.esru.strath.ac.uk/Courseware/ESP-r/tour/EUROSTAT. (2020a). Electricity prices for household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doEUROSTAT. (2020b). Electricity prices for non-household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doFoucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288. https://doi.org/10.1016/j.rser.2013.03.004FRAUNHOFER. (2021). WUFI. Retrieved May 17, 2021, from https://wufi.de/en/Funds, I., & Schemes, E. O. (2019). Clean energy for all The new Energy efficiency measures. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_energyefficiency.pdfGagarin, V. G., Lushin, K. I., Kozlov, V. V., & Neklyudov, A. Y. (2016). Path of Optimized Engineering of HVAC Systems. Procedia Engineering, 146, 103–111. https://doi.org/10.1016/j.proeng.2016.06.359Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238(December 2018), 320–343. https://doi.org/10.1016/j.apenergy.2019.01.032Gatley, D. P. (2013). Understanding Psychrometrics Third Edition.GLACIAR. (2020). Glaciar Ingeniería | Sistemas de enfriamiento evaporativo. Retrieved July 8, 2020, from https://glaciaringenieria.com.co/global petrol prices. (2020). Brazil electricity prices. Retrieved from https://www.globalpetrolprices.com/Brazil/electricity_prices/Goberna, R. (n.d.). Ventilacion Industrial.pdf (1st ed.). 1992.Gourlis, G., & Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings – A case study. Renewable and Sustainable Energy Reviews, 68, 953–963. https://doi.org/10.1016/j.rser.2016.02.009Government Canada. (2021). RETScreen. Retrieved May 17, 2021, from https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465Government, F. (2017). Saving Energy in Industrial Companies : Case Studies of Energy Efficiency Programs in Large U . S . Industrial Corporations and the Role of Ratepayer-Funded Support Industrial Energy Efficiency and Combined Heat and Power. (March 2017).Hamedani, M. N., & Smith, R. E. (2015). Evaluation of Performance Modelling: Optimizing Simulation Tools to Stages of Architectural Design. Procedia Engineering, 118, 774–780. https://doi.org/10.1016/j.proeng.2015.08.513Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90–106. https://doi.org/10.1016/j.apenergy.2014.03.052Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81–90. https://doi.org/10.1016/j.buildenv.2013.07.019Ionescu, C., Baracu, T., Vlad, G., Necula, H., & Badea, A. (2015). The historical evolution of the energy ef fi cient buildings. 49, 243–253. https://doi.org/10.1016/j.rser.2015.04.062Jallow, A. K., Lee, S., Castronovo, F., Zhang, Y., Chunduri, S., & Messner, J. I. (2013). Process-based information exchanges mapping for energy efficient retrofit projects. Computing in Civil Engineering - Proceedings of the 2013 ASCE International Workshop on Computing in Civil Engineering, 234–241. https://doi.org/10.1061/9780784413029.030James J. Hirsch. (2021). DOE-2. Retrieved May 17, 2021, from https://www.doe2.com/Kamel, E., & Memari, A. M. (2018). Automated Building Energy Modeling and Assessment Tool (ABEMAT). Energy, 147, 15–24. https://doi.org/10.1016/j.energy.2018.01.023Kim, D., Cho, H., Koh, J., & Im, P. (2020). Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems. Renewable and Sustainable Energy Reviews, 118(November 2019), 109508. https://doi.org/10.1016/j.rser.2019.109508Kim, Y. J., Ahn, K. U., & Park, C. S. (2014). Decision making of HVAC system using Bayesian Markov chain Monte Carlo method. Energy and Buildings, 72, 112–121. https://doi.org/10.1016/j.enbuild.2013.12.039Kolokotsa, D., Diakaki, C., Grigoroudis, E., Stavrakakis, G., & Kalaitzakis, K. (2009). Decision support methodologies on the energy efficiency and energy management in buildings. 3, 121–146. https://doi.org/10.3763/aber.2009.0305Koulamas, C., Kalogeras, A. P., Pacheco-Torres, R., Casillas, J., & Ferrarini, L. (2018). Suitability analysis of modeling and assessment approaches in energy efficiency in buildings. Energy and Buildings, 158, 1662–1682. https://doi.org/10.1016/j.enbuild.2017.12.002Law, P. (2005). ENERGY POLICY ACT OF 2005 An Act. 1–551. Retrieved from https://www.govinfo.gov/content/pkg/PLAW-109publ58/pdf/PLAW-109publ58.pdfLG. (2020). LG Air Conditioning Technologies. Retrieved July 8, 2020, from https://www.lghvac.com/Luigi Schibuola , Massimiliano Scarpa, and C. T. (2013). MODELLING OF HVAC SYSTEM COMPONENTS FOR BUILDING DYNAMIC SIMULATION Air-to-water on-off control. 1103–1109.Mahiwal, S. G., Bhoi, M. K., & Bhatt, N. (2021). Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology. Asian Journal of Civil Engineering, (0123456789). https://doi.org/10.1007/s42107-021-00352-5Mauro, G. M., Hamdy, M., Vanoli, G. P., Bianco, N., & Hensen, J. L. M. (2015). A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy and Buildings, 107, 456–478. https://doi.org/10.1016/j.enbuild.2015.08.044Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577–591. https://doi.org/10.1016/j.apenergy.2015.04.090NREL, ANL, LBNL, ORNL, and P. (2021). OpenStudio. Retrieved May 17, 2021, from https://www.openstudio.net/Office of Energy Efficiency & Renewable Energy. (2020). Federal Laws and Requirements Search. Retrieved from https://www4.eere.energy.gov/femp/requirements/OLADE. (2018). MRV Methodology For Energy Efficiency Implementation Measures In Commercial And Public Buildings For Countries Of The Caribbean Region 1.Pantelic, J., Raphael, B., & Tham, K. W. (2012). A preference driven multi-criteria optimization tool for HVAC design and operation. Energy and Buildings, 55, 118–126. https://doi.org/10.1016/j.enbuild.2012.04.021Petersen, P. M., & Sullivan, J. O. (2012). Energy Efficient Design – a methodology applied in major international projects. 181–192.Picallo-Perez, A., Catrini, P., Piacentino, A., & Sala, J. M. (2019). A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy, 180, 819–837. https://doi.org/10.1016/j.energy.2019.05.098Rafati Sokhangoo, L., Orenga Panizza, R., Nik-Bakht, M., & Han, S. H. (2019). Conceptual cost models for energy simulation in building projects. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2019-June(Jalaei 2015), 1–10.Romain Farel, A. B., & Loges, chemin de la P. des. (2014). Energy Efficiency of Industrial Systems : A Design Research Perspective. (August). https://doi.org/10.1115/DETC2014-35056Roman, N. D., Bre, F., Fachinotti, V. D., & Lamberts, R. (2020). Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy and Buildings, 217. https://doi.org/10.1016/j.enbuild.2020.109972RWTH Aachen University, E.ON Energy Research Center, I. for E. E. B. and I. C. (EBC). (2021). AixLib. Retrieved May 17, 2021, from https://github.com/RWTH-EBC/AixLibSAMSUNG. (2000). Technical Data Book VRF STANDAR.SAMSUNG. (2020). Samsung HVAC. Retrieved July 8, 2020, from https://www.samsunghvac.com/Shahrestani, M., Yao, R., & Cook, G. K. (2018). A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy and Buildings, 159, 398–418. https://doi.org/10.1016/j.enbuild.2017.10.089Shahrestani, M., Yao, R., Cook, G. K., & Clements-Croome, D. (2018). Decision-making on HVAC&R systems selection: a critical review. Intelligent Buildings International, 10(3), 133–153. https://doi.org/10.1080/17508975.2017.1333948Sharif, S. A., & Hammad, A. (2019). Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment. Journal of Building Engineering, 21(November 2018), 429–445. https://doi.org/10.1016/j.jobe.2018.11.006Singh, M. M., Singaravel, S., Klein, R., & Geyer, P. (2020). Quick energy prediction and comparison of options at the early design stage. Advanced Engineering Informatics, 46(July), 101185. https://doi.org/10.1016/j.aei.2020.101185SOLEMNA. (2021). DIVA. Retrieved May 17, 2021, from https://www.solemma.com/divaSoler & Palau. (1997). Manual práctico de Ventilación. In Real Farmacopea Española I Tomo. Madrid: (Vol. 1). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sistemas+de+Ventilaci?n#8Solmaz, A. S. (2019). A critical review on building performance simulation tools. Alam Cipta, 12(2), 7–21.Stanescu, M., Kajl, S., & Lamarche, L. (2013). Simplified optimization method for preliminary design of HVAC system and real building application. HVAC and R Research, 19(3), 213–229. https://doi.org/10.1080/10789669.2012.755904TECAM. (2020). TECAM S.A. | Sistemas de Aire Acondicionado y RefrigeraTción. Retrieved July 8, 2020, from http://tecam-sa.com/The independent institute for outstanding energy efficiency in buildings. (2021). PHPP. Retrieved May 17, 2021, from https://passivehouse.com/04_phpp/04_phpp.htmThe New York State Senate. (2020). The Laws Of New York. Retrieved from https://www.nysenate.gov/legislation/laws/ENGTian, Z., Si, B., Shi, X., & Fang, Z. (2019). An application of Bayesian Network approach for selecting energy efficient HVAC systems. Journal of Building Engineering, Vol. 25. https://doi.org/10.1016/j.jobe.2019.100796TRANE. (2020). TRANE. Retrieved July 8, 2020, from https://www.trane.com/commercial/north-america/us/en.htmlTRANE. (2021). TRACE 700. Retrieved May 17, 2021, from https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/trace-700.htmlTRNSYS. (2021). TRNSYS. Retrieved May 17, 2021, from http://www.trnsys.com/UPB, & ACAIRE. (2017). Diplomado Aire Acondicionado UPB-ACAIRE.UPME. (2019a). Balance de Energía Útil 2015.UPME. (2019b). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. 20. Retrieved from https://www1.upme.gov.co/Hemeroteca/Paginas/estudio-primer-balance-energia-util-para-Colombia.aspxUS Dept. of Energy. (2021). Best Directory. Retrieved from https://www.buildingenergysoftwaretools.com/Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049Zhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., … Zuo, J. (2016). The operational performance of “net zero energy building”: A study in China. Applied Energy, 177, 716–728. https://doi.org/10.1016/j.apenergy.2016.05.093EstudiantesInvestigadoresMaestrosResponsables políticosORIGINAL1017207725.2021.pdf1017207725.2021.pdfTesis de Maestría en Ingeniería - Sistemas Energéticosapplication/pdf2636927https://repositorio.unal.edu.co/bitstream/unal/81436/1/1017207725.2021.pdf3d7c860e39b0bf9e29a39f3d79f09ec5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81436/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1017207725.2021.pdf.jpg1017207725.2021.pdf.jpgGenerated Thumbnailimage/jpeg5281https://repositorio.unal.edu.co/bitstream/unal/81436/3/1017207725.2021.pdf.jpge1f8c07016b197caf35321fff0a8ebaeMD53unal/81436oai:repositorio.unal.edu.co:unal/814362023-10-06 16:12:30.841Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK