Iterated forcing with finitely additive measures: applications of probability to forcing theory

The method of finitely additive measures along finite support iterations was introduced by Saharon Shelah in 2000 (see [She00]) to show that, consistently, cov(N ) may have countable cofinality. In 2019, Jakob Kellner, Saharon Shelah and Anda Tanasie ˇ (see [KST19]) improved the method: they achieve...

Full description

Autores:
Uribe Zapata, Andrés Felipe
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84529
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84529
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
510 - Matemáticas::511 - Principios generales de las matemáticas
Forcing (Teoría de los modelos)
Trayectoria aleatoria
Iterated forcing
Probability
Finitely additive measure
Consistency results
Null set
Intersection number
Cardinal invariant
Singular cardinal
Cichon’s diagram
Forcing iterado
Probabilidad
Medida finitamente aditiva
Resultados de consistencia
Conjunto nulo
Numero de intersección
Cardinal invariante
Cardinal singular
diagrama de Cicho´n
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f1bf641f9640bca5da7594e21566762c
oai_identifier_str oai:repositorio.unal.edu.co:unal/84529
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Iterated forcing with finitely additive measures: applications of probability to forcing theory
dc.title.translated.spa.fl_str_mv Forcing iterado con medidas finitamente aditivas: aplicaciones de la probabilidad a la teoría del forcing
title Iterated forcing with finitely additive measures: applications of probability to forcing theory
spellingShingle Iterated forcing with finitely additive measures: applications of probability to forcing theory
510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
510 - Matemáticas::511 - Principios generales de las matemáticas
Forcing (Teoría de los modelos)
Trayectoria aleatoria
Iterated forcing
Probability
Finitely additive measure
Consistency results
Null set
Intersection number
Cardinal invariant
Singular cardinal
Cichon’s diagram
Forcing iterado
Probabilidad
Medida finitamente aditiva
Resultados de consistencia
Conjunto nulo
Numero de intersección
Cardinal invariante
Cardinal singular
diagrama de Cicho´n
title_short Iterated forcing with finitely additive measures: applications of probability to forcing theory
title_full Iterated forcing with finitely additive measures: applications of probability to forcing theory
title_fullStr Iterated forcing with finitely additive measures: applications of probability to forcing theory
title_full_unstemmed Iterated forcing with finitely additive measures: applications of probability to forcing theory
title_sort Iterated forcing with finitely additive measures: applications of probability to forcing theory
dc.creator.fl_str_mv Uribe Zapata, Andrés Felipe
dc.contributor.advisor.none.fl_str_mv Mejía Guzmán, Diego Alejandro
Parra Londoño, Carlos Mario
dc.contributor.author.none.fl_str_mv Uribe Zapata, Andrés Felipe
dc.contributor.researchgate.spa.fl_str_mv 0000-0003-2463-1360
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
510 - Matemáticas::511 - Principios generales de las matemáticas
topic 510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
510 - Matemáticas::511 - Principios generales de las matemáticas
Forcing (Teoría de los modelos)
Trayectoria aleatoria
Iterated forcing
Probability
Finitely additive measure
Consistency results
Null set
Intersection number
Cardinal invariant
Singular cardinal
Cichon’s diagram
Forcing iterado
Probabilidad
Medida finitamente aditiva
Resultados de consistencia
Conjunto nulo
Numero de intersección
Cardinal invariante
Cardinal singular
diagrama de Cicho´n
dc.subject.lemb.none.fl_str_mv Forcing (Teoría de los modelos)
Trayectoria aleatoria
dc.subject.proposal.eng.fl_str_mv Iterated forcing
Probability
Finitely additive measure
Consistency results
Null set
Intersection number
Cardinal invariant
Singular cardinal
Cichon’s diagram
dc.subject.proposal.spa.fl_str_mv Forcing iterado
Probabilidad
Medida finitamente aditiva
Resultados de consistencia
Conjunto nulo
Numero de intersección
Cardinal invariante
Cardinal singular
diagrama de Cicho´n
description The method of finitely additive measures along finite support iterations was introduced by Saharon Shelah in 2000 (see [She00]) to show that, consistently, cov(N ) may have countable cofinality. In 2019, Jakob Kellner, Saharon Shelah and Anda Tanasie ˇ (see [KST19]) improved the method: they achieved some new generalizations and applications, such as separating the left side of Cichon’s ´ diagram with b < cov(N ). In this thesis, based on probability theory tools and the articles cited above, we develop a general theory of iterated forcing using finitely additive measures. For this purpose, we introduce two new notions: on the one hand, we define a new linkedness property, which we call “µ-FAM-linked” and, on the other hand, we generalize the notion of intersection number to forcing notions, which justifies the limit steps of our iteration theory. Finally, we apply our theory to prove in detail the consistency of cf(cov(N )) = ℵ0, and some separations of Cichon’s ´ diagram where cov(N ) is singular. In particular, we obtain a new constellation of Cichon’s diagram ´ separating the left side with cov(N ) singular
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-10T19:36:14Z
dc.date.available.none.fl_str_mv 2023-08-10T19:36:14Z
dc.date.issued.none.fl_str_mv 2023-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84529
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84529
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Hannah Arendt. The Human Condition. University of Chicago Press, Chicago IL, 2018.
Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.
Tomek Bartoszynski. On covering of real line by null sets. Pacific J. Math., 131(1):1– 12, 1988
Jorg Brendle, Miguel A. Cardona, and Diego A. Mejıa. Filter-linkedness and its effect on preservation of cardinal characteristics. Ann. Pure Appl. Logic, 172(1):102856, 2021
Tomek Bartoszynski, Jaime I. Ihoda, and Saharon Shelah. The cofinality of cardinal invariants related to measure and category. The Journal of Symbolic Logic, 54(3):719– 726, 1989
Jorg Brendle and Haim Judah. Perfect sets of random reals. Israel Journal of Mathe- matics, 83:153–176, 1993
Tomek Bartoszynski and Haim Judah. Set theory: On the Structure of the Real Line. A K Peters, Ltd., Wellesley, MA, 1995.
Tomek Bartoszynski and H Judah. Measure and category. In Handbook of Set Theory. Vols. 1, 2, 3, volume 2. 2010.
William Blake. The marriage of Heaven and Hell. Camden Hotten, London, 1868.
Andreas Blass. Combinatorial cardinal characteristics of the continuum. In Handbook of Set Theory. Vols. 1, 2, 3, pages 395–489. Springer, Dordrecht, 2010.
J. L. Bell and M. Machover. A Course in Mathematical Logic. North-Holland Pub- lishing Co., Amsterdam-New York-Oxford, 1977.
J. L. Borges. Obras completas. Emecé, 1984.
K. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges: A Study of Finitely Additive Measures, volume 109 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.
Jorg Brendle. Larger cardinals in Cichon’s diagram. Israel Journal of Mathematics, 56(3):795–810, 1991.
Kai Lai Chung. A Course in Probability Theory. Academic Press, 1974.
Miguel A. Cardona and Diego A. Mejía. On cardinal characteristics of Yorioka ideals. Math. Log. Q., 65(2):170–199, 2019.
Miguel A. Cardona and Diego A. Mejía. Forcing constellations of Cichon’s diagram by using the Tukey order. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 22(13):14– 47, 2022. arXiv:2203.00615.
Paul J. Cohen. Set Theory and the Continuum Hypothesis. W. A. Benjamin, Inc., New York-Amsterdam, 1966.
Ryszard Engelking and Monika Karłowicz. Some theorems of set theory and their topological consequences. Fund. Math., 57:275–285, 1965.
P. Erdos. Some remarks on the theory of graphs. Bulletin of the American Mathemat- ical Society, 53(4):292 – 294, 1947.
Martin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah. Preser- vation of splitting families and cardinal characteristics of the continuum. Israel Jour- nal of Mathematics, 246:73–129, 2021
Martin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah. Ci- chon’s maximum without large cardinals. J. Eur. Math. Soc. (JEMS), 24(11):3951– 3967, 2022.
Martin Goldstern, Jakob Kellner, and Saharon Shelah. Cichon’s maximum. Ann. of Math., 190(1):113–143, 2019.
Martin Goldstern, Diego Alejandro Mejía, and Saharon Shelah. The left side of Ci- chon’s diagram. Proc. Amer. Math. Soc., 144(9):4025–4042, 2016.
Steven Givant and Halmos Paul. Introduction to Boolean Algebras, volume 1 of Un- dergraduate Texts in Mathematics. Springer, 2009.
Lorenz J. Halbeisen. Combinatorial Set Theory. Springer Monographs in Mathemat- ics. Springer, 2019.
David Hilbert. The Foundations of Mathematics. Harvard University Press, 1927.
Horowitz Haim. and Saharon Shelah. Saccharinity with ccc. arXiv:1610.02706, 2016
Thomas Jech. Set Theory, the Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003
Alexander S. Kechris. Classical Descriptive Set Theory. Springer New York, NY, 1995.
J.L Kelley. Meaures on boolean algebras. J. Symbolic Logic, 64(2):737–746, 1959.
Ashutosh Kumar and Saharon Shelah. On possible restrictions of the null ideal. Jour- nal of Mathematical Logic, 19(02):1950008, 2019.
Jakob Kellner, Saharon Shelah, and Anda R. Tanasie. Another ordering of the ten car- dinal characteristics in Cichon’s diagram. Comment. Math. Univ. Carolin., 60(1):61– 95, 2019.
Kenneth Kunen. Set Theory, an Introduction to Independence Proofs, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1980.
Kenneth Kunen. Set Theory, volume 34 of Studies in Logic (London). College Publi- cations, London, 2011.
Kenneth Kunen. The Foundation of Mathematics. College Publications, London, 2012.
Luc Lauwers. Purely finitely additive measures are non-constructible objects. Working Papers of Department of Economics, Leuven, 2010.
Diego A. Mejíıa. Matrix iterations with vertical support restrictions. In Proceedings of the 14th and 15th Asian Logic Conferences, pages 213–248. World Sci. Publ., Hack- ensack, NJ, 2019. arXiv:1803.05102.
Diego A. Mejíıa. Forcing and combinatorics of names. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2164:34–49, 2020. http://hdl.handle.net/2433/ 261449.
Arnold W. Miller. Some properties of measure and category. American Mathematical Society, 266(1):93–114, 1981.
Arnold W. Miller. The Baire category theorem and cardinals of countable cofinality. The Journal of Symbolic Logic, 47(2):275–288, 1982.
Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.
Diego Alejandro Mejía and Ismael E. Rivera-Madrid. Absoluteness theorems for ar- bitrary Polish spaces. Rev. Colombiana Mat., 53(2):109–123, 2019.
John C. Oxtoby. Measure and Category. Graduate Texts in Mathematics. Springer, 2013.
Janusz Pawlikowski. Adding dominating reals with Baire-bounding posets. American Mathematical Society, 123(2):540–547, 1992.
Assaf Rinot. The Engelking-Karłowicz Theorem, and a useful corollary. Personal blog, Sep. 29, 2012. https://blog.assafrinot.com/?p=2054
Maxwell Rosenlicht. Introduction to Analysis, volume 1. Dover Publications, 1968.
Sheldon M. Ross. A First Course in Probability. Prentice Hall, Upper Saddle River, N.J., fifth edition, 1998.
Saharon Shelah. The future of set theory. In Set theory of the reals, pages 1–12. Bar-Ilan Univ, 1993.
Saharon Shelah. Covering of the null ideal may have countable cofinality. Fund. Math., 166(1-2):109–136, 2000.
J. R Shoenfield. Martin’s axiom. American Mathematical Monthly, 82(6):610–617, 1975
Saharon Shelah and Haim Judah. Adding dominating reals with the random algebra. American Mathematical Society, 119(1):267–273, 1993.
R.M. Solovay and Tennenbaum S. Iterated Cohen extensions and Souslin’s problem. Annals of Mathematics, 94(2):201–245, 1971.
John Truss. Connections between different amoeba algebras. Fundamenta Mathemat- icae, 130(2):137–155, 1988.
Carlos Uzcátegui Aylwin and Carlos Augusto Di Prisco. Una Introducción a la Teoría Descriptiva de Conjuntos. Ediciones Uniandes-Universidad de los Andes, 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 190 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84529/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84529/2/1037653497.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84529/3/1037653497.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
8fe1abe74c94f8537107a6aa0ca70a39
60d25c00c55a3ef7df0bdbad5b857dc6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090046697897984
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mejía Guzmán, Diego Alejandro7f850bfbf0ceb6a9c44d167c85f61feaParra Londoño, Carlos Mario83a7ffab01e6c634826118974a200beaUribe Zapata, Andrés Felipe86255b19aa9b3492ae064cfc39076deb0000-0003-2463-13602023-08-10T19:36:14Z2023-08-10T19:36:14Z2023-01https://repositorio.unal.edu.co/handle/unal/84529Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The method of finitely additive measures along finite support iterations was introduced by Saharon Shelah in 2000 (see [She00]) to show that, consistently, cov(N ) may have countable cofinality. In 2019, Jakob Kellner, Saharon Shelah and Anda Tanasie ˇ (see [KST19]) improved the method: they achieved some new generalizations and applications, such as separating the left side of Cichon’s ´ diagram with b < cov(N ). In this thesis, based on probability theory tools and the articles cited above, we develop a general theory of iterated forcing using finitely additive measures. For this purpose, we introduce two new notions: on the one hand, we define a new linkedness property, which we call “µ-FAM-linked” and, on the other hand, we generalize the notion of intersection number to forcing notions, which justifies the limit steps of our iteration theory. Finally, we apply our theory to prove in detail the consistency of cf(cov(N )) = ℵ0, and some separations of Cichon’s ´ diagram where cov(N ) is singular. In particular, we obtain a new constellation of Cichon’s diagram ´ separating the left side with cov(N ) singularEn el año 2000, Saharon Shelah introdujo un método que utiliza medidas finitamente aditivas a lo largo de iteraciones de soporte finito para demostrar que, consistentemente, el cubrimiento del ideal nulo puede tener cofinalidad contable. En 2019, Jakob Kellner, Saharon Shelah y Anda R. Tanasie mejoraron el método: lograron algunas generalizaciones y nuevas aplicaciones. En esta tesis, basada en las herramientas de la teoría de la probabilidad y los trabajos mencionados anteriormente, desarrollamos una teoría general de forcing iterado utilizando medidas finitamente aditivas. Para ello, introducimos dos nociones nuevas: por un lado, definimos una nueva propiedad de ligadura, que llamamos "FAM-ligadura'' y, por otro lado, generalizamos la idea de número de intersección a nociones de forcing, que justifica los pasos límite de nuestra teoría de iteraciones. Finalmente, aplicamos nuestro enfoque para probar en detalle la consistencia de que el cubrimiento del ideal nulo puede tener cofinalidad contable y obtenemos algunas separaciones del diagrama de Cichoń donde el cubrimiento del ideal nulo es singular. En particular, obtenemos una nueva constelación del diagrama de Cichoń separando el lado izquierdo y permitiendo que el cubrimiento del ideal nulo sea singular. (texto tomado de la fuente)MaestríaMagister en ciencias matemáticasÁrea Curricular en Matemáticas190 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas510 - Matemáticas::511 - Principios generales de las matemáticasForcing (Teoría de los modelos)Trayectoria aleatoriaIterated forcingProbabilityFinitely additive measureConsistency resultsNull setIntersection numberCardinal invariantSingular cardinalCichon’s diagramForcing iteradoProbabilidadMedida finitamente aditivaResultados de consistenciaConjunto nuloNumero de intersecciónCardinal invarianteCardinal singulardiagrama de Cicho´nIterated forcing with finitely additive measures: applications of probability to forcing theoryForcing iterado con medidas finitamente aditivas: aplicaciones de la probabilidad a la teoría del forcingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMHannah Arendt. The Human Condition. University of Chicago Press, Chicago IL, 2018.Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.Tomek Bartoszynski. On covering of real line by null sets. Pacific J. Math., 131(1):1– 12, 1988Jorg Brendle, Miguel A. Cardona, and Diego A. Mejıa. Filter-linkedness and its effect on preservation of cardinal characteristics. Ann. Pure Appl. Logic, 172(1):102856, 2021Tomek Bartoszynski, Jaime I. Ihoda, and Saharon Shelah. The cofinality of cardinal invariants related to measure and category. The Journal of Symbolic Logic, 54(3):719– 726, 1989Jorg Brendle and Haim Judah. Perfect sets of random reals. Israel Journal of Mathe- matics, 83:153–176, 1993Tomek Bartoszynski and Haim Judah. Set theory: On the Structure of the Real Line. A K Peters, Ltd., Wellesley, MA, 1995.Tomek Bartoszynski and H Judah. Measure and category. In Handbook of Set Theory. Vols. 1, 2, 3, volume 2. 2010.William Blake. The marriage of Heaven and Hell. Camden Hotten, London, 1868.Andreas Blass. Combinatorial cardinal characteristics of the continuum. In Handbook of Set Theory. Vols. 1, 2, 3, pages 395–489. Springer, Dordrecht, 2010.J. L. Bell and M. Machover. A Course in Mathematical Logic. North-Holland Pub- lishing Co., Amsterdam-New York-Oxford, 1977.J. L. Borges. Obras completas. Emecé, 1984.K. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges: A Study of Finitely Additive Measures, volume 109 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.Jorg Brendle. Larger cardinals in Cichon’s diagram. Israel Journal of Mathematics, 56(3):795–810, 1991.Kai Lai Chung. A Course in Probability Theory. Academic Press, 1974.Miguel A. Cardona and Diego A. Mejía. On cardinal characteristics of Yorioka ideals. Math. Log. Q., 65(2):170–199, 2019.Miguel A. Cardona and Diego A. Mejía. Forcing constellations of Cichon’s diagram by using the Tukey order. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 22(13):14– 47, 2022. arXiv:2203.00615.Paul J. Cohen. Set Theory and the Continuum Hypothesis. W. A. Benjamin, Inc., New York-Amsterdam, 1966.Ryszard Engelking and Monika Karłowicz. Some theorems of set theory and their topological consequences. Fund. Math., 57:275–285, 1965.P. Erdos. Some remarks on the theory of graphs. Bulletin of the American Mathemat- ical Society, 53(4):292 – 294, 1947.Martin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah. Preser- vation of splitting families and cardinal characteristics of the continuum. Israel Jour- nal of Mathematics, 246:73–129, 2021Martin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah. Ci- chon’s maximum without large cardinals. J. Eur. Math. Soc. (JEMS), 24(11):3951– 3967, 2022.Martin Goldstern, Jakob Kellner, and Saharon Shelah. Cichon’s maximum. Ann. of Math., 190(1):113–143, 2019.Martin Goldstern, Diego Alejandro Mejía, and Saharon Shelah. The left side of Ci- chon’s diagram. Proc. Amer. Math. Soc., 144(9):4025–4042, 2016.Steven Givant and Halmos Paul. Introduction to Boolean Algebras, volume 1 of Un- dergraduate Texts in Mathematics. Springer, 2009.Lorenz J. Halbeisen. Combinatorial Set Theory. Springer Monographs in Mathemat- ics. Springer, 2019.David Hilbert. The Foundations of Mathematics. Harvard University Press, 1927.Horowitz Haim. and Saharon Shelah. Saccharinity with ccc. arXiv:1610.02706, 2016Thomas Jech. Set Theory, the Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003Alexander S. Kechris. Classical Descriptive Set Theory. Springer New York, NY, 1995.J.L Kelley. Meaures on boolean algebras. J. Symbolic Logic, 64(2):737–746, 1959.Ashutosh Kumar and Saharon Shelah. On possible restrictions of the null ideal. Jour- nal of Mathematical Logic, 19(02):1950008, 2019.Jakob Kellner, Saharon Shelah, and Anda R. Tanasie. Another ordering of the ten car- dinal characteristics in Cichon’s diagram. Comment. Math. Univ. Carolin., 60(1):61– 95, 2019.Kenneth Kunen. Set Theory, an Introduction to Independence Proofs, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1980.Kenneth Kunen. Set Theory, volume 34 of Studies in Logic (London). College Publi- cations, London, 2011.Kenneth Kunen. The Foundation of Mathematics. College Publications, London, 2012.Luc Lauwers. Purely finitely additive measures are non-constructible objects. Working Papers of Department of Economics, Leuven, 2010.Diego A. Mejíıa. Matrix iterations with vertical support restrictions. In Proceedings of the 14th and 15th Asian Logic Conferences, pages 213–248. World Sci. Publ., Hack- ensack, NJ, 2019. arXiv:1803.05102.Diego A. Mejíıa. Forcing and combinatorics of names. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2164:34–49, 2020. http://hdl.handle.net/2433/ 261449.Arnold W. Miller. Some properties of measure and category. American Mathematical Society, 266(1):93–114, 1981.Arnold W. Miller. The Baire category theorem and cardinals of countable cofinality. The Journal of Symbolic Logic, 47(2):275–288, 1982.Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.Diego Alejandro Mejía and Ismael E. Rivera-Madrid. Absoluteness theorems for ar- bitrary Polish spaces. Rev. Colombiana Mat., 53(2):109–123, 2019.John C. Oxtoby. Measure and Category. Graduate Texts in Mathematics. Springer, 2013.Janusz Pawlikowski. Adding dominating reals with Baire-bounding posets. American Mathematical Society, 123(2):540–547, 1992.Assaf Rinot. The Engelking-Karłowicz Theorem, and a useful corollary. Personal blog, Sep. 29, 2012. https://blog.assafrinot.com/?p=2054Maxwell Rosenlicht. Introduction to Analysis, volume 1. Dover Publications, 1968.Sheldon M. Ross. A First Course in Probability. Prentice Hall, Upper Saddle River, N.J., fifth edition, 1998.Saharon Shelah. The future of set theory. In Set theory of the reals, pages 1–12. Bar-Ilan Univ, 1993.Saharon Shelah. Covering of the null ideal may have countable cofinality. Fund. Math., 166(1-2):109–136, 2000.J. R Shoenfield. Martin’s axiom. American Mathematical Monthly, 82(6):610–617, 1975Saharon Shelah and Haim Judah. Adding dominating reals with the random algebra. American Mathematical Society, 119(1):267–273, 1993.R.M. Solovay and Tennenbaum S. Iterated Cohen extensions and Souslin’s problem. Annals of Mathematics, 94(2):201–245, 1971.John Truss. Connections between different amoeba algebras. Fundamenta Mathemat- icae, 130(2):137–155, 1988.Carlos Uzcátegui Aylwin and Carlos Augusto Di Prisco. Una Introducción a la Teoría Descriptiva de Conjuntos. Ediciones Uniandes-Universidad de los Andes, 2020.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84529/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1037653497.2023.pdf1037653497.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1474449https://repositorio.unal.edu.co/bitstream/unal/84529/2/1037653497.2023.pdf8fe1abe74c94f8537107a6aa0ca70a39MD52THUMBNAIL1037653497.2023.pdf.jpg1037653497.2023.pdf.jpgGenerated Thumbnailimage/jpeg5900https://repositorio.unal.edu.co/bitstream/unal/84529/3/1037653497.2023.pdf.jpg60d25c00c55a3ef7df0bdbad5b857dc6MD53unal/84529oai:repositorio.unal.edu.co:unal/845292024-07-24 23:41:29.758Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=