Electricity consumption forecasting using singular spectrum analysis
Singular Spectrum Analysis (SSA) is a non-parametric technique that allows the decomposition of a time series into signal and noise. Thus, it is a useful technique to trend extraction, smooth and filter a time series. The effect on performance of both Box and Jenkins' and Holt-Winters models wh...
- Autores:
-
Menezes, Moises Lima de
Castro Souza, Reinaldo
Moreira Pessanha, José Francisco
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60744
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60744
http://bdigital.unal.edu.co/59076/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Electricity consumption forecasting
singular spectrum analysis
time series
power system planning
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_f2d4dc59be0ee51369e23f8c12e8cdc8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60744 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Menezes, Moises Lima dee0caaf5e-0adb-4043-96a9-195c6ba74879300Castro Souza, Reinaldo3ee26e1c-4346-444e-9ea3-dc3ef31a4446300Moreira Pessanha, José Franciscof4571222-6512-4523-ad2b-20de871ade303002019-07-02T19:00:52Z2019-07-02T19:00:52Z2015-03-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60744http://bdigital.unal.edu.co/59076/Singular Spectrum Analysis (SSA) is a non-parametric technique that allows the decomposition of a time series into signal and noise. Thus, it is a useful technique to trend extraction, smooth and filter a time series. The effect on performance of both Box and Jenkins' and Holt-Winters models when applied to the time series filtered by SSA is investigated in this paper. Three different methodologies are evaluated in the SSA approach: Principal Component Analysis (PCA), Cluster Analysis and Graphical Analysis of Singular Vectors. In order to illustrate and compare the methodologies, in this paper, we also present the main results of a computational experiment with the monthly residential consumption of electricity in Brazil.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/43652Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaMenezes, Moises Lima de and Castro Souza, Reinaldo and Moreira Pessanha, José Francisco (2015) Electricity consumption forecasting using singular spectrum analysis. DYNA, 82 (190). pp. 138-146. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringElectricity consumption forecastingsingular spectrum analysistime seriespower system planningElectricity consumption forecasting using singular spectrum analysisArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL43652-245780-1-PB.pdfapplication/pdf935389https://repositorio.unal.edu.co/bitstream/unal/60744/1/43652-245780-1-PB.pdf9476d426b5960c0bd1f9e4ba62efb677MD51THUMBNAIL43652-245780-1-PB.pdf.jpg43652-245780-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9485https://repositorio.unal.edu.co/bitstream/unal/60744/2/43652-245780-1-PB.pdf.jpgdd1d080dd20955f35f46e28e467d0570MD52unal/60744oai:repositorio.unal.edu.co:unal/607442024-04-14 23:11:50.496Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Electricity consumption forecasting using singular spectrum analysis |
title |
Electricity consumption forecasting using singular spectrum analysis |
spellingShingle |
Electricity consumption forecasting using singular spectrum analysis 62 Ingeniería y operaciones afines / Engineering Electricity consumption forecasting singular spectrum analysis time series power system planning |
title_short |
Electricity consumption forecasting using singular spectrum analysis |
title_full |
Electricity consumption forecasting using singular spectrum analysis |
title_fullStr |
Electricity consumption forecasting using singular spectrum analysis |
title_full_unstemmed |
Electricity consumption forecasting using singular spectrum analysis |
title_sort |
Electricity consumption forecasting using singular spectrum analysis |
dc.creator.fl_str_mv |
Menezes, Moises Lima de Castro Souza, Reinaldo Moreira Pessanha, José Francisco |
dc.contributor.author.spa.fl_str_mv |
Menezes, Moises Lima de Castro Souza, Reinaldo Moreira Pessanha, José Francisco |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Electricity consumption forecasting singular spectrum analysis time series power system planning |
dc.subject.proposal.spa.fl_str_mv |
Electricity consumption forecasting singular spectrum analysis time series power system planning |
description |
Singular Spectrum Analysis (SSA) is a non-parametric technique that allows the decomposition of a time series into signal and noise. Thus, it is a useful technique to trend extraction, smooth and filter a time series. The effect on performance of both Box and Jenkins' and Holt-Winters models when applied to the time series filtered by SSA is investigated in this paper. Three different methodologies are evaluated in the SSA approach: Principal Component Analysis (PCA), Cluster Analysis and Graphical Analysis of Singular Vectors. In order to illustrate and compare the methodologies, in this paper, we also present the main results of a computational experiment with the monthly residential consumption of electricity in Brazil. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-03-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T19:00:52Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T19:00:52Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60744 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/59076/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60744 http://bdigital.unal.edu.co/59076/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/43652 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Menezes, Moises Lima de and Castro Souza, Reinaldo and Moreira Pessanha, José Francisco (2015) Electricity consumption forecasting using singular spectrum analysis. DYNA, 82 (190). pp. 138-146. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60744/1/43652-245780-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60744/2/43652-245780-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
9476d426b5960c0bd1f9e4ba62efb677 dd1d080dd20955f35f46e28e467d0570 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089763064381440 |