Synthesis and characterization of modified TiO2 for the photo-treatment of wastewater with visible light

La foto-catálisis es un método promisorio para la remoción de contaminantes orgánicos, químicos peligrosos y colorantes del agua y el aire. La actividad de los foto-catalizadores depende de su habilidad para crear pares electrón-hueco, los cuales generan radicales libres que se someten a reacciones...

Full description

Autores:
López Zamora, Sandra Milena
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/47147
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/47147
http://bdigital.unal.edu.co/40064/
Palabra clave:
54 Química y ciencias afines / Chemistry
62 Ingeniería y operaciones afines / Engineering
66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering
Fotocatálisis heterogénea
TiO2
M/TiO2
Dopaje con metales
Foto-degradación de fenol
Diseño Box-Behnken
Fotocatalizadores
Heterogeneous photocatalysis
TiO2
M/TiO2
Metal doping
Phenol photodegradation
Box-Behnken Design
photocatalyst
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:La foto-catálisis es un método promisorio para la remoción de contaminantes orgánicos, químicos peligrosos y colorantes del agua y el aire. La actividad de los foto-catalizadores depende de su habilidad para crear pares electrón-hueco, los cuales generan radicales libres que se someten a reacciones posteriores para mejorar la degradación del efluente. Un material ideal debe combinar: alta eficiencia en la conversión de energía solar, alta actividad, no-toxicidad, estabilidad, disponibilidad y bajo costo. El TiO2 es el foto-catalizador más utilizado debido a que presenta la mayoría de esas propiedades. Sin embargo, la rápida recombinación de los pares electrón-hueco foto-generados al igual que su amplio ancho de energía prohibida (Band-gap) disminuye su efectividad. Varias estrategias pueden ser usadas para mejorar su eficiencia catalítica, entre ellas dopaje/carga con iones metálicos o no-metálicos. Sin embargo, han sido reportados resultados controversiales dependiendo del método de preparación, cantidad del metal, precursor, clase de contaminante a ser degradado, etc. En este trabajo, se presenta un estudio comparativo de las propiedades térmicas, texturales, morfológicas y físico-químicas del TiO2 y los sistemas Metal/TiO2. Los catalizadores Metal/TiO2 con contenido nominal 0.5-5 wt.% fueron preparados por el método de impregnación y calcinados en aire a 500°C. Como materiales iniciales se emplearon Fe(NO3)3.9H2O, Co(NO3)2.6H2O, Cu(NO3)2.3H2O, (NH4)6Mo7O24.4H2O y TiO2 (Degussa P25). Las propiedades térmicas, texturales, morfológicas y físico-químicas fueron estudiadas por: ZPC, AAS, TG-DTA-MS, XRD, BET, SEM, FTIR, espectroscopias Raman y de Reflectancia Difusa. Éstas ayudaron a entender el desempeño foto-catalítico de los sistemas estudiados. La actividad foto-catalítica fue verificada para una reacción modelo de degradación de fenol (10-50 ppm) en luz UV (365 nm) y luz visible (400 nm), a temperatura ambiente, en el rango de pH de 1 a 8, con un tiempo de reacción=120 min. Los catalizadores estudiados presentaron los siguientes órdenes de actividad: TiO2 (89.6%) 1% Mo/TiO2 (78.6%) 1% Fe/TiO2 (30.1%) 1% Cu/TiO2 (18.6%) 1% Co/TiO2 (11.2%) y TiO2 (11.4%) 1% Mo/TiO2 (11%) 1% Co/TiO2 (6%) 1% Cu/TiO2 (4.4%) 1% Fe/TiO2 (3%) en luz UV y visible, respectivamente. El molibdeno fue seleccionado como el metal más promisorio. A continuación, su carga óptima fue determinada considerando su foto-actividad. Los siguientes órdenes de actividad catalítica fueron encontrados: 2% Mo/TiO2 (96.2%) TiO2 (89.6%) 1% Mo/TiO2 (78.6%) 3% Mo/TiO2 (72.3%) 0.5% Mo/TiO2 (50.9%) 5% Mo/TiO2 (37.41%) y 2% Mo/TiO2 (14.3%) TiO2 (11.4%) 1% Mo/ TiO2 (11%) 3%Mo/TiO2 (4.6%) 5% Mo/ TiO2 (3.9%) 0.5% Mo/ TiO2 (2.9%), respectivamente para las reacciones realizadas en luz UV y visible. El material 2% Mo/TiO2 fue seleccionado como el más activo de todos los sistemas M/TiO2. Se implementó un diseño experimental del tipo Box-Behnken (BBD) con el fin de optimizar el proceso. Cuando se empleó TiO2 (luz UV y visible), las condiciones de operación óptimas fueron: Ci=10ppm, Cat=0.7g/L y pH=8. Para el catalizador 2wt.%Mo/TiO2, las condiciones óptimas dependieron fuertemente del recurso de luz aplicado. En luz UV fueron: Ci=10ppm, Cat=0.7g/L y pH=8. Kapp fue ca. 2 veces mayor que la del TiO2. En luz visible, Ci=10 ppm, Cat=0.1 g/L, pH =3.6. El 2wt.% Mo/TiO2 fue más eficiente, especialmente en pHs intermedios, donde el TiO2 no es apto para la reacción. En las condiciones optimizadas, su carga fue 7 veces menor que la del TiO2 no soportado. El pH optimizado fue cercano al natural de las aguas residuales fenólicas. Los ensayos catalíticos aplicando catalizadores usados (reciclados) también fueron desarrollados con el fin de evaluar la posible desactivación de catalizador. La velocidad de reacción decreció debido a las especies químicas adsorbidas en la superficie del catalizador las cuales cubren los sitios activos (Texto tomado de la fuente)