Efecto de la superficie libre en el desempeño global de una turbina fluvial
diagramas, ilustraciones a color, tablas
- Autores:
-
Rodríguez Jaime, Luis Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79569
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_f29fae0a98009214f8feaefd35817654 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79569 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
dc.title.translated.eng.fl_str_mv |
Free surface effect on the overall performance of a river turbine |
title |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
spellingShingle |
Efecto de la superficie libre en el desempeño global de una turbina fluvial 620 - Ingeniería y operaciones afines Turbina hidrocinética Dinámica de Fluidos Computacional (CFD) Coeficiente de potencia Superficie libre Hydrokinetic turbine Computational Fluid Dynamics (CFD) Power coefficient Free surface Turbina hidráulica Dinámica de fluidos Fluid dynamics Water turbines |
title_short |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
title_full |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
title_fullStr |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
title_full_unstemmed |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
title_sort |
Efecto de la superficie libre en el desempeño global de una turbina fluvial |
dc.creator.fl_str_mv |
Rodríguez Jaime, Luis Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Benavides Morán, Aldo Germán Laín Beatove, Santiago |
dc.contributor.author.none.fl_str_mv |
Rodríguez Jaime, Luis Eduardo |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Turbina hidrocinética Dinámica de Fluidos Computacional (CFD) Coeficiente de potencia Superficie libre Hydrokinetic turbine Computational Fluid Dynamics (CFD) Power coefficient Free surface Turbina hidráulica Dinámica de fluidos Fluid dynamics Water turbines |
dc.subject.proposal.spa.fl_str_mv |
Turbina hidrocinética Dinámica de Fluidos Computacional (CFD) Coeficiente de potencia Superficie libre Hydrokinetic turbine |
dc.subject.proposal.eng.fl_str_mv |
Computational Fluid Dynamics (CFD) Power coefficient Free surface |
dc.subject.unesco.none.fl_str_mv |
Turbina hidráulica Dinámica de fluidos Fluid dynamics Water turbines |
description |
diagramas, ilustraciones a color, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-27T14:27:15Z |
dc.date.available.none.fl_str_mv |
2021-05-27T14:27:15Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79569 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79569 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications. Abuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351. Adamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington. Albernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276. Almohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158. ANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317. Anyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116. Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311. Asén, P. (2014). The Volume of Fluid Method. Kul, 34.4551. Autodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1 Bahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8. Bahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490. Bahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426. Bai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723. Bangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73. Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020. Benchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901. Betz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309. Consul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16. Contreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151. Crecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88 Danao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016. Daskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition. DreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.html ESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2 Facritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440. Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer. Franzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934. Gaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba. Ghasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100. Houghton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd. Katopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods. Ketabdari, M. (2016). Free Surface Flow Simulation Using VOF Method. Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133. Kolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325. Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46. Laín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297. Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria. Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 . Lopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348. López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265. Luo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556). Manwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.html McNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269. Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 . Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer. Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria. Menter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics. Morales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657. Mukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology. Muzaferija, S., Peric, M., Sames, P., & Schelin, T. (1998). A two-fluid Navier-Stokes solver to simulate water entry. Twenty-Second Symposium on Naval Hydrodynamics. Myers, L. E., & Bahaj, A. S. (2010). Experimental analysis of the flow fiel around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocena Engineering, 37: 218-227. Myers, L., & Bahaj, A. (2009). Near wake properties of horizontal axis marine current turbines. University of Southampton.: School of Civil Engineering and the Environment. Nichols, C. H. (1981). Volume of Fluid (VOF) Method for the dynamics of Free boundaries. Journal of Computational Physics 39, 201-225. Nishi, Y., Sato, G. S., Inagaki, T., & Kikuchi, N. (2019). A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel. Renewable Energy, 130: 1036-1048. Nishi, Y., Sato, G., Shiohara, D., Inagaki, T., & Kikuchi, N. (2017). Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field. Renew. Energy, 112: 53-62. Pinilla, A. (2011). Notas del curso electivo en energia eólica. Bogotá: Departamento de Ingeniería Mecánica, Universidad de los Andes. Polagye, B. (2009). Hydrodynamic Effects of Kinetic Power Extraction by In-Stream Tidal Turbines (Tesis de Doctorado). Washington: University of Washington. Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 838-857. Riglin, J., Schleicher, W., Liu, I., & Oztekin, A. (2015). Characterization of a micro-hydrokinetic turbine in close proximity to the free surface. Ocean Engineering, 110: 2270-280. Satrio, D., Aria, K., & Mukhtasor. (2018). The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12: 3399-3409. Schleicher, W. C., & Ringlin, J. D. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy, 234-241. Seitz, A., Moerlein, K., Evans, M., & Rosenberger, A. (2011). Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices. Rev Fish Biol Fisheries , 21:481–496. Sornes, K. (2010). Small-scale Water Current Turbines for River Applications. ZERO. Sun, X. (2008). Numerical and Experimental Investigation of Tidal Current Energy Extraction. Tesis Doctoral. Edimburgo: University of Edinburgh. Sun, X., Chick, J., & Bryden, I. (2008). Laboratory-scale simulation of energy extraction from tidal currents. Renewable Energy, 33: 1267–1274. Tanbhir, M., Nawshad, U., & Islam, N. (2011). Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, 2: 2229-5518. Tian, W., Mao, Z., & Ding, H. (2018). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, 10, 10: 782-793. Ubbink, O., & Issa, R. (1999). Method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys., 153, 26-50. UPME, PUJ, & Colciencias. (2015). Atlas. Potencial Hidroenergético de Colombia. Vermaak, H., Kusakana, K., & Koko, S. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, 29: 625-633. Versteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics- The Finite Volume Method. Glasgow: Pearson Education Limited,. Waclawczyk, T., & Koronowicz, T. (2006). Modelling of free surface flow with high resolution schemes. Chemical and process engeneering, 27: 783-802. Wacławczyk, T., & Koronowicz, T. (2008). Comparison of CICSAM and HRIC high-resolution schemes for interface capturing. Journa of Theorical and applied mechanics., 46(2): 325-345. Wang, W., Yin, R., & Yan, Y. (2019). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, 133: 91-102. Whelan, J. I., Graham, J., & Peiro, J. (2009). A free-surface and blockage correction for tidal turbines. J. Fluid Mech, 624: 281–291. White, F. (1998). Fluid Mechanics, 4th Edition. Rhode Island: McGraw-Hill. Wilcox, D. (1988). Reassessment of the Scale-determining Equation for Advanced Turbulence Models. AIAA J, 26: 1299-1310. Wilcox, D. (1993). Comparison of Two-equation Turbulence Models for Boundary Layers with Pressure Gradients. AIAA J, 1414-1421. Wilcox, D. (1994). Simulating Transition with a Two-equation Turbulence Model. AIAA J., 32: 247-255. Yan, J., Deng, X., Korobenko, A., & Bazilevs, Y. (2018). Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Computers and Fluids, 158: 157-166. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (93 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79569/1/DocumentoTesis_LuisRodriguez_VersionFinal.pdf https://repositorio.unal.edu.co/bitstream/unal/79569/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/79569/6/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79569/7/DocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpg |
bitstream.checksum.fl_str_mv |
7d1eefc32e891709f9267e93014bedd9 cccfe52f796b7c63423298c2d3365fc6 4460e5956bc1d1639be9ae6146a50347 b03cbe6ee50d5e773ab0459bff0d6bc4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089786670972928 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Benavides Morán, Aldo Germán966b1fa12e8b9b3aa74dd72f76178207Laín Beatove, Santiagof51e4f2141020f779d07a47e517852a2Rodríguez Jaime, Luis Eduardo069045c20ccfb44a9cde4b93d7de20382021-05-27T14:27:15Z2021-05-27T14:27:15Z2021https://repositorio.unal.edu.co/handle/unal/79569Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, tablasLas turbinas hidrocinéticas son un importante campo de estudio en energías renovables. Uno de los aspectos menos estudiados computacionalmente hasta la fecha es el efecto de la superficie libre en el desempeño del rotor. En este trabajo se presenta el estudio numérico por medio de CFD de una turbina hidrocinética considerando la superficie libre. Se presentan simulaciones considerando dos profundidades de inmersión, definidas por la inmersión de la punta del aspa denominadas 0.19D y 0.55D (con D=diámetro). Los modelos de turbulencia k −w SST y SST Transition son implementados sin superficie libre, definiendo SST Transition para todas las simulaciones transitorias con superficie libre debido a su mejor predicción del coeficiente de potencia. Las variaciones en el coeficiente de potencia y de empuje son estudiadas en ambas inmersiones, así como la deformación de la superficie libre y el desarrollo de la estela. El comportamiento a distintas velocidades de rotación, bajo las dos condiciones de inmersión, es comparado con datos experimentales describiendo una curva similar a la experimental. Se presentan simulaciones cambiando la longitud del dominio y el coeficiente de bloqueo, evidenciando la validez del dominio computacional empleado. Finalmente, se estudia el comportamiento incluyendo el soporte que sostiene el rotor, lo que incrementa principalmente el coeficiente de empuje reportado. La mayor inmersión reporta coeficientes de potencia superiores, lo cual está de acuerdo con los datos experimentales y con estudios computacionales previos.Hydrokinetic turbines are an important field of study in renewable energy. Computationally, one of the least aspects studied is the effect of free surface on rotor performance. In this work, numerical study of a hydrokinetic turbine is presented by means of CFD considering the free surface. Simulations are presented considering two immersion depths, defined by the immersion of the blade tip, called 0.19D and 0.55D (with D = diameter). The k −w SST and SST transition turbulence models are implemented without free surface, defining SST Transition for all free surface transient simulations due to its better prediction of the power coefficient. The variations in the power and thrust coefficients are evaluated in both dives, as well as the deformation of the free surface and the development of the wake. The behavior at different rotation speeds, under both immersion conditions, is compared with experimental data describing a similar curve related to the experimental data. Simulations are presented by changing the length of the domain and the blocking coefficient, evidencing the validity of the computational domain used. Finally, the behavior is studied including the structure that supports the rotor, which mainly increases the reported thrust coefficient. The greater immersion reports higher power coefficients, which is in agreement with the experimental data and with previous computational studies.MaestríaMagíster en Ingeniería- Ingeniería Mecánica1 recurso en línea (93 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesTurbina hidrocinéticaDinámica de Fluidos Computacional (CFD)Coeficiente de potenciaSuperficie libreHydrokinetic turbineComputational Fluid Dynamics (CFD)Power coefficientFree surfaceTurbina hidráulicaDinámica de fluidosFluid dynamicsWater turbinesEfecto de la superficie libre en el desempeño global de una turbina fluvialFree surface effect on the overall performance of a river turbineTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications.Abuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351.Adamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington.Albernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276.Almohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158.ANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317.Anyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116.Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311.Asén, P. (2014). The Volume of Fluid Method. Kul, 34.4551.Autodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1Bahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8.Bahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490.Bahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426.Bai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723.Bangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73.Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020.Benchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901.Betz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309.Consul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16.Contreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151.Crecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88Danao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016.Daskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition.DreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.htmlESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2Facritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440.Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer.Franzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934.Gaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba.Ghasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100.Houghton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd.Katopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods.Ketabdari, M. (2016). Free Surface Flow Simulation Using VOF Method.Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133.Kolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325.Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46.Laín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297.Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria.Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 .Lopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348.López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265.Luo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556).Manwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.htmlMcNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269.Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 .Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer.Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria.Menter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics.Morales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657.Mukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology.Muzaferija, S., Peric, M., Sames, P., & Schelin, T. (1998). A two-fluid Navier-Stokes solver to simulate water entry. Twenty-Second Symposium on Naval Hydrodynamics.Myers, L. E., & Bahaj, A. S. (2010). Experimental analysis of the flow fiel around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocena Engineering, 37: 218-227.Myers, L., & Bahaj, A. (2009). Near wake properties of horizontal axis marine current turbines. University of Southampton.: School of Civil Engineering and the Environment.Nichols, C. H. (1981). Volume of Fluid (VOF) Method for the dynamics of Free boundaries. Journal of Computational Physics 39, 201-225.Nishi, Y., Sato, G. S., Inagaki, T., & Kikuchi, N. (2019). A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel. Renewable Energy, 130: 1036-1048.Nishi, Y., Sato, G., Shiohara, D., Inagaki, T., & Kikuchi, N. (2017). Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field. Renew. Energy, 112: 53-62.Pinilla, A. (2011). Notas del curso electivo en energia eólica. Bogotá: Departamento de Ingeniería Mecánica, Universidad de los Andes.Polagye, B. (2009). Hydrodynamic Effects of Kinetic Power Extraction by In-Stream Tidal Turbines (Tesis de Doctorado). Washington: University of Washington.Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 838-857.Riglin, J., Schleicher, W., Liu, I., & Oztekin, A. (2015). Characterization of a micro-hydrokinetic turbine in close proximity to the free surface. Ocean Engineering, 110: 2270-280.Satrio, D., Aria, K., & Mukhtasor. (2018). The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12: 3399-3409.Schleicher, W. C., & Ringlin, J. D. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy, 234-241.Seitz, A., Moerlein, K., Evans, M., & Rosenberger, A. (2011). Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices. Rev Fish Biol Fisheries , 21:481–496.Sornes, K. (2010). Small-scale Water Current Turbines for River Applications. ZERO.Sun, X. (2008). Numerical and Experimental Investigation of Tidal Current Energy Extraction. Tesis Doctoral. Edimburgo: University of Edinburgh.Sun, X., Chick, J., & Bryden, I. (2008). Laboratory-scale simulation of energy extraction from tidal currents. Renewable Energy, 33: 1267–1274.Tanbhir, M., Nawshad, U., & Islam, N. (2011). Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, 2: 2229-5518.Tian, W., Mao, Z., & Ding, H. (2018). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, 10, 10: 782-793.Ubbink, O., & Issa, R. (1999). Method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys., 153, 26-50.UPME, PUJ, & Colciencias. (2015). Atlas. Potencial Hidroenergético de Colombia.Vermaak, H., Kusakana, K., & Koko, S. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, 29: 625-633.Versteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics- The Finite Volume Method. Glasgow: Pearson Education Limited,.Waclawczyk, T., & Koronowicz, T. (2006). Modelling of free surface flow with high resolution schemes. Chemical and process engeneering, 27: 783-802.Wacławczyk, T., & Koronowicz, T. (2008). Comparison of CICSAM and HRIC high-resolution schemes for interface capturing. Journa of Theorical and applied mechanics., 46(2): 325-345.Wang, W., Yin, R., & Yan, Y. (2019). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, 133: 91-102.Whelan, J. I., Graham, J., & Peiro, J. (2009). A free-surface and blockage correction for tidal turbines. J. Fluid Mech, 624: 281–291.White, F. (1998). Fluid Mechanics, 4th Edition. Rhode Island: McGraw-Hill.Wilcox, D. (1988). Reassessment of the Scale-determining Equation for Advanced Turbulence Models. AIAA J, 26: 1299-1310.Wilcox, D. (1993). Comparison of Two-equation Turbulence Models for Boundary Layers with Pressure Gradients. AIAA J, 1414-1421.Wilcox, D. (1994). Simulating Transition with a Two-equation Turbulence Model. AIAA J., 32: 247-255.Yan, J., Deng, X., Korobenko, A., & Bazilevs, Y. (2018). Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Computers and Fluids, 158: 157-166.ORIGINALDocumentoTesis_LuisRodriguez_VersionFinal.pdfDocumentoTesis_LuisRodriguez_VersionFinal.pdfTesis de Maestría en Ingeniería - Ingeniería Mecánicaapplication/pdf5792862https://repositorio.unal.edu.co/bitstream/unal/79569/1/DocumentoTesis_LuisRodriguez_VersionFinal.pdf7d1eefc32e891709f9267e93014bedd9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79569/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79569/6/license_rdf4460e5956bc1d1639be9ae6146a50347MD56THUMBNAILDocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpgDocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpgGenerated Thumbnailimage/jpeg4251https://repositorio.unal.edu.co/bitstream/unal/79569/7/DocumentoTesis_LuisRodriguez_VersionFinal.pdf.jpgb03cbe6ee50d5e773ab0459bff0d6bc4MD57unal/79569oai:repositorio.unal.edu.co:unal/795692023-07-12 23:03:48.727Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |