Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging

ilustraciones, diagramas

Autores:
Tamara Isaza, Jeyson de Jesus
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85691
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85691
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
Imanes
Materia
Magnets
Matter
Green Function
Nitrogen-Vacancy center in diamond
Quantum Magnetic Imaging
All-optical Magnetometry
Dirac Hamiltonian
Graphene-like materials
Van der Waals Materials
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f1232e00c2227bed019f2eec24c31d8e
oai_identifier_str oai:repositorio.unal.edu.co:unal/85691
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
dc.title.translated.spa.fl_str_mv Exploracion de materiales de dirac e imanes bidimensionales usando el método de las funciones de green e imágenes magnéticas cuánticas
title Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
spellingShingle Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
530 - Física
Imanes
Materia
Magnets
Matter
Green Function
Nitrogen-Vacancy center in diamond
Quantum Magnetic Imaging
All-optical Magnetometry
Dirac Hamiltonian
Graphene-like materials
Van der Waals Materials
title_short Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
title_full Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
title_fullStr Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
title_full_unstemmed Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
title_sort Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging
dc.creator.fl_str_mv Tamara Isaza, Jeyson de Jesus
dc.contributor.advisor.none.fl_str_mv Herrera, William
Ku, Mark
dc.contributor.author.none.fl_str_mv Tamara Isaza, Jeyson de Jesus
dc.contributor.researchgroup.spa.fl_str_mv Superconductividad y Nanotecnología
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=f-soNsEAAAAJ&hl=es
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
Imanes
Materia
Magnets
Matter
Green Function
Nitrogen-Vacancy center in diamond
Quantum Magnetic Imaging
All-optical Magnetometry
Dirac Hamiltonian
Graphene-like materials
Van der Waals Materials
dc.subject.lemb.spa.fl_str_mv Imanes
Materia
dc.subject.lemb.eng.fl_str_mv Magnets
Matter
dc.subject.proposal.eng.fl_str_mv Green Function
Nitrogen-Vacancy center in diamond
Quantum Magnetic Imaging
All-optical Magnetometry
Dirac Hamiltonian
Graphene-like materials
Van der Waals Materials
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-12T22:14:18Z
dc.date.available.none.fl_str_mv 2024-02-12T22:14:18Z
dc.date.issued.none.fl_str_mv 2024-02-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85691
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85691
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Támara-Isaza, J., Burset, P., & Herrera, W. J. (2023). Microscopic Green's function approach for generalized Dirac Hamiltonians. ArXiv e-prints, 2308.15685. Retrieved from https://arxiv.org/abs/2308.15685v1
Chen, H., Asif, S., Whalen, M., Támara-Isaza, J., Luetke, B., Wang, Y., ...Ku, M. J. H. (2022). Revealing room temperature ferromagnetism in exfoliated Fe5GeTe2 flakes with quantum magnetic imaging. 2D Materials, 9(2), 025017. doi: 10.1088/2053-1583/ac57a9
Chen, H., Asif, S., Dolui, K., Wang, Y., Támara-Isaza, J., Goli, V. M. L. D. P., ...Ku, M. J. H. (2023). Above-Room-Temperature Ferromagnetism in Thin van der Waals Flakes of Cobalt-Substituted Fe5GeTe2. ACS Applied Materials & Interfaces, 15(2), 3287–3296. doi: 10.1021/acsami.2c18028
Natalie Wolchover. Physicists aim to classify all possible phases of matter, Jan 2019.
Bogdan Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314:1757 – 1761, 2006.
Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318:766 – 770, 2007.
Xiaofeng Qian, Junwei Liu, Liang Fu, and Ju Li. Quantum spin hall effect and topological field effect transistor in two-dimensional transition metal dichalcogenides. Science, 2014
Sanfeng Wu, Valla Fatemi, Quinn D. Gibson, Kenji Watanabe, Takashi Taniguchi, Robert J. Cava, and Pablo Jarillo-Herrero. Observation of the quantum spin hall effect up to 100 kelvin in a monolayer crystal. Science, 359:76 – 79, 2017.
Xiao-Liang Qi and Shou-Cheng Zhang. The quantum spin hall effect and topological insulators. Physics Today, 63:33–38, 2010.
Yuqi Xia, Dong Qian, David Hsieh, L. Andrew Wray, Arijeet Pal, Hsin Lin, Arun Bansil, David C Grauer, Yew San Hor, Robert J. Cava, and M Zahid Hasan. Observation of a largegap topological-insulator class with a single dirac cone on the surface. Nature Physics, 5:398– 402, 2009
David Hsieh, Dong Qian, L. Andrew Wray, Y. Y. Xia, Yew San Hor, Robert J. Cava, and M Zahid Hasan. A topological dirac insulator in a quantum spin hall phase. Nature, 452:970–974, 2008.
Y. L. Chen, James G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, Xiao-Liang Qi, H. J. Zhang, Donghui Lu, Xi Dai, Zhong Fang, S. C. Zhang, Ian R. Fisher, Zahid Hussain, and Z. X. Shen. Experimental realization of a three-dimensional topological insulator, bi2te3. Science, 325:178 – 181, 2009.
Alex R. Mellnik, J. S. Lee, Anthony Richardella, Jennifer L. Grab, Peter J. Mintun, Mark H. Fischer, Abolhassan Vaezi, Aurélien Manchon, E.-A. Kim, Nitin Samarth, and Daniel C.Ralph. Spin-transfer torque generated by a topological insulator. Nature, 511:449–451, 2014.
Yabin Fan, Pramey Upadhyaya, Xufeng Kou, Murong Lang, So Takei, Zhenxing Wang, Jianshi Tang, Liang He, Li-Te Chang, Mohammad Montazeri, Guoqiang Yu, Wanjun Jiang, Tianxiao Nie, Robert N. Schwartz, Yaroslav Tserkovnyak, and Kang L. Wang. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nature materials, 13 7:699–704, 2014.
Charles L. Kane and Eugene J. Mele. Quantum spin hall effect in graphene. Physical review letters, 95 22:226801, 2004.
Motohiko Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. Journal of the Physical Society of Japan, 84:121003, 2015.
Masatoshi Sato and Yoichi Ando. Topological superconductors: a review. Reports on Progress in Physics, 80, 2016.
Liang Fu and Charles L. Kane. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Physical review letters, 100 9:096407, 2007.
Qing Lin He, Lei Pan, Alex Stern, Edward C. Burks, Xiaoyu Che, Gen Yin, Jing Wang, Biao Lian, Quan Zhou, Eun Sang Choi, Koichi Murata, Xufeng Kou, Zhijie Chen, Tianxiao Nie, Qiming Shao, Yabin Fan, Shou-Cheng Zhang, Kai Liu, Jing Xia, and Kang L. Wang. Chiral majorana fermion modes in a quantum anomalous hall insulator–superconductor structure. Science, 357:294 – 299, 2016.
A. Fornieri, A. M. Whiticar, F. Setiawan, Elías Portolés, A. C. C. Drachmann, Anna Keselman, Sergei Gronin, Candice Thomas, Tian Wang, Raymond L. Kallaher, Geoff C. Gardner, Erez Berg, Michael J. Manfra, Ady Stern, Charles M. Marcus, and Fabrizio Nichele. Evidence of topological superconductivity in planar josephson junctions. Nature, 569:89–92, 2018.
P. Zhang, Koichiro Yaji, Takahiro Hashimoto, Yuichi Ota, Takeshi Kondo, Kozo Okazaki, Zhijun Wang, Jinsheng Wen, Genda Gu, Hong Ding, and Shik Shin. Observation of topological superconductivity on the surface of an iron-based superconductor. Science, 360:182 – 186, 2017.
Elsa Prada, Pablo San-Jose, Michiel W. A. de Moor, Attila Geresdi, Eduardo J H Lee, Jelena Klinovaja, Daniel Loss, Jesper Nygård, Ramón Aguado, and Leo P Kouwenhoven. From andreev to majorana bound states in hybrid superconductor–semiconductor nanowires. Nature Reviews Physics, pages 1–20, 2019.
Dmitry I. Pikulin, Bernard van Heck, Torsten Karzig, Esteban A. Martinez, Bas Nijholt, Tom Laeven, G. W. Winkler, John D. Watson, Sebastian Heedt, M. Temurhan, V. Svidenko, R. M. Lutchyn, Mason Thomas, Gijs de Lange, L. Casparis, and C. Nayak. Protocol to identify a topological superconducting phase in a three-terminal device. 2021.
Cenke Xu and Leon Balents. Topological superconductivity in twisted multilayer graphene. Physical review letters, 121 8:087001, 2018.
Yi-Ting Hsu, Abolhassan Vaezi, Mark H. Fischer, and Eun-Ah Kim. Topological superconductivity in monolayer transition metal dichalcogenides. Nature Communications, 8, 2016.
Natalie Wolchover. Forging a qubit to rule them all, Apr 2019.
Yoshinori Tokura and Naoya Kanazawa. Magnetic skyrmion materials. Chemical reviews, 2020.
Lucas Thiel, Z. Wang, M. A. Tschudin, Dominik Rohner, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, Marco Gibertini, Enrico Giannini, Alberto F. Morpurgo, and Patrick Maletinsky. Probing magnetism in 2d materials at the nanoscale with single-spin microscopy. Science, 364:973 – 976, 2019.
Sebastian Mühlbauer, Benedikt Binz, Florian Jonietz, Christian Pfleiderer, Achim Rosch, Andreas Neubauer, Robert Georgii, and Peter Böni. Skyrmion lattice in a chiral magnet. Science, 323:915 – 919, 2009.
E. C. Marino. Quantum field theory approach to condensed matter physics. 2017
Gerald Rickayzen. Green’s functions and condensed matter. 1981
William J. Herrera, Pablo Burset, and Alfredo Levy Yeyati. A green function approach to graphene–superconductor junctions with well-defined edges. Journal of Physics: Condensed Matter, 22:275304, 2010.
Oscar E. Casas, Shirley Gómez Páez, and William J. Herrera. A green’s function approach to topological insulator junctions with magnetic and superconducting regions. Journal of Physics: Condensed Matter, 32, 2020.
F. Fabre, Aurore Finco, Anike Purbawati, Abdellali Hadj-Azzem, Nicolas Rougemaille, Johann Coraux, I. Philip, and Vincent Jacques. Characterization of room-temperature inplane magnetization in thin flakes of crte2 with a single-spin magnetometer. arXiv: Materials Science, 2020.
Mark J. H. Ku, Tony X. Zhou, Qing Li, Young Jae Shin, Jingcheng Shi, Claire Burch, Laurel E. Anderson, Andrew T. Pierce, Yonglong Xie, A. Hamo, Uri Vool, Huiliang Zhang, Francesco Casola, Takashi Taniguchi, Kenji Watanabe, Michael M. Fogler, Philip Kim, Amir Yacoby and Ronald L. Walsworth. Imaging viscous flow of the dirac fluid in graphene. Nature, 583:537 – 541, 2019.
Yuliya Dovzhenko, Francesco Casola, Sarah Schlotter, Tony X. Zhou, Felix Büttner, Ronald L. Walsworth, Geoffrey S. D. Beach, and Amir Yacoby. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications, 9, 2018
Edlyn V. Levine, Matthew J. Turner, Pauli Kehayias, Connor A Hart, Nicholas Langellier, Raisa Trubko, David R. Glenn, Roger R. Fu, and Ronald L. Walsworth. Principles and techniques of the quantum diamond microscope. Nanophotonics, 8:1945 – 1973, 2019.
Tim Oliver Wehling, Annica M. BlackffSchaffer, and Alexander V. Balatsky. Dirac materials. Advances in Physics, 63, May 2014.
Jérôme Cayssol. Introduction to Dirac materials and topological insulators. C. R. Phys., 14(9):760–778, November 2013.
Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-Like TwoDimensional Materials. Chem. Rev., 113(5):3766–3798, May 2013.
Jinying Wang, Shibin Deng, Zhongfan Liu, and Zhirong Liu. The rare two-dimensional materials with Dirac cones. National Science Review, 2(1):22–39, 01 2015.
Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev., 117(9):6225–6331, May 2017.
Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318(5851):766–770, 2007
Ivan Knez, Rui-Rui Du, and Gerard Sullivan. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells. Phys. Rev. Lett., 107:136603, Sep 2011.
M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045– 3067, Nov 2010.
Liangzhi Kou, Yandong Ma, Ziqi Sun, Thomas Heine, and Changfeng Chen. TwoDimensional Topological Insulators: Progress and Prospects. J. Phys. Chem. Lett., 8(8):1905– 1919, April 2017
A Acun, L Zhang, P Bampoulis, M Farmanbar, A van Houselt, A N Rudenko, M Lingenfelder, G Brocks, B Poelsema, M I Katsnelson, and H J W Zandvliet. Germanene: the germanium analogue of graphene. Journal of Physics: Condensed Matter, 27(44):443002, oct 2015.
C. Kamal and Motohiko Ezawa. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B, 91:085423, Feb 2015.
Suman Chowdhury and Debnarayan Jana. A theoretical review on electronic, magnetic and optical properties of silicene. Reports on Progress in Physics, 79(12):126501, oct 2016.
Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8):17033, August 2017.
Barry Bradlyn, L. Elcoro, Jennifer Cano, M. G. Vergniory, Zhijun Wang, C. Felser, M. I. Aroyo, and B. Andrei Bernevig. Topological quantum chemistry. Nature, 547:298–305, July 2017.
L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the dirac equation. Phys. Rev. B, 73:235411, Jun 2006.
Jürgen Wurm, Klaus Richter, and İnan ç Adagideli. Edge effects in graphene nanostructures: From multiple reflection expansion to density of states. Phys. Rev. B, 84:075468, Aug 2011.
Diego A. Manjarrés, William J. Herrera, and Shirley Gómez. Andreev levels in a graphene– superconductor surface. Physica B: Condensed Matter, 404(18):2799–2801, 2009.
William J Herrera, P Burset, and A Levy Yeyati. A green function approach to graphene– superconductor junctions with well-defined edges. Journal of Physics: Condensed Matter, 22(27):275304, jun 2010.
P. Burset, W. Herrera, and A. Levy Yeyati. Proximity-induced interface bound states in superconductor-graphene junctions. Phys. Rev. B, 80:041402, Jul 2009.
] Shirley Gómez Páez, Camilo Martínez, William J. Herrera, Alfredo Levy Yeyati, and Pablo Burset. Dirac point formation revealed by andreev tunneling in superlatticegraphene/superconductor junctions. Phys. Rev. B, 100:205429, Nov 2019.
Oscar E Casas, Shirley Gómez Páez, and William J Herrera. A green’s function approach to topological insulator junctions with magnetic and superconducting regions. Journal of Physics: Condensed Matter, 32(48):485302, sep 2020.
C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95:226801, Nov 2005.
Motohiko Ezawa. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New Journal of Physics, 14(3):033003, mar 2012.
Cheng Cheng Liu, Wanxiang Feng, and Yugui Yao. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett., 107:076802, Aug 2011.
J. H. N. Loubser and J. A. van Wyk. Electron spin resonance in the study of diamond. Rep. Prog. Phys., 41(8):1201, August 1978.
Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-Like TwoDimensional Materials. Chem. Rev., 113(5):3766–3798, May 2013.
Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2(17033):1–15, June 2017
Wonbong Choi, Nitin Choudhary, Gang Hee Han, Juhong Park, Deji Akinwande, and Young Hee Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 20(3):116–130, April 2017.
Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, February 2014.
Motohiko Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. Journal of the Physical Society of Japan, 84(12):121003, 2015.
M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay. Germanene: a novel twodimensional germanium allotrope akin to graphene and silicene. New J. Phys., 16(9):095002, September 2014.
María Eugenia Dávila and Guy Le Lay. Few layer epitaxial germanene: a novel twodimensional Dirac material. Sci. Rep., 6(20714):1–9, February 2016.
Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Bénédicte Ealet, and Guy Le Lay. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett., 108(15):155501, April 2012.
Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, February 2014
Andor Kormányos, Guido Burkard, Martin Gmitra, Jaroslav Fabian, Viktor Zólyomi, Neil D. Drummond, and Vladimir Fal’ko. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater., 2(2):022001, April 2015.
A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater., 6(3):183–191, March 2007
A. K. Geim. Graphene: Status and Prospects. Science, 324(5934):1530–1534, June 2009.
K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. A roadmap for graphene. Nature, 490(7419):192–200, October 2012.
Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. The structure of suspended graphene sheets. Nature, 446(7131):60–63, March 2007.
Ruitao Lv, Joshua A. Robinson, Raymond E. Schaak, Du Sun, Yifan Sun, Thomas E. Mallouk, and Mauricio Terrones. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res., 48(1):56–64, January 2015.
Cheng-Cheng Liu, Wanxiang Feng, and Yugui Yao. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Phys. Rev. Lett., 107(7):076802, August 2011.
Li Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanciulli, Madan Dubey, Alessandro Molle, and Deji Akinwande. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 10(3):227–231, March 2015.
Jijun Zhao, Hongsheng Liu, Zhiming Yu, Ruge Quhe, Si Zhou, Yangyang Wang, Cheng Cheng Liu, Hongxia Zhong, Nannan Han, Jing Lu, Yugui Yao, and Kehui Wu. Rise of silicene: A competitive 2D material. Prog. Mater. Sci., 83:24–151, October 2016.
Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett., 108(19):196802, May 2012.
Motohiko Ezawa. Monolayer Topological Insulators: Silicene, Germanene, and Stanene. J. Phys. Soc. Jpn., 84(12):121003, October 2015.
Wei-Tao Lu and Qing-Feng Sun. Electrical control of crossed andreev reflection and spinvalley switch in antiferromagnet/superconductor junctions. Phys. Rev. B, 104:045418, Jul 2021.
Jingang Wang, Fengcai Ma, and Mengtao Sun. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv., 7(27):16801–16822, March 2017.
Archana Raja, Andrey Chaves, Jaeeun Yu, Ghidewon Arefe, Heather M. Hill, Albert F. Rigosi, Timothy C. Berkelbach, Philipp Nagler, Christian Schüller, Tobias Korn, Colin Nuckolls, James Hone, Louis E. Brus, Tony F. Heinz, David R. Reichman, and Alexey Chernikov. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 8(15251):1–7, May 2017.
A. Chaves, J. G. Azadani, Hussain Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, Seung Hyun Song, Y. D. Kim, Daowei He, Jiadong Zhou, A. Castellanos-Gomez, F. M. Peeters, Zheng Liu, C. L. Hinkle, Sang-Hyun Oh, Peide D. Ye, Steven J. Koester, Young Hee Lee, Ph. Avouris, Xinran Wang, and Tony Low. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl., 4(29):1–21, August 2020.
Andrew F. May, Dmitry Ovchinnikov, Qiang Zheng, Raphael P. Hermann, Stuart Calder, Bevin Huang, Zaiyao Fei, Yaohua Liu, Xiaodong Xu, and Michael A. McGuire. Ferromagnetism near room temperature in the cleavable van der waals crystal fe5gete2. ACS nano, 13 4:4436–4442, 2019.
Zheng Li, Wei Xia, Hao Su, Zhenhai Yu, Yunpeng Fu, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, and Yanfeng Guo. Magnetic critical behavior of the van der waals fe5gete2 crystal with near room temperature ferromagnetism. Scientific Reports, 10, 2020.
Tomoharu Ohta, Masashi Tokuda, Shuichi Iwakiri, Kosuke Sakai, Benjamin Driesen, Yoshinori Okada, Kensuke Kobayashi, and Yasuhiro Niimi. Butterfly-shaped magnetoresistance in van der waals ferromagnet fe5gete2. AIP Advances, 11:025014, 2021.
Xiang Chen, Enrico Schierle, Yu He, Mayia Vranas, John W. Freeland, Jessica L. McChesney, Ramamoorthy Ramesh, Robert J. Birgeneau, and Alex Frano. Antiferromagnetic order in co-doped fe$_5$gete$_2$ probed by resonant magnetic x-ray scattering. 2022.
Congkuan Tian, Feihao Pan, Sheng Xu, Kun Ai, Tianlong Xia, and Peng Cheng. Tunable magnetic properties in van der waals crystals (fe1−xcox)5gete2. arXiv: Mesoscale and Nanoscale Physics, 2020.
Hongrui Zhang, Yu Tsun Shao, R. Chen, Xiang Chen, Sandhya Susarla, David Raftrey, Jonathan T. Reichanadter, Lucas Caretta, Xiaoxi Huang, Nicholas S. Settineri, Zhen Chen, Jingcheng Zhou, Edith Bourret-Courchesne, Peter Ercius, Jie Yao, Peter Fischer, Jeffrey B. Neaton, David A. Muller, Robert J. Birgeneau, and Ramamoorthy Ramesh. A room temperature polar magnetic metal. Physical Review Materials, 2022.
Erik Bauch, Connor A. Hart, Jennifer M. Schloss, Matthew J. Turner, John F. Barry, Pauli Kehayias, Swati Singh, and Ronald L. Walsworth. Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control. Phys. Rev. X, 8(3):031025, July 2018.
Lucio Robledo, Hannes Bernien, Toeno van der Sar, and Ronald Hanson. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New J. Phys., 13(2):025013, February 2011.
Andrew Horsley, Patrick Appel, Janik Wolters, Jocelyn Achard, Alexandre Tallaire, Patrick Maletinsky, and Philipp Treutlein. Microwave Device Characterization Using a Widefield Diamond Microscope. Phys. Rev. Appl., 10(4):044039, October 2018.
Adam M. Wojciechowski, Mürsel Karadas, Alexander Huck, Christian Osterkamp, Steffen Jankuhn, Jan Meijer, Fedor Jelezko, and Ulrik L. Andersen. Contributed Review: Cameralimits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Rev. Sci. Instrum., 89(3):031501., March 2018.
Eduardo A. Lima and Benjamin P. Weiss. Obtaining vector magnetic field maps from singlecomponent measurements of geological samples. J. Geophys. Res. Solid Earth, 114(B6), June 2009.
D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth. Optical magnetic imaging of living cells. Nature, 496(7446):486–489, April 2013.
Connor Hart. Experimental Realization of Improved Magnetic Sensing and Imaging in Ensembles of Nitrogen Vacancy Centers in Diamond. PhD thesis, September 2020.
Matthew James Turner. Quantum Diamond Microscopes for Biological Systems and Integrated Circuits. PhD thesis, September 2020.
M. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao, S. D. Bennett, N. B. Manson, A. Kubanek, and M. D. Lukin. State-selective intersystem crossing in nitrogen-vacancy centers. Phys. Rev. B, 91(16):165201, April 2015.
A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. J. Rogers, R. L. McMurtrie, N. B. Manson, F. Jelezko, and J. Wrachtrup. Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond. Phys. Rev. Lett., 102(19):195506, May 2009.
J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys., 14(10):103033, October 2012.
Jennifer May. Schloss. Optimizing nitrogen-vacancy diamond magnetic sensors and imagers for broadband sensitivity. PhD thesis, Massachusetts Institute of Technology, 2019.
L. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson. Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies. New J. Phys., 10(10):103024, October 2008.
V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker. Optical properties of the nitrogenvacancy singlet levels in diamond. Phys. Rev. B, 82(20):201202, November 2010.
L. J. Rogers, M. W. Doherty, M. S. J. Barson, S. Onoda, T. Ohshima, and N. B. Manson. Singlet levels of the NV- centre in diamond. New J. Phys., 17(1):013048, January 2015.
Tse-Luen Wee, Yan-Kai Tzeng, Chau-Chung Han, Huan-Cheng Chang, Wunshain Fann, JuiHung Hsu, Kuan-Ming Chen, and Yueh-Chung Yu. Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond. J. Phys. Chem. A, 111(38):9379–9386, September 2007.
Robert Chapman and Taras Plakhotnik. Quantitative luminescence microscopy on Nitrogen-Vacancy Centres in diamond: Saturation effects under pulsed excitation. Chem. Phys. Lett., 507(1):190–194, April 2011.
A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B, 84(19):195204, November 2011.
M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. B. Manson, and L. C. L. Hollenberg. Theory of the ground-state spin of the NV− center in diamond. Phys. Rev. B, 85(20):205203, May 2012.
Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, and Lloyd C. L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528(1):1–45, July 2013.
Chang S. Shin, Mark C. Butler, Hai-Jing Wang, Claudia E. Avalos, Scott J. Seltzer, RenBao Liu, Alexander Pines, and Vikram S. Bajaj. Optically detected nuclear quadrupolar interaction of 14N in nitrogen-vacancy centers in diamond. Phys. Rev. B, 89(20):205202, May 2014.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett., 104(7):070801, February 2010.
S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, D. J. Twitchen, and J. M. Baker. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B, 79(7):075203, February 2009.
M. W. Doherty, V. M. Acosta, A. Jarmola, M. S. J. Barson, N. B. Manson, D. Budker, and L. C. L. Hollenberg. Temperature shifts of the resonances of the NV− center in diamond. Phys. Rev. B, 90(4):041201, July 2014.
F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7(6):459–463, June 2011.
Eric Van Oort and Max Glasbeek. Electric-field-induced modulation of spin echoes of N-V centers in diamond. Chem. Phys. Lett., 168(6):529–532, May 1990.
V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B, 80(11):115202, September 2009.
Janis Smits, Joshua T. Damron, Pauli Kehayias, Andrew F. McDowell, Nazanin Mosavian, Ilja Fescenko, Nathaniel Ristoff, Abdelghani Laraoui, Andrey Jarmola, and Victor M. Acosta. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci. Adv., 5(7):eaaw7895., July 2019.
Ed E. Kleinsasser, Matthew M. Stanfield, Jannel K. Q. Banks, Zhouyang Zhu, Wen-Di Li, Victor M. Acosta, Hideyuki Watanabe, Kohei M. Itoh, and Kai-Mei C. Fu. High density NV sensing surface created via He^(+) ion implantation of (12)^C diamond. arXiv, February 2016.
Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jörg Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8(5):383–387, May 2009
D. P. L. Aude Craik, P. Kehayias, A. S. Greenspon, X. Zhang, M. J. Turner, J. M. Schloss, E. Bauch, C. A. Hart, E. L. Hu, and R. L. Walsworth. Microwave-Assisted Spectroscopy Technique for Studying Charge State in Nitrogen-Vacancy Ensembles in Diamond. Phys. Rev. Appl., 14(1):014009, July 2020.
Boris Naydenov, Friedemann Reinhard, Anke Lämmle, V. Richter, Rafi Kalish, Ulrika F. S. D’Haenens-Johansson, Mark Newton, Fedor Jelezko, and Jörg Wrachtrup. Increasing the coherence time of single electron spins in diamond by high temperature annealing. arXiv, December 2010.
Andrew F. May, Dmitry Ovchinnikov, Qiang Zheng, Raphael Hermann, Stuart Calder, Bevin Huang, Zaiyao Fei, Yaohua Liu, Xiaodong Xu, and Michael A. McGuire. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. ACS Nano, 13(4):4436–4442, April 2019.
Andrew F. May, Mao-Hua Du, Valentino R. Cooper, and Michael A. McGuire. Tuning magnetic order in the van der Waals metal Fe5GeTe2 by cobalt substitution. Phys. Rev. Mater., 4(7):074008, July 2020.
Andrew F. May, Craig A. Bridges, and Michael A. McGuire. Physical properties and thermal stability of Fe5−xGeTe2 single crystals. Phys. Rev. Mater., 3(10):104401, October 2019
Arne Wickenbrock, Sarunas Jurgilas, Albert Dow, Luca Marmugi, and Ferruccio Renzoni. Magnetic induction tomography using an all-optical 87Rb atomic magnetometer. Opt. Lett., 39(22):6367–6370, November 2014.
Cameron Deans, Luca Marmugi, Sarah Hussain, and Ferruccio Renzoni. Electromagnetic induction imaging with a radio-frequency atomic magnetometer. Appl. Phys. Lett., 108(10), March 2016.
Yechezkel Schlussel, Till Lenz, Dominik Rohner, Yaniv Bar-Haim, Lykourgos Bougas, David Groswasser, Michael Kieschnick, Evgeny Rozenberg, Lucas Thiel, Amir Waxman, Jan Meijer, Patrick Maletinsky, Dmitry Budker, and Ron Folman. Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond. Phys. Rev. Appl., 10(3):034032, September 2018.
L. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, and V. Jacques. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett., 100(15), April 2012.
David A. Broadway, James D. A. Wood, Liam T. Hall, Alastair Stacey, Matthew Markham, David A. Simpson, Jean-Philippe Tetienne, and Lloyd C. L. Hollenberg. Anticrossing Spin Dynamics of Diamond Nitrogen-Vacancy Centers and A
Arne Wickenbrock, Huijie Zheng, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola, Victor M. Acosta, and Dmitry Budker. Microwave-free magnetometry with nitrogen-vacancy centers in diamond. Appl. Phys. Lett., 109(5), August 2016.
] S. V. Anishchik and K. L. Ivanov. A method for simulating level anti-crossing spectra of diamond crystals containing NV- color centers. J. Magn. Reson., 305:67–76, August 2019.
Huijie Zheng, Zhiyin Sun, Georgios Chatzidrosos, Chen Zhang, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Jörg Wrachtrup, Arne Wickenbrock, and Dmitry Budker. Microwave-Free Vector Magnetometry with Nitrogen-Vacancy Centers along a Single Axis in Diamond. Phys. Rev. Appl., 13(4):044023, April 2020.
Reinis Lazda, Laima Busaite, Andris Berzins, Janis Smits, Florian Gahbauer, Marcis Auzinsh, Dmitry Budker, and Ruvin Ferber. Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in external magnetic field. Phys. Rev. B, 103(13):134104, April 2021.
C. Pellet-Mary, M. Perdriat, P. Huillery, and G. Hétet. Spin-Relaxation of Dipolar-Coupled Nitrogen-Vacancy Centers : The role of Double-flip Processes. arXiv, July 2022.
Jean Philippe Tetienne, Loïc Rondin, Piernicola Spinicelli, Mayeul Chipaux, Thierry Debuisschert, Jean-François Roch, and Vincent Jacques. Magnetic-field-dependent photodynamics of single nv defects in diamond: an application to qualitative all-optical magnetic imaging. New Journal of Physics, 14, 2012.
Viktor Ivády, Huijie Zheng, Arne Wickenbrock, Lykourgos Bougas, Georgios Chatzidrosos, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Dmitry Budker, Igor A. Abrikosov, and Adam Gali. Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study. Phys. Rev. B, 103(3):035307, January 2021.
Marcis Auzinsh, Andris Berzins, Dmitry Budker, Laima Busaite, Ruvin Ferber, Florian Gahbauer, Reinis Lazda, Arne Wickenbrock, and Huijie Zheng. Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing. Phys. Rev. B, 100(7):075204, August 2019.
G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig, H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao, and M. D. Lukin. Critical Thermalization of a Disordered Dipolar Spin System in Diamond. Phys. Rev. Lett., 121(2):023601, July 2018
Omkar Dhungel, Till Lenz, Muhib Omar, Joseph Shaji Rebeirro, Viktor Ivady, Adam Gali, Arne Wickenbrock, and Dmitry Budker. Zero-field microwave-free magnetometry with ensembles of nitrogen-vacancy centers in diamond. arXiv, January 2023.
Chul-Ho Lee, Gwan-Hyoung Lee, Arend M. van der Zande, Wenchao Chen, Yilei Li, Minyong Han, Xu Cui, Ghidewon Arefe, Colin Nuckolls, Tony F. Heinz, Jing Guo, James Hone, and Philip Kim. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 9(9):676–681, September 2014.
J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky. Magnon Dirac materials. Phys. Rev. B, 94(7):075401, August 2016.
S. A. Owerre. A first theoretical realization of honeycomb topological magnon insulator. J. Phys.: Condens. Matter, 28(38):386001, July 2016
Oliver Gröning, Shiyong Wang, Xuelin Yao, Carlo A. Pignedoli, Gabriela Borin Barin, Colin Daniels, Andrew Cupo, Vincent Meunier, Xinliang Feng, Akimitsu Narita, Klaus Müllen, Pascal Ruffieux, and Roman Fasel. Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 560(7717):209–213, August 2018.
Motohiko Ezawa. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett., 109:055502, Aug 2012.
David A. Simpson, Jean-Philippe Tetienne, Julia M. McCoey, Kumaravelu Ganesan, Liam T. Hall, Steven Petrou, Robert E. Scholten, and Lloyd C. L. Hollenberg. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep., 6(22797):1–8, March 2016.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv [xix, 117 páginas]
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85691/2/1019111584.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85691/3/license.txt
bitstream.checksum.fl_str_mv d7e3cf83f4f94bf43d4ecec713d80068
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886387039862784
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Herrera, William726763460070d6f3e22b0f5025a27555Ku, Markcb1c34049dc49456d6842e85d6e5db7bTamara Isaza, Jeyson de Jesus94c9236f57e6a4f3d44b7921ca625fbcSuperconductividad y Nanotecnologíahttps://scholar.google.com/citations?user=f-soNsEAAAAJ&hl=es2024-02-12T22:14:18Z2024-02-12T22:14:18Z2024-02-07https://repositorio.unal.edu.co/handle/unal/85691Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThe development of techniques and methods, from an experimental and theoretical view, to explore condensed matter systems is crucial to reveal the distinguishable features of their electronic or magnetic properties, characterize them and in this way uncover, understand, and control the footprint of exotic collective phenomena, novel quantum phases of matter, among others and in this way then further use them for specific technological application and/or to ground the foundational basis of condensed matter physics. Interestingly, many promises in quantum technological applications and novel exotic phenomena as well as quantum phases of matter have as a platform the very rich family of two-dimensional material, Some interesting phases that have been or it is predicted to be observed are quantum spin liquid, topological quantum phases, skyrmion textures, etc. In light of the aforementioned claims, our work presents several novel theoretical and experimental approaches to studying different types of condensed matter phases and properties in a wide range of materials but focuses on the family of graphene-like and Van der Waals (VdW) materials.(Texto tomado de la fuente)El desarrollo de técnicas y métodos, desde un punto de vista experimental y teórico, para explorar los sistemas de materia condensada es crucial para revelar los rasgos distinguibles de sus propiedades electrónicas o magnéticas, caracterizarlos y de esta manera descubrir, comprender y controlar la huella de fenómenos colectivos exóticos, nuevas fases cuánticas de la materia, entre otros, y de esta manera utilizarlos posteriormente para aplicaciones tecnológicas específicas y/o para fundamentar las bases de la física de la materia condensada. Curiosamente, muchas promesas en aplicaciones tecnológicas cuánticas y fenómenos exóticos novedosos, así como fases cuánticas de la materia, tienen como plataforma la riquísima familia de materiales bidimensionales. Algunas fases interesantes que se han observado o se prevé observar son el líquido cuántico de espín, las fases cuánticas topológicas, las texturas de skyrmion, etc. A la luz de las afirmaciones anteriores, nuestro trabajo presenta varios enfoques teóricos y experimentales novedosos para estudiar diferentes tipos de fases y propiedades de la materia condensada en una amplia gama de materiales, pero se centra en la familia de materiales similares al grafeno y Van der Waals (VdW).MaestríaMagister en ciencias físicaMateriales bidimensionalesSensores cuánticosTransporte cuánticoMateriales topologicosMagnetometría cuánticaComputacion Cuantica[xix, 117 páginas]application/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaImanesMateriaMagnetsMatterGreen FunctionNitrogen-Vacancy center in diamondQuantum Magnetic ImagingAll-optical MagnetometryDirac HamiltonianGraphene-like materialsVan der Waals MaterialsExploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic ImagingExploracion de materiales de dirac e imanes bidimensionales usando el método de las funciones de green e imágenes magnéticas cuánticasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMTámara-Isaza, J., Burset, P., & Herrera, W. J. (2023). Microscopic Green's function approach for generalized Dirac Hamiltonians. ArXiv e-prints, 2308.15685. Retrieved from https://arxiv.org/abs/2308.15685v1Chen, H., Asif, S., Whalen, M., Támara-Isaza, J., Luetke, B., Wang, Y., ...Ku, M. J. H. (2022). Revealing room temperature ferromagnetism in exfoliated Fe5GeTe2 flakes with quantum magnetic imaging. 2D Materials, 9(2), 025017. doi: 10.1088/2053-1583/ac57a9Chen, H., Asif, S., Dolui, K., Wang, Y., Támara-Isaza, J., Goli, V. M. L. D. P., ...Ku, M. J. H. (2023). Above-Room-Temperature Ferromagnetism in Thin van der Waals Flakes of Cobalt-Substituted Fe5GeTe2. ACS Applied Materials & Interfaces, 15(2), 3287–3296. doi: 10.1021/acsami.2c18028Natalie Wolchover. Physicists aim to classify all possible phases of matter, Jan 2019.Bogdan Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314:1757 – 1761, 2006.Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318:766 – 770, 2007.Xiaofeng Qian, Junwei Liu, Liang Fu, and Ju Li. Quantum spin hall effect and topological field effect transistor in two-dimensional transition metal dichalcogenides. Science, 2014Sanfeng Wu, Valla Fatemi, Quinn D. Gibson, Kenji Watanabe, Takashi Taniguchi, Robert J. Cava, and Pablo Jarillo-Herrero. Observation of the quantum spin hall effect up to 100 kelvin in a monolayer crystal. Science, 359:76 – 79, 2017.Xiao-Liang Qi and Shou-Cheng Zhang. The quantum spin hall effect and topological insulators. Physics Today, 63:33–38, 2010.Yuqi Xia, Dong Qian, David Hsieh, L. Andrew Wray, Arijeet Pal, Hsin Lin, Arun Bansil, David C Grauer, Yew San Hor, Robert J. Cava, and M Zahid Hasan. Observation of a largegap topological-insulator class with a single dirac cone on the surface. Nature Physics, 5:398– 402, 2009David Hsieh, Dong Qian, L. Andrew Wray, Y. Y. Xia, Yew San Hor, Robert J. Cava, and M Zahid Hasan. A topological dirac insulator in a quantum spin hall phase. Nature, 452:970–974, 2008.Y. L. Chen, James G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, Xiao-Liang Qi, H. J. Zhang, Donghui Lu, Xi Dai, Zhong Fang, S. C. Zhang, Ian R. Fisher, Zahid Hussain, and Z. X. Shen. Experimental realization of a three-dimensional topological insulator, bi2te3. Science, 325:178 – 181, 2009.Alex R. Mellnik, J. S. Lee, Anthony Richardella, Jennifer L. Grab, Peter J. Mintun, Mark H. Fischer, Abolhassan Vaezi, Aurélien Manchon, E.-A. Kim, Nitin Samarth, and Daniel C.Ralph. Spin-transfer torque generated by a topological insulator. Nature, 511:449–451, 2014.Yabin Fan, Pramey Upadhyaya, Xufeng Kou, Murong Lang, So Takei, Zhenxing Wang, Jianshi Tang, Liang He, Li-Te Chang, Mohammad Montazeri, Guoqiang Yu, Wanjun Jiang, Tianxiao Nie, Robert N. Schwartz, Yaroslav Tserkovnyak, and Kang L. Wang. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nature materials, 13 7:699–704, 2014.Charles L. Kane and Eugene J. Mele. Quantum spin hall effect in graphene. Physical review letters, 95 22:226801, 2004.Motohiko Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. Journal of the Physical Society of Japan, 84:121003, 2015.Masatoshi Sato and Yoichi Ando. Topological superconductors: a review. Reports on Progress in Physics, 80, 2016.Liang Fu and Charles L. Kane. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Physical review letters, 100 9:096407, 2007.Qing Lin He, Lei Pan, Alex Stern, Edward C. Burks, Xiaoyu Che, Gen Yin, Jing Wang, Biao Lian, Quan Zhou, Eun Sang Choi, Koichi Murata, Xufeng Kou, Zhijie Chen, Tianxiao Nie, Qiming Shao, Yabin Fan, Shou-Cheng Zhang, Kai Liu, Jing Xia, and Kang L. Wang. Chiral majorana fermion modes in a quantum anomalous hall insulator–superconductor structure. Science, 357:294 – 299, 2016.A. Fornieri, A. M. Whiticar, F. Setiawan, Elías Portolés, A. C. C. Drachmann, Anna Keselman, Sergei Gronin, Candice Thomas, Tian Wang, Raymond L. Kallaher, Geoff C. Gardner, Erez Berg, Michael J. Manfra, Ady Stern, Charles M. Marcus, and Fabrizio Nichele. Evidence of topological superconductivity in planar josephson junctions. Nature, 569:89–92, 2018.P. Zhang, Koichiro Yaji, Takahiro Hashimoto, Yuichi Ota, Takeshi Kondo, Kozo Okazaki, Zhijun Wang, Jinsheng Wen, Genda Gu, Hong Ding, and Shik Shin. Observation of topological superconductivity on the surface of an iron-based superconductor. Science, 360:182 – 186, 2017.Elsa Prada, Pablo San-Jose, Michiel W. A. de Moor, Attila Geresdi, Eduardo J H Lee, Jelena Klinovaja, Daniel Loss, Jesper Nygård, Ramón Aguado, and Leo P Kouwenhoven. From andreev to majorana bound states in hybrid superconductor–semiconductor nanowires. Nature Reviews Physics, pages 1–20, 2019.Dmitry I. Pikulin, Bernard van Heck, Torsten Karzig, Esteban A. Martinez, Bas Nijholt, Tom Laeven, G. W. Winkler, John D. Watson, Sebastian Heedt, M. Temurhan, V. Svidenko, R. M. Lutchyn, Mason Thomas, Gijs de Lange, L. Casparis, and C. Nayak. Protocol to identify a topological superconducting phase in a three-terminal device. 2021.Cenke Xu and Leon Balents. Topological superconductivity in twisted multilayer graphene. Physical review letters, 121 8:087001, 2018.Yi-Ting Hsu, Abolhassan Vaezi, Mark H. Fischer, and Eun-Ah Kim. Topological superconductivity in monolayer transition metal dichalcogenides. Nature Communications, 8, 2016.Natalie Wolchover. Forging a qubit to rule them all, Apr 2019.Yoshinori Tokura and Naoya Kanazawa. Magnetic skyrmion materials. Chemical reviews, 2020.Lucas Thiel, Z. Wang, M. A. Tschudin, Dominik Rohner, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, Marco Gibertini, Enrico Giannini, Alberto F. Morpurgo, and Patrick Maletinsky. Probing magnetism in 2d materials at the nanoscale with single-spin microscopy. Science, 364:973 – 976, 2019.Sebastian Mühlbauer, Benedikt Binz, Florian Jonietz, Christian Pfleiderer, Achim Rosch, Andreas Neubauer, Robert Georgii, and Peter Böni. Skyrmion lattice in a chiral magnet. Science, 323:915 – 919, 2009.E. C. Marino. Quantum field theory approach to condensed matter physics. 2017Gerald Rickayzen. Green’s functions and condensed matter. 1981William J. Herrera, Pablo Burset, and Alfredo Levy Yeyati. A green function approach to graphene–superconductor junctions with well-defined edges. Journal of Physics: Condensed Matter, 22:275304, 2010.Oscar E. Casas, Shirley Gómez Páez, and William J. Herrera. A green’s function approach to topological insulator junctions with magnetic and superconducting regions. Journal of Physics: Condensed Matter, 32, 2020.F. Fabre, Aurore Finco, Anike Purbawati, Abdellali Hadj-Azzem, Nicolas Rougemaille, Johann Coraux, I. Philip, and Vincent Jacques. Characterization of room-temperature inplane magnetization in thin flakes of crte2 with a single-spin magnetometer. arXiv: Materials Science, 2020.Mark J. H. Ku, Tony X. Zhou, Qing Li, Young Jae Shin, Jingcheng Shi, Claire Burch, Laurel E. Anderson, Andrew T. Pierce, Yonglong Xie, A. Hamo, Uri Vool, Huiliang Zhang, Francesco Casola, Takashi Taniguchi, Kenji Watanabe, Michael M. Fogler, Philip Kim, Amir Yacoby and Ronald L. Walsworth. Imaging viscous flow of the dirac fluid in graphene. Nature, 583:537 – 541, 2019.Yuliya Dovzhenko, Francesco Casola, Sarah Schlotter, Tony X. Zhou, Felix Büttner, Ronald L. Walsworth, Geoffrey S. D. Beach, and Amir Yacoby. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications, 9, 2018Edlyn V. Levine, Matthew J. Turner, Pauli Kehayias, Connor A Hart, Nicholas Langellier, Raisa Trubko, David R. Glenn, Roger R. Fu, and Ronald L. Walsworth. Principles and techniques of the quantum diamond microscope. Nanophotonics, 8:1945 – 1973, 2019.Tim Oliver Wehling, Annica M. BlackffSchaffer, and Alexander V. Balatsky. Dirac materials. Advances in Physics, 63, May 2014.Jérôme Cayssol. Introduction to Dirac materials and topological insulators. C. R. Phys., 14(9):760–778, November 2013.Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-Like TwoDimensional Materials. Chem. Rev., 113(5):3766–3798, May 2013.Jinying Wang, Shibin Deng, Zhongfan Liu, and Zhirong Liu. The rare two-dimensional materials with Dirac cones. National Science Review, 2(1):22–39, 01 2015.Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev., 117(9):6225–6331, May 2017.Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318(5851):766–770, 2007Ivan Knez, Rui-Rui Du, and Gerard Sullivan. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells. Phys. Rev. Lett., 107:136603, Sep 2011.M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045– 3067, Nov 2010.Liangzhi Kou, Yandong Ma, Ziqi Sun, Thomas Heine, and Changfeng Chen. TwoDimensional Topological Insulators: Progress and Prospects. J. Phys. Chem. Lett., 8(8):1905– 1919, April 2017A Acun, L Zhang, P Bampoulis, M Farmanbar, A van Houselt, A N Rudenko, M Lingenfelder, G Brocks, B Poelsema, M I Katsnelson, and H J W Zandvliet. Germanene: the germanium analogue of graphene. Journal of Physics: Condensed Matter, 27(44):443002, oct 2015.C. Kamal and Motohiko Ezawa. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B, 91:085423, Feb 2015.Suman Chowdhury and Debnarayan Jana. A theoretical review on electronic, magnetic and optical properties of silicene. Reports on Progress in Physics, 79(12):126501, oct 2016.Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8):17033, August 2017.Barry Bradlyn, L. Elcoro, Jennifer Cano, M. G. Vergniory, Zhijun Wang, C. Felser, M. I. Aroyo, and B. Andrei Bernevig. Topological quantum chemistry. Nature, 547:298–305, July 2017.L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the dirac equation. Phys. Rev. B, 73:235411, Jun 2006.Jürgen Wurm, Klaus Richter, and İnan ç Adagideli. Edge effects in graphene nanostructures: From multiple reflection expansion to density of states. Phys. Rev. B, 84:075468, Aug 2011.Diego A. Manjarrés, William J. Herrera, and Shirley Gómez. Andreev levels in a graphene– superconductor surface. Physica B: Condensed Matter, 404(18):2799–2801, 2009.William J Herrera, P Burset, and A Levy Yeyati. A green function approach to graphene– superconductor junctions with well-defined edges. Journal of Physics: Condensed Matter, 22(27):275304, jun 2010.P. Burset, W. Herrera, and A. Levy Yeyati. Proximity-induced interface bound states in superconductor-graphene junctions. Phys. Rev. B, 80:041402, Jul 2009.] Shirley Gómez Páez, Camilo Martínez, William J. Herrera, Alfredo Levy Yeyati, and Pablo Burset. Dirac point formation revealed by andreev tunneling in superlatticegraphene/superconductor junctions. Phys. Rev. B, 100:205429, Nov 2019.Oscar E Casas, Shirley Gómez Páez, and William J Herrera. A green’s function approach to topological insulator junctions with magnetic and superconducting regions. Journal of Physics: Condensed Matter, 32(48):485302, sep 2020.C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95:226801, Nov 2005.Motohiko Ezawa. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New Journal of Physics, 14(3):033003, mar 2012.Cheng Cheng Liu, Wanxiang Feng, and Yugui Yao. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett., 107:076802, Aug 2011.J. H. N. Loubser and J. A. van Wyk. Electron spin resonance in the study of diamond. Rep. Prog. Phys., 41(8):1201, August 1978.Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-Like TwoDimensional Materials. Chem. Rev., 113(5):3766–3798, May 2013.Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2(17033):1–15, June 2017Wonbong Choi, Nitin Choudhary, Gang Hee Han, Juhong Park, Deji Akinwande, and Young Hee Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 20(3):116–130, April 2017.Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, February 2014.Motohiko Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. Journal of the Physical Society of Japan, 84(12):121003, 2015.M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay. Germanene: a novel twodimensional germanium allotrope akin to graphene and silicene. New J. Phys., 16(9):095002, September 2014.María Eugenia Dávila and Guy Le Lay. Few layer epitaxial germanene: a novel twodimensional Dirac material. Sci. Rep., 6(20714):1–9, February 2016.Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Bénédicte Ealet, and Guy Le Lay. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett., 108(15):155501, April 2012.Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, February 2014Andor Kormányos, Guido Burkard, Martin Gmitra, Jaroslav Fabian, Viktor Zólyomi, Neil D. Drummond, and Vladimir Fal’ko. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater., 2(2):022001, April 2015.A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater., 6(3):183–191, March 2007A. K. Geim. Graphene: Status and Prospects. Science, 324(5934):1530–1534, June 2009.K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. A roadmap for graphene. Nature, 490(7419):192–200, October 2012.Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. The structure of suspended graphene sheets. Nature, 446(7131):60–63, March 2007.Ruitao Lv, Joshua A. Robinson, Raymond E. Schaak, Du Sun, Yifan Sun, Thomas E. Mallouk, and Mauricio Terrones. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res., 48(1):56–64, January 2015.Cheng-Cheng Liu, Wanxiang Feng, and Yugui Yao. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Phys. Rev. Lett., 107(7):076802, August 2011.Li Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanciulli, Madan Dubey, Alessandro Molle, and Deji Akinwande. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 10(3):227–231, March 2015.Jijun Zhao, Hongsheng Liu, Zhiming Yu, Ruge Quhe, Si Zhou, Yangyang Wang, Cheng Cheng Liu, Hongxia Zhong, Nannan Han, Jing Lu, Yugui Yao, and Kehui Wu. Rise of silicene: A competitive 2D material. Prog. Mater. Sci., 83:24–151, October 2016.Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett., 108(19):196802, May 2012.Motohiko Ezawa. Monolayer Topological Insulators: Silicene, Germanene, and Stanene. J. Phys. Soc. Jpn., 84(12):121003, October 2015.Wei-Tao Lu and Qing-Feng Sun. Electrical control of crossed andreev reflection and spinvalley switch in antiferromagnet/superconductor junctions. Phys. Rev. B, 104:045418, Jul 2021.Jingang Wang, Fengcai Ma, and Mengtao Sun. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv., 7(27):16801–16822, March 2017.Archana Raja, Andrey Chaves, Jaeeun Yu, Ghidewon Arefe, Heather M. Hill, Albert F. Rigosi, Timothy C. Berkelbach, Philipp Nagler, Christian Schüller, Tobias Korn, Colin Nuckolls, James Hone, Louis E. Brus, Tony F. Heinz, David R. Reichman, and Alexey Chernikov. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 8(15251):1–7, May 2017.A. Chaves, J. G. Azadani, Hussain Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, Seung Hyun Song, Y. D. Kim, Daowei He, Jiadong Zhou, A. Castellanos-Gomez, F. M. Peeters, Zheng Liu, C. L. Hinkle, Sang-Hyun Oh, Peide D. Ye, Steven J. Koester, Young Hee Lee, Ph. Avouris, Xinran Wang, and Tony Low. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl., 4(29):1–21, August 2020.Andrew F. May, Dmitry Ovchinnikov, Qiang Zheng, Raphael P. Hermann, Stuart Calder, Bevin Huang, Zaiyao Fei, Yaohua Liu, Xiaodong Xu, and Michael A. McGuire. Ferromagnetism near room temperature in the cleavable van der waals crystal fe5gete2. ACS nano, 13 4:4436–4442, 2019.Zheng Li, Wei Xia, Hao Su, Zhenhai Yu, Yunpeng Fu, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, and Yanfeng Guo. Magnetic critical behavior of the van der waals fe5gete2 crystal with near room temperature ferromagnetism. Scientific Reports, 10, 2020.Tomoharu Ohta, Masashi Tokuda, Shuichi Iwakiri, Kosuke Sakai, Benjamin Driesen, Yoshinori Okada, Kensuke Kobayashi, and Yasuhiro Niimi. Butterfly-shaped magnetoresistance in van der waals ferromagnet fe5gete2. AIP Advances, 11:025014, 2021.Xiang Chen, Enrico Schierle, Yu He, Mayia Vranas, John W. Freeland, Jessica L. McChesney, Ramamoorthy Ramesh, Robert J. Birgeneau, and Alex Frano. Antiferromagnetic order in co-doped fe$_5$gete$_2$ probed by resonant magnetic x-ray scattering. 2022.Congkuan Tian, Feihao Pan, Sheng Xu, Kun Ai, Tianlong Xia, and Peng Cheng. Tunable magnetic properties in van der waals crystals (fe1−xcox)5gete2. arXiv: Mesoscale and Nanoscale Physics, 2020.Hongrui Zhang, Yu Tsun Shao, R. Chen, Xiang Chen, Sandhya Susarla, David Raftrey, Jonathan T. Reichanadter, Lucas Caretta, Xiaoxi Huang, Nicholas S. Settineri, Zhen Chen, Jingcheng Zhou, Edith Bourret-Courchesne, Peter Ercius, Jie Yao, Peter Fischer, Jeffrey B. Neaton, David A. Muller, Robert J. Birgeneau, and Ramamoorthy Ramesh. A room temperature polar magnetic metal. Physical Review Materials, 2022.Erik Bauch, Connor A. Hart, Jennifer M. Schloss, Matthew J. Turner, John F. Barry, Pauli Kehayias, Swati Singh, and Ronald L. Walsworth. Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control. Phys. Rev. X, 8(3):031025, July 2018.Lucio Robledo, Hannes Bernien, Toeno van der Sar, and Ronald Hanson. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New J. Phys., 13(2):025013, February 2011.Andrew Horsley, Patrick Appel, Janik Wolters, Jocelyn Achard, Alexandre Tallaire, Patrick Maletinsky, and Philipp Treutlein. Microwave Device Characterization Using a Widefield Diamond Microscope. Phys. Rev. Appl., 10(4):044039, October 2018.Adam M. Wojciechowski, Mürsel Karadas, Alexander Huck, Christian Osterkamp, Steffen Jankuhn, Jan Meijer, Fedor Jelezko, and Ulrik L. Andersen. Contributed Review: Cameralimits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Rev. Sci. Instrum., 89(3):031501., March 2018.Eduardo A. Lima and Benjamin P. Weiss. Obtaining vector magnetic field maps from singlecomponent measurements of geological samples. J. Geophys. Res. Solid Earth, 114(B6), June 2009.D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth. Optical magnetic imaging of living cells. Nature, 496(7446):486–489, April 2013.Connor Hart. Experimental Realization of Improved Magnetic Sensing and Imaging in Ensembles of Nitrogen Vacancy Centers in Diamond. PhD thesis, September 2020.Matthew James Turner. Quantum Diamond Microscopes for Biological Systems and Integrated Circuits. PhD thesis, September 2020.M. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao, S. D. Bennett, N. B. Manson, A. Kubanek, and M. D. Lukin. State-selective intersystem crossing in nitrogen-vacancy centers. Phys. Rev. B, 91(16):165201, April 2015.A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. J. Rogers, R. L. McMurtrie, N. B. Manson, F. Jelezko, and J. Wrachtrup. Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond. Phys. Rev. Lett., 102(19):195506, May 2009.J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys., 14(10):103033, October 2012.Jennifer May. Schloss. Optimizing nitrogen-vacancy diamond magnetic sensors and imagers for broadband sensitivity. PhD thesis, Massachusetts Institute of Technology, 2019.L. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson. Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies. New J. Phys., 10(10):103024, October 2008.V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker. Optical properties of the nitrogenvacancy singlet levels in diamond. Phys. Rev. B, 82(20):201202, November 2010.L. J. Rogers, M. W. Doherty, M. S. J. Barson, S. Onoda, T. Ohshima, and N. B. Manson. Singlet levels of the NV- centre in diamond. New J. Phys., 17(1):013048, January 2015.Tse-Luen Wee, Yan-Kai Tzeng, Chau-Chung Han, Huan-Cheng Chang, Wunshain Fann, JuiHung Hsu, Kuan-Ming Chen, and Yueh-Chung Yu. Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond. J. Phys. Chem. A, 111(38):9379–9386, September 2007.Robert Chapman and Taras Plakhotnik. Quantitative luminescence microscopy on Nitrogen-Vacancy Centres in diamond: Saturation effects under pulsed excitation. Chem. Phys. Lett., 507(1):190–194, April 2011.A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B, 84(19):195204, November 2011.M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. B. Manson, and L. C. L. Hollenberg. Theory of the ground-state spin of the NV− center in diamond. Phys. Rev. B, 85(20):205203, May 2012.Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, and Lloyd C. L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528(1):1–45, July 2013.Chang S. Shin, Mark C. Butler, Hai-Jing Wang, Claudia E. Avalos, Scott J. Seltzer, RenBao Liu, Alexander Pines, and Vikram S. Bajaj. Optically detected nuclear quadrupolar interaction of 14N in nitrogen-vacancy centers in diamond. Phys. Rev. B, 89(20):205202, May 2014.V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett., 104(7):070801, February 2010.S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, D. J. Twitchen, and J. M. Baker. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B, 79(7):075203, February 2009.M. W. Doherty, V. M. Acosta, A. Jarmola, M. S. J. Barson, N. B. Manson, D. Budker, and L. C. L. Hollenberg. Temperature shifts of the resonances of the NV− center in diamond. Phys. Rev. B, 90(4):041201, July 2014.F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7(6):459–463, June 2011.Eric Van Oort and Max Glasbeek. Electric-field-induced modulation of spin echoes of N-V centers in diamond. Chem. Phys. Lett., 168(6):529–532, May 1990.V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B, 80(11):115202, September 2009.Janis Smits, Joshua T. Damron, Pauli Kehayias, Andrew F. McDowell, Nazanin Mosavian, Ilja Fescenko, Nathaniel Ristoff, Abdelghani Laraoui, Andrey Jarmola, and Victor M. Acosta. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci. Adv., 5(7):eaaw7895., July 2019.Ed E. Kleinsasser, Matthew M. Stanfield, Jannel K. Q. Banks, Zhouyang Zhu, Wen-Di Li, Victor M. Acosta, Hideyuki Watanabe, Kohei M. Itoh, and Kai-Mei C. Fu. High density NV sensing surface created via He^(+) ion implantation of (12)^C diamond. arXiv, February 2016.Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jörg Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8(5):383–387, May 2009D. P. L. Aude Craik, P. Kehayias, A. S. Greenspon, X. Zhang, M. J. Turner, J. M. Schloss, E. Bauch, C. A. Hart, E. L. Hu, and R. L. Walsworth. Microwave-Assisted Spectroscopy Technique for Studying Charge State in Nitrogen-Vacancy Ensembles in Diamond. Phys. Rev. Appl., 14(1):014009, July 2020.Boris Naydenov, Friedemann Reinhard, Anke Lämmle, V. Richter, Rafi Kalish, Ulrika F. S. D’Haenens-Johansson, Mark Newton, Fedor Jelezko, and Jörg Wrachtrup. Increasing the coherence time of single electron spins in diamond by high temperature annealing. arXiv, December 2010.Andrew F. May, Dmitry Ovchinnikov, Qiang Zheng, Raphael Hermann, Stuart Calder, Bevin Huang, Zaiyao Fei, Yaohua Liu, Xiaodong Xu, and Michael A. McGuire. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. ACS Nano, 13(4):4436–4442, April 2019.Andrew F. May, Mao-Hua Du, Valentino R. Cooper, and Michael A. McGuire. Tuning magnetic order in the van der Waals metal Fe5GeTe2 by cobalt substitution. Phys. Rev. Mater., 4(7):074008, July 2020.Andrew F. May, Craig A. Bridges, and Michael A. McGuire. Physical properties and thermal stability of Fe5−xGeTe2 single crystals. Phys. Rev. Mater., 3(10):104401, October 2019Arne Wickenbrock, Sarunas Jurgilas, Albert Dow, Luca Marmugi, and Ferruccio Renzoni. Magnetic induction tomography using an all-optical 87Rb atomic magnetometer. Opt. Lett., 39(22):6367–6370, November 2014.Cameron Deans, Luca Marmugi, Sarah Hussain, and Ferruccio Renzoni. Electromagnetic induction imaging with a radio-frequency atomic magnetometer. Appl. Phys. Lett., 108(10), March 2016.Yechezkel Schlussel, Till Lenz, Dominik Rohner, Yaniv Bar-Haim, Lykourgos Bougas, David Groswasser, Michael Kieschnick, Evgeny Rozenberg, Lucas Thiel, Amir Waxman, Jan Meijer, Patrick Maletinsky, Dmitry Budker, and Ron Folman. Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond. Phys. Rev. Appl., 10(3):034032, September 2018.L. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, and V. Jacques. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett., 100(15), April 2012.David A. Broadway, James D. A. Wood, Liam T. Hall, Alastair Stacey, Matthew Markham, David A. Simpson, Jean-Philippe Tetienne, and Lloyd C. L. Hollenberg. Anticrossing Spin Dynamics of Diamond Nitrogen-Vacancy Centers and AArne Wickenbrock, Huijie Zheng, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola, Victor M. Acosta, and Dmitry Budker. Microwave-free magnetometry with nitrogen-vacancy centers in diamond. Appl. Phys. Lett., 109(5), August 2016.] S. V. Anishchik and K. L. Ivanov. A method for simulating level anti-crossing spectra of diamond crystals containing NV- color centers. J. Magn. Reson., 305:67–76, August 2019.Huijie Zheng, Zhiyin Sun, Georgios Chatzidrosos, Chen Zhang, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Jörg Wrachtrup, Arne Wickenbrock, and Dmitry Budker. Microwave-Free Vector Magnetometry with Nitrogen-Vacancy Centers along a Single Axis in Diamond. Phys. Rev. Appl., 13(4):044023, April 2020.Reinis Lazda, Laima Busaite, Andris Berzins, Janis Smits, Florian Gahbauer, Marcis Auzinsh, Dmitry Budker, and Ruvin Ferber. Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in external magnetic field. Phys. Rev. B, 103(13):134104, April 2021.C. Pellet-Mary, M. Perdriat, P. Huillery, and G. Hétet. Spin-Relaxation of Dipolar-Coupled Nitrogen-Vacancy Centers : The role of Double-flip Processes. arXiv, July 2022.Jean Philippe Tetienne, Loïc Rondin, Piernicola Spinicelli, Mayeul Chipaux, Thierry Debuisschert, Jean-François Roch, and Vincent Jacques. Magnetic-field-dependent photodynamics of single nv defects in diamond: an application to qualitative all-optical magnetic imaging. New Journal of Physics, 14, 2012.Viktor Ivády, Huijie Zheng, Arne Wickenbrock, Lykourgos Bougas, Georgios Chatzidrosos, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Dmitry Budker, Igor A. Abrikosov, and Adam Gali. Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study. Phys. Rev. B, 103(3):035307, January 2021.Marcis Auzinsh, Andris Berzins, Dmitry Budker, Laima Busaite, Ruvin Ferber, Florian Gahbauer, Reinis Lazda, Arne Wickenbrock, and Huijie Zheng. Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing. Phys. Rev. B, 100(7):075204, August 2019.G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig, H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao, and M. D. Lukin. Critical Thermalization of a Disordered Dipolar Spin System in Diamond. Phys. Rev. Lett., 121(2):023601, July 2018Omkar Dhungel, Till Lenz, Muhib Omar, Joseph Shaji Rebeirro, Viktor Ivady, Adam Gali, Arne Wickenbrock, and Dmitry Budker. Zero-field microwave-free magnetometry with ensembles of nitrogen-vacancy centers in diamond. arXiv, January 2023.Chul-Ho Lee, Gwan-Hyoung Lee, Arend M. van der Zande, Wenchao Chen, Yilei Li, Minyong Han, Xu Cui, Ghidewon Arefe, Colin Nuckolls, Tony F. Heinz, Jing Guo, James Hone, and Philip Kim. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 9(9):676–681, September 2014.J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky. Magnon Dirac materials. Phys. Rev. B, 94(7):075401, August 2016.S. A. Owerre. A first theoretical realization of honeycomb topological magnon insulator. J. Phys.: Condens. Matter, 28(38):386001, July 2016Oliver Gröning, Shiyong Wang, Xuelin Yao, Carlo A. Pignedoli, Gabriela Borin Barin, Colin Daniels, Andrew Cupo, Vincent Meunier, Xinliang Feng, Akimitsu Narita, Klaus Müllen, Pascal Ruffieux, and Roman Fasel. Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 560(7717):209–213, August 2018.Motohiko Ezawa. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett., 109:055502, Aug 2012.David A. Simpson, Jean-Philippe Tetienne, Julia M. McCoey, Kumaravelu Ganesan, Liam T. Hall, Steven Petrou, Robert E. Scholten, and Lloyd C. L. Hollenberg. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep., 6(22797):1–8, March 2016.EstudiantesInvestigadoresORIGINAL1019111584.2023.pdf1019111584.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf19281244https://repositorio.unal.edu.co/bitstream/unal/85691/2/1019111584.2023.pdfd7e3cf83f4f94bf43d4ecec713d80068MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85691/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53unal/85691oai:repositorio.unal.edu.co:unal/856912024-02-12 17:17:17.166Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=