Efecto de la superficie libre en el desempeño global de una turbina fluvial

diagramas, ilustraciones a color, tablas

Autores:
Rodríguez Jaime, Luis Eduardo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79569
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79569
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_f29fae0a98009214f8feaefd35817654
oai_identifier_str oai:repositorio.unal.edu.co:unal/79569
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la superficie libre en el desempeño global de una turbina fluvial
dc.title.translated.eng.fl_str_mv Free surface effect on the overall performance of a river turbine
title Efecto de la superficie libre en el desempeño global de una turbina fluvial
spellingShingle Efecto de la superficie libre en el desempeño global de una turbina fluvial
620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
title_short Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_full Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_fullStr Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_full_unstemmed Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_sort Efecto de la superficie libre en el desempeño global de una turbina fluvial
dc.creator.fl_str_mv Rodríguez Jaime, Luis Eduardo
dc.contributor.advisor.none.fl_str_mv Benavides Morán, Aldo Germán
Laín Beatove, Santiago
dc.contributor.author.none.fl_str_mv Rodríguez Jaime, Luis Eduardo
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
dc.subject.proposal.spa.fl_str_mv Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
dc.subject.proposal.eng.fl_str_mv Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
dc.subject.unesco.none.fl_str_mv Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
description diagramas, ilustraciones a color, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-27T14:27:15Z
dc.date.available.none.fl_str_mv 2021-05-27T14:27:15Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79569
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79569
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications.
Abuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351.
Adamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington.
Albernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276.
Almohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158.
ANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317.
Anyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116.
Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311.
Asén, P. (2014). The Volume of Fluid Method. Kul, 34.4551.
Autodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1
Bahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8.
Bahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490.
Bahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426.
Bai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723.
Bangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73.
Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020.
Benchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901.
Betz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309.
Consul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16.
Contreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151.
Crecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88
Danao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016.
Daskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition.
DreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.html
ESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2
Facritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440.
Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer.
Franzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934.
Gaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba.
Ghasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100.
Houghton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd.
Katopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods.
Ketabdari, M. (2016). Free Surface Flow Simulation Using VOF Method.
Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133.
Kolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325.
Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46.
Laín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297.
Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria.
Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 .
Lopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348.
López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265.
Luo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556).
Manwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.html
McNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269.
Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 .
Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer.
Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria.
Menter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics.
Morales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657.
Mukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology.
Muzaferija, S., Peric, M., Sames, P., & Schelin, T. (1998). A two-fluid Navier-Stokes solver to simulate water entry. Twenty-Second Symposium on Naval Hydrodynamics.
Myers, L. E., & Bahaj, A. S. (2010). Experimental analysis of the flow fiel around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocena Engineering, 37: 218-227.
Myers, L., & Bahaj, A. (2009). Near wake properties of horizontal axis marine current turbines. University of Southampton.: School of Civil Engineering and the Environment.
Nichols, C. H. (1981). Volume of Fluid (VOF) Method for the dynamics of Free boundaries. Journal of Computational Physics 39, 201-225.
Nishi, Y., Sato, G. S., Inagaki, T., & Kikuchi, N. (2019). A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel. Renewable Energy, 130: 1036-1048.
Nishi, Y., Sato, G., Shiohara, D., Inagaki, T., & Kikuchi, N. (2017). Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field. Renew. Energy, 112: 53-62.
Pinilla, A. (2011). Notas del curso electivo en energia eólica. Bogotá: Departamento de Ingeniería Mecánica, Universidad de los Andes.
Polagye, B. (2009). Hydrodynamic Effects of Kinetic Power Extraction by In-Stream Tidal Turbines (Tesis de Doctorado). Washington: University of Washington.
Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 838-857.
Riglin, J., Schleicher, W., Liu, I., & Oztekin, A. (2015). Characterization of a micro-hydrokinetic turbine in close proximity to the free surface. Ocean Engineering, 110: 2270-280.
Satrio, D., Aria, K., & Mukhtasor. (2018). The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12: 3399-3409.
Schleicher, W. C., & Ringlin, J. D. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy, 234-241.
Seitz, A., Moerlein, K., Evans, M., & Rosenberger, A. (2011). Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices. Rev Fish Biol Fisheries , 21:481–496.
Sornes, K. (2010). Small-scale Water Current Turbines for River Applications. ZERO.
Sun, X. (2008). Numerical and Experimental Investigation of Tidal Current Energy Extraction. Tesis Doctoral. Edimburgo: University of Edinburgh.
Sun, X., Chick, J., & Bryden, I. (2008). Laboratory-scale simulation of energy extraction from tidal currents. Renewable Energy, 33: 1267–1274.
Tanbhir, M., Nawshad, U., & Islam, N. (2011). Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, 2: 2229-5518.
Tian, W., Mao, Z., & Ding, H. (2018). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, 10, 10: 782-793.
Ubbink, O., & Issa, R. (1999). Method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys., 153, 26-50.
UPME, PUJ, & Colciencias. (2015). Atlas. Potencial Hidroenergético de Colombia.
Vermaak, H., Kusakana, K., & Koko, S. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, 29: 625-633.
Versteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics- The Finite Volume Method. Glasgow: Pearson Education Limited,.
Waclawczyk, T., & Koronowicz, T. (2006). Modelling of free surface flow with high resolution schemes. Chemical and process engeneering, 27: 783-802.
Wacławczyk, T., & Koronowicz, T. (2008). Comparison of CICSAM and HRIC high-resolution schemes for interface capturing. Journa of Theorical and applied mechanics., 46(2): 325-345.
Wang, W., Yin, R., & Yan, Y. (2019). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, 133: 91-102.
Whelan, J. I., Graham, J., & Peiro, J. (2009). A free-surface and blockage correction for tidal turbines. J. Fluid Mech, 624: 281–291.
White, F. (1998). Fluid Mechanics, 4th Edition. Rhode Island: McGraw-Hill.
Wilcox, D. (1988). Reassessment of the Scale-determining Equation for Advanced Turbulence Models. AIAA J, 26: 1299-1310.
Wilcox, D. (1993). Comparison of Two-equation Turbulence Models for Boundary Layers with Pressure Gradients. AIAA J, 1414-1421.
Wilcox, D. (1994). Simulating Transition with a Two-equation Turbulence Model. AIAA J., 32: 247-255.
Yan, J., Deng, X., Korobenko, A., & Bazilevs, Y. (2018). Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Computers and Fluids, 158: 157-166.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (93 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79569/1/DocumentoTesis_LuisRodriguez_VersionFinal.pdf
https://repositorio.unal.edu.co/bitstream/unal/79569/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79569/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79569/7/DocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpg
bitstream.checksum.fl_str_mv 7d1eefc32e891709f9267e93014bedd9
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
b03cbe6ee50d5e773ab0459bff0d6bc4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089786670972928
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Benavides Morán, Aldo Germán966b1fa12e8b9b3aa74dd72f76178207Laín Beatove, Santiagof51e4f2141020f779d07a47e517852a2Rodríguez Jaime, Luis Eduardo069045c20ccfb44a9cde4b93d7de20382021-05-27T14:27:15Z2021-05-27T14:27:15Z2021https://repositorio.unal.edu.co/handle/unal/79569Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, tablasLas turbinas hidrocinéticas son un importante campo de estudio en energías renovables. Uno de los aspectos menos estudiados computacionalmente hasta la fecha es el efecto de la superficie libre en el desempeño del rotor. En este trabajo se presenta el estudio numérico por medio de CFD de una turbina hidrocinética considerando la superficie libre. Se presentan simulaciones considerando dos profundidades de inmersión, definidas por la inmersión de la punta del aspa denominadas 0.19D y 0.55D (con D=diámetro). Los modelos de turbulencia k −w SST y SST Transition son implementados sin superficie libre, definiendo SST Transition para todas las simulaciones transitorias con superficie libre debido a su mejor predicción del coeficiente de potencia. Las variaciones en el coeficiente de potencia y de empuje son estudiadas en ambas inmersiones, así como la deformación de la superficie libre y el desarrollo de la estela. El comportamiento a distintas velocidades de rotación, bajo las dos condiciones de inmersión, es comparado con datos experimentales describiendo una curva similar a la experimental. Se presentan simulaciones cambiando la longitud del dominio y el coeficiente de bloqueo, evidenciando la validez del dominio computacional empleado. Finalmente, se estudia el comportamiento incluyendo el soporte que sostiene el rotor, lo que incrementa principalmente el coeficiente de empuje reportado. La mayor inmersión reporta coeficientes de potencia superiores, lo cual está de acuerdo con los datos experimentales y con estudios computacionales previos.Hydrokinetic turbines are an important field of study in renewable energy. Computationally, one of the least aspects studied is the effect of free surface on rotor performance. In this work, numerical study of a hydrokinetic turbine is presented by means of CFD considering the free surface. Simulations are presented considering two immersion depths, defined by the immersion of the blade tip, called 0.19D and 0.55D (with D = diameter). The k −w SST and SST transition turbulence models are implemented without free surface, defining SST Transition for all free surface transient simulations due to its better prediction of the power coefficient. The variations in the power and thrust coefficients are evaluated in both dives, as well as the deformation of the free surface and the development of the wake. The behavior at different rotation speeds, under both immersion conditions, is compared with experimental data describing a similar curve related to the experimental data. Simulations are presented by changing the length of the domain and the blocking coefficient, evidencing the validity of the computational domain used. Finally, the behavior is studied including the structure that supports the rotor, which mainly increases the reported thrust coefficient. The greater immersion reports higher power coefficients, which is in agreement with the experimental data and with previous computational studies.MaestríaMagíster en Ingeniería- Ingeniería Mecánica1 recurso en línea (93 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesTurbina hidrocinéticaDinámica de Fluidos Computacional (CFD)Coeficiente de potenciaSuperficie libreHydrokinetic turbineComputational Fluid Dynamics (CFD)Power coefficientFree surfaceTurbina hidráulicaDinámica de fluidosFluid dynamicsWater turbinesEfecto de la superficie libre en el desempeño global de una turbina fluvialFree surface effect on the overall performance of a river turbineTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications.Abuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351.Adamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington.Albernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276.Almohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158.ANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317.Anyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116.Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311.Asén, P. (2014). The Volume of Fluid Method. Kul, 34.4551.Autodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1Bahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8.Bahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490.Bahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426.Bai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723.Bangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73.Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020.Benchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901.Betz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309.Consul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16.Contreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151.Crecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88Danao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016.Daskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition.DreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.htmlESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2Facritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440.Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer.Franzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934.Gaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba.Ghasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100.Houghton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd.Katopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods.Ketabdari, M. (2016). Free Surface Flow Simulation Using VOF Method.Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133.Kolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325.Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46.Laín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297.Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria.Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 .Lopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348.López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265.Luo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556).Manwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.htmlMcNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269.Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 .Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer.Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria.Menter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics.Morales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657.Mukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology.Muzaferija, S., Peric, M., Sames, P., & Schelin, T. (1998). A two-fluid Navier-Stokes solver to simulate water entry. Twenty-Second Symposium on Naval Hydrodynamics.Myers, L. E., & Bahaj, A. S. (2010). Experimental analysis of the flow fiel around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocena Engineering, 37: 218-227.Myers, L., & Bahaj, A. (2009). Near wake properties of horizontal axis marine current turbines. University of Southampton.: School of Civil Engineering and the Environment.Nichols, C. H. (1981). Volume of Fluid (VOF) Method for the dynamics of Free boundaries. Journal of Computational Physics 39, 201-225.Nishi, Y., Sato, G. S., Inagaki, T., & Kikuchi, N. (2019). A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel. Renewable Energy, 130: 1036-1048.Nishi, Y., Sato, G., Shiohara, D., Inagaki, T., & Kikuchi, N. (2017). Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field. Renew. Energy, 112: 53-62.Pinilla, A. (2011). Notas del curso electivo en energia eólica. Bogotá: Departamento de Ingeniería Mecánica, Universidad de los Andes.Polagye, B. (2009). Hydrodynamic Effects of Kinetic Power Extraction by In-Stream Tidal Turbines (Tesis de Doctorado). Washington: University of Washington.Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 838-857.Riglin, J., Schleicher, W., Liu, I., & Oztekin, A. (2015). Characterization of a micro-hydrokinetic turbine in close proximity to the free surface. Ocean Engineering, 110: 2270-280.Satrio, D., Aria, K., & Mukhtasor. (2018). The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12: 3399-3409.Schleicher, W. C., & Ringlin, J. D. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy, 234-241.Seitz, A., Moerlein, K., Evans, M., & Rosenberger, A. (2011). Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices. Rev Fish Biol Fisheries , 21:481–496.Sornes, K. (2010). Small-scale Water Current Turbines for River Applications. ZERO.Sun, X. (2008). Numerical and Experimental Investigation of Tidal Current Energy Extraction. Tesis Doctoral. Edimburgo: University of Edinburgh.Sun, X., Chick, J., & Bryden, I. (2008). Laboratory-scale simulation of energy extraction from tidal currents. Renewable Energy, 33: 1267–1274.Tanbhir, M., Nawshad, U., & Islam, N. (2011). Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, 2: 2229-5518.Tian, W., Mao, Z., & Ding, H. (2018). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, 10, 10: 782-793.Ubbink, O., & Issa, R. (1999). Method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys., 153, 26-50.UPME, PUJ, & Colciencias. (2015). Atlas. Potencial Hidroenergético de Colombia.Vermaak, H., Kusakana, K., & Koko, S. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, 29: 625-633.Versteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics- The Finite Volume Method. Glasgow: Pearson Education Limited,.Waclawczyk, T., & Koronowicz, T. (2006). Modelling of free surface flow with high resolution schemes. Chemical and process engeneering, 27: 783-802.Wacławczyk, T., & Koronowicz, T. (2008). Comparison of CICSAM and HRIC high-resolution schemes for interface capturing. Journa of Theorical and applied mechanics., 46(2): 325-345.Wang, W., Yin, R., & Yan, Y. (2019). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, 133: 91-102.Whelan, J. I., Graham, J., & Peiro, J. (2009). A free-surface and blockage correction for tidal turbines. J. Fluid Mech, 624: 281–291.White, F. (1998). Fluid Mechanics, 4th Edition. Rhode Island: McGraw-Hill.Wilcox, D. (1988). Reassessment of the Scale-determining Equation for Advanced Turbulence Models. AIAA J, 26: 1299-1310.Wilcox, D. (1993). Comparison of Two-equation Turbulence Models for Boundary Layers with Pressure Gradients. AIAA J, 1414-1421.Wilcox, D. (1994). Simulating Transition with a Two-equation Turbulence Model. AIAA J., 32: 247-255.Yan, J., Deng, X., Korobenko, A., & Bazilevs, Y. (2018). Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Computers and Fluids, 158: 157-166.ORIGINALDocumentoTesis_LuisRodriguez_VersionFinal.pdfDocumentoTesis_LuisRodriguez_VersionFinal.pdfTesis de Maestría en Ingeniería - Ingeniería Mecánicaapplication/pdf5792862https://repositorio.unal.edu.co/bitstream/unal/79569/1/DocumentoTesis_LuisRodriguez_VersionFinal.pdf7d1eefc32e891709f9267e93014bedd9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79569/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79569/6/license_rdf4460e5956bc1d1639be9ae6146a50347MD56THUMBNAILDocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpgDocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpgGenerated Thumbnailimage/jpeg4251https://repositorio.unal.edu.co/bitstream/unal/79569/7/DocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpgb03cbe6ee50d5e773ab0459bff0d6bc4MD57unal/79569oai:repositorio.unal.edu.co:unal/795692023-07-12 23:03:48.727Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==