Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete
ilustraciones, diagramas, tablas
- Autores:
-
Herrera Franco, Victor Hugo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81382
- Palabra clave:
- 590 - Animales::599 - Mamíferos
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Swine - feeding and feeds
Alimentos para cerdos
Producción porcina
Destete
Probiótico
Aceite esencial
Ácido orgánico
Microbiota intestinal
Expresión molecular
Pig production
Weaning
Probiotic
Essential oil
Organic acid
Gut microbiota
Molecular expression
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_f0e615785c462afcb08307a41e26f86d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81382 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
dc.title.translated.eng.fl_str_mv |
Microbiota and expression of intestinal proteins in pigs added with different antimicrobials during the weaning period |
title |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
spellingShingle |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete 590 - Animales::599 - Mamíferos 630 - Agricultura y tecnologías relacionadas::636 - Producción animal Swine - feeding and feeds Alimentos para cerdos Producción porcina Destete Probiótico Aceite esencial Ácido orgánico Microbiota intestinal Expresión molecular Pig production Weaning Probiotic Essential oil Organic acid Gut microbiota Molecular expression |
title_short |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
title_full |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
title_fullStr |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
title_full_unstemmed |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
title_sort |
Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete |
dc.creator.fl_str_mv |
Herrera Franco, Victor Hugo |
dc.contributor.advisor.none.fl_str_mv |
Parra Suescún, Jaime Pardo Carrasco, Sandra Clemencia |
dc.contributor.author.none.fl_str_mv |
Herrera Franco, Victor Hugo |
dc.contributor.researchgroup.spa.fl_str_mv |
Biodiversidad y Génetica Molecular "Biogem" |
dc.subject.ddc.spa.fl_str_mv |
590 - Animales::599 - Mamíferos 630 - Agricultura y tecnologías relacionadas::636 - Producción animal |
topic |
590 - Animales::599 - Mamíferos 630 - Agricultura y tecnologías relacionadas::636 - Producción animal Swine - feeding and feeds Alimentos para cerdos Producción porcina Destete Probiótico Aceite esencial Ácido orgánico Microbiota intestinal Expresión molecular Pig production Weaning Probiotic Essential oil Organic acid Gut microbiota Molecular expression |
dc.subject.lemb.none.fl_str_mv |
Swine - feeding and feeds Alimentos para cerdos |
dc.subject.proposal.spa.fl_str_mv |
Producción porcina Destete Probiótico Aceite esencial Ácido orgánico Microbiota intestinal Expresión molecular |
dc.subject.proposal.eng.fl_str_mv |
Pig production Weaning Probiotic Essential oil Organic acid Gut microbiota Molecular expression |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11 |
dc.date.accessioned.none.fl_str_mv |
2022-03-25T01:17:00Z |
dc.date.available.none.fl_str_mv |
2022-03-25T01:17:00Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81382 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81382 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alfonso, K. (18 de enero de 2018). Porcicultores miran Ecuador para exportar carne durante el primer semestre del año. Crecimiento de la producción de carne de cerdo fue de 4% en 2017. Diario La República. https://www.larepublica.co/economia/porcicultores-miran-ecuador-para-exportar-carne-durante-el-primer-semestre-del-ano-2589670. Revisado: 25-febrero-2018 Alhenaky, A., Abdelqader, A., Abuajamieh, M. & Al-Fataftah, A. R. (2017). The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 70(parte B), 9–14. https://doi.org/10.1016/j.jtherbio.2017.10.015 Aliakbarpour, H. R., Chamani, M., Rahimi, G., Sadeghi, A. A. & Qujeq, D. (2012). The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australasian Journal of Animal Sciences, 25(9), 1285 – 1293. https://doi.org/10.5713/ajas.2012.12110 Allen, H. K., Levine, U. Y., Looft, T., Bandrick, M. & Casey, T. A. (2013). Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in Microbiology, 21(3), 114-119. https://doi.org/10.1016/j.tim.2012.11.001 Al-Sadi, R., Boivin, M. & Ma, T. (2009). Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience, 14, 2765–2778. PMID: 19273235; PMCID: PMC3724223. https://doi.org/10.2741/3413 Angelakis, E., Merhej, V. & Raoult, D. (2013). Related actions of probiotics and antibiotics on gut microbiota and weight modification. The Lancet Infectious Diseases, 13(10), 889-899. https://doi.org/10.1016/S1473-3099(13)70179-8 Angelakis, E. (2017). Weight gain by gut microbiota manipulation in productive Animals. Microbial Pathogenesis, 106, 162-170. https://doi.org/10.1016/j.micpath.2016.11.002 Ashbolt, N. J., Amezquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G. J., McEwen, S. A., Ryan, J. J., Schonfeld, J., Silley, P., Snape, J. R., van den, Eede. C. & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121(9), 993–1001. https://doi.org/10.1289/ehp.1206316 Ayala, L., Bocourt, R., Castro, M., Dihigo, L. E., Milián, G., Herrera, M. & Ly, J. (2014). Development of the digestive organs in piglets born from sows consuming probiotic before farrowing and during lactation. Cuban Journal of Agricultural Science, 48(2), 133-136. https://doi.org/10.1289/ehp.1206316 Bednorz, C., Oelgeschläger, K., Kinnemann, B., Hartmann, S., Neumann, K., Pieper, R., Bethe, A., Semmler, T., Tedin, K., Schierack, P., Wieler, L. H. & Guenther, S. (2013). The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International Journal of Medical Microbiology, 303(6–7), 396–403. https://doi.org/10.1016/j.ijmm.2013.06.004 Belkaid, Y. & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1),121-141. https://doi.org/ 10.1016/j.cell.2014.03.011 Campbell, J. M., Crenshaw, J. D. & Polo, J. (2013). The biological stress of early weaned piglets. Journal of animal science and biotechnology, 4(1), 19. https://doi.org/10.1186/2049-1891-4-19 Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A. M. & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012 Censo Pecuario Nacional. (2020). Instituto Agropecuario Colombiano. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018. Revisado: 06/05/2020. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013. Available at: https://www.cdc.gov/drugresistance/threatreport- 2013/pdf/ar-threats-2013-508.pdf. Revisado: January 10, 2018. Cho, J. & Kim, H. (2015). Effects of microencapsulated organic acids and essential oils on growth performance and intestinal flora in weanling pigs. Revista Colombiana de Ciencias Pecuarias, 28(3), 129-137. https://doi.org/10.17533/udea.rccp.v28n3a3 Ciro, J., López, H. A. & Parra, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 150-159. Ciro, J., López, H. A. & Parra, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomía, 69(1), 7803-7811. https://doi.org/10.15446/rfna.v69n1.54748. Claesson, M. J., Cusacka, S., O’Sullivan, O., Greene-Diniza, R., deWeerd, H., Flannery, E., Marchesib, J. R., Falushg, D., Dinanb, T., Fitzgeralda, G., Stantonb, C., van Sinderena, D., O'Connori, M., Harnedyi, N., O'Connorj, K., Henry, C., O'Mahony, D., Fitzgeralde, A. P., Shanahan, F... & O'Toolea, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl.1), 4586–4591. https://doi.org/10.1073/pnas.1000097107 Costa, L. B., Almeida, V. V., Berenchtein, B., Tse, M. L. P., Andrade, C. & Miyada, V. S. (2011). Phytogenic additives and sodium butyrate as alternatives to antibiotics for weaned piglets. Archivos de Zootecnia, 60(231), 733-744. https://doi.org/10.21071/az.v60i231.4530 Costa, L. B., Luciano, F. B., Miyada, V. S. & Gois, F. D. (2013). Herbal extracts and organic acids as natural feed additives in pig diets. South African Journal of Animal Science, 43(2), 181-193. https://doi.org/10.4314/sajas.v43i2.9 Costelloe, C., Metcalfe, C., Lovering, A., Mant, D. & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. British Medical Journal, 340, c2096. https://doi.org/10.1136/bmj.c2096 Cubillos, R. (31 de julio de 2017). Mercado del cerdo en Latinoamérica. Evolución y expectativas. Procicultura integral. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercados-latam-en-2017-evolucion-y-expectativas_38382/. Revisado; 25 febrero 2018. Cubillo, R. (31 de diciembre de 2019). Situación del mercado porcino en Latinoamérica durante el 2019 y perspectivas para 2020. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercado-porcino-en-latinoamerica-en-2019-y-perspectivas-para-2020_42029/. Revisado: 7 mayo 2020 Curry, S. M., Schwartzb, K. J., Yoonb, K. J., Gablera, N. K. & Burroughb, E. R. (2017). Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity. Veterinary Microbiology, 211, 58–66. https://doi.org/10.1016/j.vetmic.2017.09.021 De Busser E. V., Dewulf J., Zutter L. D., Haesebrouck F., Callens J., Meyns T., Maes W. & Maes D. (2011). Effect of administration of organic acids in drinking water on faecal shedding of E. coli, performance parameters and health in nursery pigs. Veterinary journal, 188(2), 184-188. https://doi.org/10.1016/j.tvjl.2010.04.006 de Melo, Pereira, G. V., de Oliveira, Coelho, B., Magalhães, Júnior. A. I., Thomaz-Soccol, V. & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-2076. https://doi.org/10.1016/j.biotechadv.2018.09.003. Douglas, S. L., Edwards, S. A. & Kyriazakis, I. (2014). Management strategies to improve the performance of low birth weight pigs to weaning and their long-term consequences. Journal of Animal Science, 92(5), 2280–2288. https://doi.org/10.2527/jas.2013-7388 Ermund, A., Schutte, A., Johansson, M. E., Gustafsson, J. K. & Hansson, G. C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. American Journal of Physiology Gastrointestinal and Liver Physiology, 305, G341-G347. https://doi.org/10.1152/ajpgi.00046.2013 Fair, R. J. & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459 FAO. (2021). Resumen de la evolución del mercado mundial de carne de cerdo en 2020. http://www.fao.org/. Marzo de 2021/ FAO. FAO. (2016). Informe de situación sobre resistencia a los antimicrobianos, Roma: Food and Agriculture Organization of the United Nations. Ferreira, C. L., Salminen, S., Grzeskowiak, L., Brizuela, M. A., Sanchez, L., Carneiro, H. & Bonnet, M. (2011). Terminology concepts of probiotic and prebiotic and their role in human and animal health. Revista salud animal, 33(3), 137-146. FIRA. (2017). Panorama Agroalimentario: Carne de cerdo 2017. Retrieved from http://www.ugrpg.org.mx/pdfs/Panorama Agroalimentario Carne de cerdo 2017.pdf . Revisado el 5 enero 2018 Flis, M., Sobotka, W. & Antoszkiewicz, Z. (2017). Fiber substrates in the nutrition of weaned piglets – a review. Annals of Animal Science, 17(3), 627–643. https://doi.org/10.1515/aoas-2016-0077 Fraile, L. (2017). Sanidad animal y los antibióticos. Seguridad alimentaria, profilaxis, bioseguridad y comercio internacional. LOS EXPERTOS OPINAN. Disponible en: https://www.carne.3tres3.com/los-expertos-opinan/sanidad-animal-y-los-antibioticos-seguridad-alimentaria-profilaxis_1074. Revisado el 4 de mayo del 2017. Fouhse, J. M., Zijlstra, R. T. & Willing, B. P. (2016). The role of gut microbiota in the health and disease of pigs. Animals Font, 6(3), 30-36. https://doi.org/10.2527/af.2016-0031 Gaggia, F., Mattarelli, P. and Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(Suppl), S15eS28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031 García, G. R., Dogia, C. A., Ashworth, G. E., Berardob, D., Godoy, G., Cavaglieria, L. R., de Moreno, de LeBlanc, A. &Grecoa, C. R. (2016). Effect of breast feeding time on physiological, immunological andmicrobial parameters of weaned piglets in an intensive breeding. Veterinary Immunology and Immunopathology, 176: 44–49. https://doi.org/0.1016/j.vetimm.2016.02.009 Giannenas, I., Doukas, D., Karamoutsios, A., Tzora, A., Bonos, E., Skoufos, I., Tsinas, A., Christaki, E., Tontis, D. & Florou-Paneri, P. (2016). Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Animal Feed Science and Technology, 220, 159-167. https://doi.org/10.1016/j.anifeedsci.2016.08.003 GIA. (2008). Probiotics: A Global Strategic Business Report. Global Industry Analysts, Inc. California, USA. Gónzalez X. (2021). La carne de cerdo colombiana ganó terreno y la producción local ya representa 87%. AGRONEGOCIOS. https://www.agronegocios.co/ganaderia/la-carne-de-cerdo-colombiana-gano-terreno-y-la-produccion-local-ya-representa-87-3133078 Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., van de Wiele, T., Forano, E. & Blanquet-Diot, S. (2017). Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends in Microbiology, 25(10), 851-73. https://doi.org/10.1016/j.tim.2017.05.004 Gross M. (2013). Antibiotics in crisis. Current Biology, 23(24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057 Guerra, N. P. (2009). Probiotics: production, evaluation and uses in animal feed. Trivandrum. Research Signpost. Gutiérrez, C., López, A. y Parra, J. (2013). Lesiones en órganos de cerdos posdestete, inducidas por el lipopolisacárido de E. coli. Revista MVZ Córdoba, 18(2), 3534–3542. https://doi.org/10.21897/rmvz.178 Gutiérrez, L. A., Montoya, O. I. y Vélez, J. M. (2013). Probióticos: una alternativa de producción limpia y de reemplazo a los antibióticos promotores de crecimiento en la alimentación animal. Producción + limpia, 8(1), 135-146. Gutiérrez-Ramírez, L. A., Bedoya, O. y Ríos, M. (2015). Evaluación de parámetros productivos en cerdos (Sus scrofa domesticus) suplementados con microorganismos probióticos nativos. Journal of agriculture and animal sciences, 3(2), 48-55. Haack, S. K., Duris, J. W., Kolpin, D. W., Focazio, M. J., Meyer, M. T., Johnson, H. E., Oster, R. J. & Foreman, W. T. (2016). Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Science of the Total Environment, 563 – 564: 340–350.https://doi.org/10.1016/j.scitotenv.2016.04.087 Hayakawa, T., Masuda, T., Kurosawa, D. &Tsukahara, T. (2016). Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Animal Science Journal, 87(12), 1501-1510. https://doi.org/10.1111/asj.12565 Herrera, F. V. (2015). Efecto de la adición de diferentes cepas probióticas (L. acidophilus, L. casei, E. faecium) sobre la población bacteriana intestinal, y su relación con variables inmunológicas en lechones recién destetados. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín. He, L. Y., Ying, G. G., Liu, Y. S., Su, H. C., Chen, J., Liu, S. S. & Zhao, J. L. (2016). Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92–93, 210–219. https://doi.org/10.1016/j.envint.2016.03.023 Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C. & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews gastroenterology y hepatology, 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66 Holman, D. & Chénier, M. (2014). Temporal changes and the effect of subtherape concentrations of antibiotics in the gut microbiota of swine. Federation of European Microbiological Societies, 90(3), 599-608. https://doi.org/10.1111/1574-6941.12419 Hu, Y., Dun, Y., Li, S., Zhao, S., Peng, N. & Liang, Y. (2014). Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets. Asian-Australasian Journal of Animal Sciences, 27(8), 1131-1140. https://doi.org/10.5713/ajas.2013.13737 Hughes, P. & Heritage, J. (2004). Antibiotic growth-promoters in food animals. FAO. Animal Production & Health Paper: 129 – 152. Huguet, A., Sève, B., Le Dividich, J. &Le, Huërou-luron, I. (2006). Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reproduction Nutrition Development, 46(2), 167–178. https://doi.org/10.1051/rnd:2006006 Hwang, A. Y. & Gums, J. G. (2016). The emergence and evolution of antimicrobial resistance: Impact on a global scale. Bioorganic & Medicinal Chemistry, 24(24), 6440–6445. https://doi.org/10.1016/j.bmc.2016.04.027 Inoue, R., Tsukahara, T., Nakatani, M., Okutani, M., Nishibayashi, R., Ogawa, S., Harayama, T., Nagino, T., Hatanaka, H., Fukuta, K., Romero-Pérez, G. A., Ushida, K. & Kelly, D. (2015). Weaning markedly affects transcriptome profiles and peyer’s patch development in piglet ileum. Frontiers in Immunology, 6, 630. https://doi.org/10.3389/fimmu.2015.00630 Jacobi, K. S., Moeser, J. A., Blikslager, T. A., Rhoads, M. J., Corl, A. B., Harrell, J. R. & Odle, J. (2013). Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World Journal of Gastroenterology, 19(31), 5094–5102. https://doi.org/10.3748/wjg.v19.i31.5094 Jayaraman, B. & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205-211. https://doi.org/10.1016/j.aninu.2017.06.002 Jeffery, I. B. & O’Toole, P. W. (2013). Diet-microbiota interactions and their implications for healthy living. Nutrients, 5(1), 234-252. https://doi.org/10.3390/nu5010234 Jurado, G. H., Ramírez, C. y Martínez, J. (2013). Evaluación in vivo de Lactobacillus plantarum como alternativa al uso de antibióticos en lechones. Revista MVZ Córdoba, 18(Suppl), 3648-3657. Khan, I. U. H., Gannon, V., Jokinen, C. C., Kent, R., Koning, W., Lapen, D. R., Medeiros, D., Miller, J., Neumann, N. F., Phillips, R., Schreier, H., Topp, E., van Bochove, E., Wilkes, G. & Edge, T. A. (2014). A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. Water Research, 61(15), 243–252. https://doi.org/10.1016/j.watres.2014.05.027 Kim, H. B. & Isaacson, R. E. (2015). The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, 177(3-4), 242–251. https://doi.org/10.1016/j.vetmic.2015.03.01 Kim, J. C., Hansen, C. F., Mullan, B. P. & Pluske, J. R. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1-2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022 Kim, Y. I., Lee, Y. H., Kim, K. H., Oh, Y. K., Moon, Y. H. & Kwak, W. S. (2012). Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian-Australasian Journal of Animal Sciences, 25(11),1575-1581. https://doi.org/10.5713/ajas.2012.12251 Kogut, M. H. & Arsenault, R. J. (2016). Gut health: the new paradigm in food animal production. Frontiers in Veterinary Science, 3, 71. https://doi.org/10.3389/fvets.2016.00071. Kollath, W. (1953). Ernährung und Zahnsystem. Zahnaerzt Z, 8, 7-16. Liao, S. F. & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331-343. https://doi.org/10.1016/j.aninu.2017.06.007 Littmann, J., Buyx, A. & Cars, O. (2015). Antibiotic resistance: an ethical challenge. International Journal of Antimicrobial Agents, 46(4), 359–61. https://doi.org/10.1016/j.ijantimicag.2015.06.01 Londoño, S., Lallès, J. P. & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomía, 69(2), 7911-7918. https://doi.org/10.15446/rfna.v69n2.59136 MacGowan, A. & Macnaughton, E. (2017). Antibiotic resistance. Medicine. Elsevier Ltd., 45(10): 622–628. https://doi.org/10.1016/j.mpmed.2017.07.006 Madrid, G. T. (2015). Evaluación del aceite esencial del orégano Lippia origanoides como promotor nutricional de crecimiento en pollos de engorde. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín. Moeser, A. J., Pohl, C. S. & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313-321. https://doi.org/10.1016/j.aninu.2017.06.003. OCDE/FAO. (2017). OECD-FAO Agricultural Outlook 2017-2026. Paris: OECD Publishing. TOMADO DE: https://doi.org/10.1787/agr_outlook-2017-en Pluske, J. R. (2016). Invited review: aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(Suppl 3) 399–411. https://doi.org/10.2527/jas.2015-9767 PorkColombia. 2020. Revista PorkColombia, Bogotá. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (Text with EEA relevance). Stensland, I., Kim, J. C., Bowring, B., Collins, A. M., Mansfield, J. P. & Pluske, J. R. (2015). A comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde anda permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimen. Animals, 5(4), 1147-1168. https://doi.org/doi.org/10.3390/ani5040403 Torres-Pitarch, A., Hermans, D., Manzanilla, E. G., Bindelle, J., Everaert, N., Beckers, Y., Torrallardona, D., Bruggeman, G., Gardiner, G. E. & Lawlor, P. G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Animal Feed Science and Technology, 233, 145–159. https://doi.org/10.1016/j.anifeedsci.2017.04.024 USDA. (2017). Livestock, Dairy, and Poultry Outlook: December 2017. Retrieved from https://www.ers.usda.gov/webdocs/publications/86243/ldp-m-282.pdf?v=43087 USDA. (2020). Foreign Agricultural Service/USDA: Global Market Analysis. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf Zhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z. & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 126 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Doctorado en Biotecnología |
dc.publisher.department.spa.fl_str_mv |
Escuela de biociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81382/3/1020418193.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81382/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81382/5/1020418193.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
0ddc155d1617760cfb7bfd57070d161b 8153f7789df02f0a4c9e079953658ab2 eade10f0b7a0012343d7455d9bed8987 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089815173365760 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parra Suescún, Jaime1a28c416ea72f10986f6872e5a91ab08600Pardo Carrasco, Sandra Clemenciafe39f49924d8437bd04909027b444124600Herrera Franco, Victor Hugo947965d163124c7700388dcf3a12f181600Biodiversidad y Génetica Molecular "Biogem"2022-03-25T01:17:00Z2022-03-25T01:17:00Z2021-11https://repositorio.unal.edu.co/handle/unal/81382Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl destete es el período más estresante de la vida del cerdo, debido principalmente a que se encuentra en desafío con diferentes cambios (ambientales/sociales/nutricionales) a los que debe adaptarse rápidamente. Durante el destete precoz (≤ 21 días), el lechón se encuentra en medio de su desarrollo fisiológico y establecimiento de la microbiota intestinal, a su vez, la inmunidad alcanzada con la leche materna puede disminuir, lo que representa un reto para las múltiples funciones del intestino animal. El epitelio intestinal facilita la separación del medio exterior con el medio interno, la descomposición y absorción de los nutrientes de los alimentos, la defensa contra agentes no propios, y representa el ambiente de los microorganismos responsables de una relación simbiótica con el animal. Para contrarrestar los efectos perjudiciales del destete han sido utilizados los antibióticos, al tiempo que cumplen la función de promotores de crecimiento, aumentando el rendimiento productivo y la eficiencia alimenticia en cerdos en crecimiento. Debido a que se han considerado como factores de transmisión de resistencias a los microorganismos contra antibióticos utilizados en medicina humana, se ha creado controversia acerca del uso de cantidades subterapéuticas de dichos antibióticos en la producción porcina intensiva. Por lo anterior, los objetivo de este estudio fueron evaluar el desarrollo productivo de los lechones; cuantificar la abundancia de ARNm de los genes de enzimas (maltasa-glucoamilasa (MgA) y sacarasa-isomaltasa (SI)), transportadores (SGLT-1, GLUT-1 y GLUT-2) y citoquinas intestinales; y caracterizar la microbiota en el intestino (yeyuno) en cerdos destetados a dos edades y alimentados con la adición de antibióticos promotores de crecimiento (APC) y diferentes alternativas a estos, como probióticos (Bacillus subtilis), aceites esenciales (de orégano [Lippia origanoides]) y ácidos orgánicos. La adición de alternativas a los APC, especialmente probióticos, en fase de crecimiento, junto con el destete a los 28 días de edad (tardío), evidenció un impacto favorable, no solo en la función digestiva y de protección intestinal de cerdos, sino también en el establecimiento rápido y beneficioso de la microbiota intestinal, influyendo sobre los parámetros productivos, y sirviendo de base para el análisis de resultados moleculares relacionados con la salud intestinal. Además, esta investigación proporciona una base para el uso de alternativas naturales a los antibióticos que pueden promover el desarrollo de los cerdos en crecimiento, y favorecer la adaptación del lechón a la fase posdestete. (Texto tomado de la fuente)Weaning is the most stressful period in the life of the pig, mainly because of environmental / social / nutritional it is in challenge with different changes, (environmental / social / nutritional) to which it must adapt quickly. In early weaning (≤ 21 days), the piglet is in the middle of its physiological development and establishment of the intestinal microbiota, and the immunity achieved with breast milk decreases, which represents a challenge for the multiple functions of the animal intestine. The intestinal epithelium facilitates the separation of the external environment from the internal environment, the decomposition and absorption of nutrients from food, the defense against non-self agents, and represents the environment of the microorganisms responsible for a symbiotic relationship with the animal. Antibiotics have been used to counteract the harmful effects of weaning, while they play the role of acting as growth promoters, increase increasing productive performance and feed efficiency in growing pigs. Since they have been considered as transmission factors of resistance to microorganisms against antibiotics used in human medicine, controversy has been created raised about the use of subtherapeutic amounts of these antibiotics in intensive swine production. Therefore, the objectives of this study were to evaluate the productive development of the piglets; quantify the abundance of mRNA of the genes of coding for digestive enzymes (maltase-glucoamylase (MgA) and sucrase-isomaltase (SI)), transporters (SGLT-1, GLUT-1 and GLUT-2) and intestinal cytokines via mRNA; and characterize the microbiota via 16SrRNA MiSeq sequencing in the intestine (jejunum) in pigs weaned at two ages and fed with the addition of growth-promoting antibiotics (APC) and different alternatives to these, such as probiotics (Bacillus subtilis), essential oils (from oregano [Lippia origanoides)]) and organic acids. The addition of alternatives to APC, especially probiotics, in the growth phase, together with weaning at 28 days of age (late), showed a favorable impact, not only on the digestive function and intestinal protection of pigs, but also in the rapid and beneficial establishment of the intestinal microbiota, influencing the productive parameters, and serving as the basis for the analysis of molecular results related to intestinal health. In addition, this research provides a basis for the use of natural alternatives to antibiotics that can promote the development of growing pigs and favor the adaptation of the piglet to the post-weaning phase.Ministerio de Ciencia, Tecnología e Innovación (anteriormente conocido como "COLCIENCIAS")DoctoradoDoctor en BiotecnologíaBiotecnología aplicada a la producción animal: microbioma intestinalÁrea Curricular Biotecnologíaxvi, 126 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín590 - Animales::599 - Mamíferos630 - Agricultura y tecnologías relacionadas::636 - Producción animalSwine - feeding and feedsAlimentos para cerdosProducción porcinaDesteteProbióticoAceite esencialÁcido orgánicoMicrobiota intestinalExpresión molecularPig productionWeaningProbioticEssential oilOrganic acidGut microbiotaMolecular expressionMicrobiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del desteteMicrobiota and expression of intestinal proteins in pigs added with different antimicrobials during the weaning periodTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAlfonso, K. (18 de enero de 2018). Porcicultores miran Ecuador para exportar carne durante el primer semestre del año. Crecimiento de la producción de carne de cerdo fue de 4% en 2017. Diario La República. https://www.larepublica.co/economia/porcicultores-miran-ecuador-para-exportar-carne-durante-el-primer-semestre-del-ano-2589670. Revisado: 25-febrero-2018Alhenaky, A., Abdelqader, A., Abuajamieh, M. & Al-Fataftah, A. R. (2017). The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 70(parte B), 9–14. https://doi.org/10.1016/j.jtherbio.2017.10.015Aliakbarpour, H. R., Chamani, M., Rahimi, G., Sadeghi, A. A. & Qujeq, D. (2012). The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australasian Journal of Animal Sciences, 25(9), 1285 – 1293. https://doi.org/10.5713/ajas.2012.12110Allen, H. K., Levine, U. Y., Looft, T., Bandrick, M. & Casey, T. A. (2013). Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in Microbiology, 21(3), 114-119. https://doi.org/10.1016/j.tim.2012.11.001Al-Sadi, R., Boivin, M. & Ma, T. (2009). Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience, 14, 2765–2778. PMID: 19273235; PMCID: PMC3724223. https://doi.org/10.2741/3413Angelakis, E., Merhej, V. & Raoult, D. (2013). Related actions of probiotics and antibiotics on gut microbiota and weight modification. The Lancet Infectious Diseases, 13(10), 889-899. https://doi.org/10.1016/S1473-3099(13)70179-8Angelakis, E. (2017). Weight gain by gut microbiota manipulation in productive Animals. Microbial Pathogenesis, 106, 162-170. https://doi.org/10.1016/j.micpath.2016.11.002Ashbolt, N. J., Amezquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G. J., McEwen, S. A., Ryan, J. J., Schonfeld, J., Silley, P., Snape, J. R., van den, Eede. C. & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121(9), 993–1001. https://doi.org/10.1289/ehp.1206316Ayala, L., Bocourt, R., Castro, M., Dihigo, L. E., Milián, G., Herrera, M. & Ly, J. (2014). Development of the digestive organs in piglets born from sows consuming probiotic before farrowing and during lactation. Cuban Journal of Agricultural Science, 48(2), 133-136. https://doi.org/10.1289/ehp.1206316Bednorz, C., Oelgeschläger, K., Kinnemann, B., Hartmann, S., Neumann, K., Pieper, R., Bethe, A., Semmler, T., Tedin, K., Schierack, P., Wieler, L. H. & Guenther, S. (2013). The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International Journal of Medical Microbiology, 303(6–7), 396–403. https://doi.org/10.1016/j.ijmm.2013.06.004Belkaid, Y. & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1),121-141. https://doi.org/ 10.1016/j.cell.2014.03.011Campbell, J. M., Crenshaw, J. D. & Polo, J. (2013). The biological stress of early weaned piglets. Journal of animal science and biotechnology, 4(1), 19. https://doi.org/10.1186/2049-1891-4-19Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A. M. & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012Censo Pecuario Nacional. (2020). Instituto Agropecuario Colombiano. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018. Revisado: 06/05/2020.Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013. Available at: https://www.cdc.gov/drugresistance/threatreport- 2013/pdf/ar-threats-2013-508.pdf. Revisado: January 10, 2018.Cho, J. & Kim, H. (2015). Effects of microencapsulated organic acids and essential oils on growth performance and intestinal flora in weanling pigs. Revista Colombiana de Ciencias Pecuarias, 28(3), 129-137. https://doi.org/10.17533/udea.rccp.v28n3a3Ciro, J., López, H. A. & Parra, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 150-159.Ciro, J., López, H. A. & Parra, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomía, 69(1), 7803-7811. https://doi.org/10.15446/rfna.v69n1.54748.Claesson, M. J., Cusacka, S., O’Sullivan, O., Greene-Diniza, R., deWeerd, H., Flannery, E., Marchesib, J. R., Falushg, D., Dinanb, T., Fitzgeralda, G., Stantonb, C., van Sinderena, D., O'Connori, M., Harnedyi, N., O'Connorj, K., Henry, C., O'Mahony, D., Fitzgeralde, A. P., Shanahan, F... & O'Toolea, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl.1), 4586–4591. https://doi.org/10.1073/pnas.1000097107Costa, L. B., Almeida, V. V., Berenchtein, B., Tse, M. L. P., Andrade, C. & Miyada, V. S. (2011). Phytogenic additives and sodium butyrate as alternatives to antibiotics for weaned piglets. Archivos de Zootecnia, 60(231), 733-744. https://doi.org/10.21071/az.v60i231.4530Costa, L. B., Luciano, F. B., Miyada, V. S. & Gois, F. D. (2013). Herbal extracts and organic acids as natural feed additives in pig diets. South African Journal of Animal Science, 43(2), 181-193. https://doi.org/10.4314/sajas.v43i2.9Costelloe, C., Metcalfe, C., Lovering, A., Mant, D. & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. British Medical Journal, 340, c2096. https://doi.org/10.1136/bmj.c2096Cubillos, R. (31 de julio de 2017). Mercado del cerdo en Latinoamérica. Evolución y expectativas. Procicultura integral. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercados-latam-en-2017-evolucion-y-expectativas_38382/. Revisado; 25 febrero 2018.Cubillo, R. (31 de diciembre de 2019). Situación del mercado porcino en Latinoamérica durante el 2019 y perspectivas para 2020. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercado-porcino-en-latinoamerica-en-2019-y-perspectivas-para-2020_42029/. Revisado: 7 mayo 2020Curry, S. M., Schwartzb, K. J., Yoonb, K. J., Gablera, N. K. & Burroughb, E. R. (2017). Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity. Veterinary Microbiology, 211, 58–66. https://doi.org/10.1016/j.vetmic.2017.09.021De Busser E. V., Dewulf J., Zutter L. D., Haesebrouck F., Callens J., Meyns T., Maes W. & Maes D. (2011). Effect of administration of organic acids in drinking water on faecal shedding of E. coli, performance parameters and health in nursery pigs. Veterinary journal, 188(2), 184-188. https://doi.org/10.1016/j.tvjl.2010.04.006de Melo, Pereira, G. V., de Oliveira, Coelho, B., Magalhães, Júnior. A. I., Thomaz-Soccol, V. & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-2076. https://doi.org/10.1016/j.biotechadv.2018.09.003.Douglas, S. L., Edwards, S. A. & Kyriazakis, I. (2014). Management strategies to improve the performance of low birth weight pigs to weaning and their long-term consequences. Journal of Animal Science, 92(5), 2280–2288. https://doi.org/10.2527/jas.2013-7388Ermund, A., Schutte, A., Johansson, M. E., Gustafsson, J. K. & Hansson, G. C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. American Journal of Physiology Gastrointestinal and Liver Physiology, 305, G341-G347. https://doi.org/10.1152/ajpgi.00046.2013Fair, R. J. & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459FAO. (2021). Resumen de la evolución del mercado mundial de carne de cerdo en 2020. http://www.fao.org/. Marzo de 2021/ FAO.FAO. (2016). Informe de situación sobre resistencia a los antimicrobianos, Roma: Food and Agriculture Organization of the United Nations.Ferreira, C. L., Salminen, S., Grzeskowiak, L., Brizuela, M. A., Sanchez, L., Carneiro, H. & Bonnet, M. (2011). Terminology concepts of probiotic and prebiotic and their role in human and animal health. Revista salud animal, 33(3), 137-146.FIRA. (2017). Panorama Agroalimentario: Carne de cerdo 2017. Retrieved from http://www.ugrpg.org.mx/pdfs/Panorama Agroalimentario Carne de cerdo 2017.pdf . Revisado el 5 enero 2018Flis, M., Sobotka, W. & Antoszkiewicz, Z. (2017). Fiber substrates in the nutrition of weaned piglets – a review. Annals of Animal Science, 17(3), 627–643. https://doi.org/10.1515/aoas-2016-0077Fraile, L. (2017). Sanidad animal y los antibióticos. Seguridad alimentaria, profilaxis, bioseguridad y comercio internacional. LOS EXPERTOS OPINAN. Disponible en: https://www.carne.3tres3.com/los-expertos-opinan/sanidad-animal-y-los-antibioticos-seguridad-alimentaria-profilaxis_1074. Revisado el 4 de mayo del 2017.Fouhse, J. M., Zijlstra, R. T. & Willing, B. P. (2016). The role of gut microbiota in the health and disease of pigs. Animals Font, 6(3), 30-36. https://doi.org/10.2527/af.2016-0031Gaggia, F., Mattarelli, P. and Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(Suppl), S15eS28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031García, G. R., Dogia, C. A., Ashworth, G. E., Berardob, D., Godoy, G., Cavaglieria, L. R., de Moreno, de LeBlanc, A. &Grecoa, C. R. (2016). Effect of breast feeding time on physiological, immunological andmicrobial parameters of weaned piglets in an intensive breeding. Veterinary Immunology and Immunopathology, 176: 44–49. https://doi.org/0.1016/j.vetimm.2016.02.009Giannenas, I., Doukas, D., Karamoutsios, A., Tzora, A., Bonos, E., Skoufos, I., Tsinas, A., Christaki, E., Tontis, D. & Florou-Paneri, P. (2016). Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Animal Feed Science and Technology, 220, 159-167. https://doi.org/10.1016/j.anifeedsci.2016.08.003GIA. (2008). Probiotics: A Global Strategic Business Report. Global Industry Analysts, Inc. California, USA.Gónzalez X. (2021). La carne de cerdo colombiana ganó terreno y la producción local ya representa 87%. AGRONEGOCIOS. https://www.agronegocios.co/ganaderia/la-carne-de-cerdo-colombiana-gano-terreno-y-la-produccion-local-ya-representa-87-3133078Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., van de Wiele, T., Forano, E. & Blanquet-Diot, S. (2017). Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends in Microbiology, 25(10), 851-73. https://doi.org/10.1016/j.tim.2017.05.004Gross M. (2013). Antibiotics in crisis. Current Biology, 23(24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057Guerra, N. P. (2009). Probiotics: production, evaluation and uses in animal feed. Trivandrum. Research Signpost.Gutiérrez, C., López, A. y Parra, J. (2013). Lesiones en órganos de cerdos posdestete, inducidas por el lipopolisacárido de E. coli. Revista MVZ Córdoba, 18(2), 3534–3542. https://doi.org/10.21897/rmvz.178Gutiérrez, L. A., Montoya, O. I. y Vélez, J. M. (2013). Probióticos: una alternativa de producción limpia y de reemplazo a los antibióticos promotores de crecimiento en la alimentación animal. Producción + limpia, 8(1), 135-146.Gutiérrez-Ramírez, L. A., Bedoya, O. y Ríos, M. (2015). Evaluación de parámetros productivos en cerdos (Sus scrofa domesticus) suplementados con microorganismos probióticos nativos. Journal of agriculture and animal sciences, 3(2), 48-55.Haack, S. K., Duris, J. W., Kolpin, D. W., Focazio, M. J., Meyer, M. T., Johnson, H. E., Oster, R. J. & Foreman, W. T. (2016). Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Science of the Total Environment, 563 – 564: 340–350.https://doi.org/10.1016/j.scitotenv.2016.04.087Hayakawa, T., Masuda, T., Kurosawa, D. &Tsukahara, T. (2016). Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Animal Science Journal, 87(12), 1501-1510. https://doi.org/10.1111/asj.12565Herrera, F. V. (2015). Efecto de la adición de diferentes cepas probióticas (L. acidophilus, L. casei, E. faecium) sobre la población bacteriana intestinal, y su relación con variables inmunológicas en lechones recién destetados. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín.He, L. Y., Ying, G. G., Liu, Y. S., Su, H. C., Chen, J., Liu, S. S. & Zhao, J. L. (2016). Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92–93, 210–219. https://doi.org/10.1016/j.envint.2016.03.023Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C. & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews gastroenterology y hepatology, 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66Holman, D. & Chénier, M. (2014). Temporal changes and the effect of subtherape concentrations of antibiotics in the gut microbiota of swine. Federation of European Microbiological Societies, 90(3), 599-608. https://doi.org/10.1111/1574-6941.12419Hu, Y., Dun, Y., Li, S., Zhao, S., Peng, N. & Liang, Y. (2014). Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets. Asian-Australasian Journal of Animal Sciences, 27(8), 1131-1140. https://doi.org/10.5713/ajas.2013.13737Hughes, P. & Heritage, J. (2004). Antibiotic growth-promoters in food animals. FAO. Animal Production & Health Paper: 129 – 152.Huguet, A., Sève, B., Le Dividich, J. &Le, Huërou-luron, I. (2006). Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reproduction Nutrition Development, 46(2), 167–178. https://doi.org/10.1051/rnd:2006006Hwang, A. Y. & Gums, J. G. (2016). The emergence and evolution of antimicrobial resistance: Impact on a global scale. Bioorganic & Medicinal Chemistry, 24(24), 6440–6445. https://doi.org/10.1016/j.bmc.2016.04.027Inoue, R., Tsukahara, T., Nakatani, M., Okutani, M., Nishibayashi, R., Ogawa, S., Harayama, T., Nagino, T., Hatanaka, H., Fukuta, K., Romero-Pérez, G. A., Ushida, K. & Kelly, D. (2015). Weaning markedly affects transcriptome profiles and peyer’s patch development in piglet ileum. Frontiers in Immunology, 6, 630. https://doi.org/10.3389/fimmu.2015.00630Jacobi, K. S., Moeser, J. A., Blikslager, T. A., Rhoads, M. J., Corl, A. B., Harrell, J. R. & Odle, J. (2013). Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World Journal of Gastroenterology, 19(31), 5094–5102. https://doi.org/10.3748/wjg.v19.i31.5094Jayaraman, B. & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205-211. https://doi.org/10.1016/j.aninu.2017.06.002Jeffery, I. B. & O’Toole, P. W. (2013). Diet-microbiota interactions and their implications for healthy living. Nutrients, 5(1), 234-252. https://doi.org/10.3390/nu5010234Jurado, G. H., Ramírez, C. y Martínez, J. (2013). Evaluación in vivo de Lactobacillus plantarum como alternativa al uso de antibióticos en lechones. Revista MVZ Córdoba, 18(Suppl), 3648-3657.Khan, I. U. H., Gannon, V., Jokinen, C. C., Kent, R., Koning, W., Lapen, D. R., Medeiros, D., Miller, J., Neumann, N. F., Phillips, R., Schreier, H., Topp, E., van Bochove, E., Wilkes, G. & Edge, T. A. (2014). A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. Water Research, 61(15), 243–252. https://doi.org/10.1016/j.watres.2014.05.027Kim, H. B. & Isaacson, R. E. (2015). The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, 177(3-4), 242–251. https://doi.org/10.1016/j.vetmic.2015.03.01Kim, J. C., Hansen, C. F., Mullan, B. P. & Pluske, J. R. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1-2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022Kim, Y. I., Lee, Y. H., Kim, K. H., Oh, Y. K., Moon, Y. H. & Kwak, W. S. (2012). Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian-Australasian Journal of Animal Sciences, 25(11),1575-1581. https://doi.org/10.5713/ajas.2012.12251Kogut, M. H. & Arsenault, R. J. (2016). Gut health: the new paradigm in food animal production. Frontiers in Veterinary Science, 3, 71. https://doi.org/10.3389/fvets.2016.00071.Kollath, W. (1953). Ernährung und Zahnsystem. Zahnaerzt Z, 8, 7-16.Liao, S. F. & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331-343. https://doi.org/10.1016/j.aninu.2017.06.007Littmann, J., Buyx, A. & Cars, O. (2015). Antibiotic resistance: an ethical challenge. International Journal of Antimicrobial Agents, 46(4), 359–61. https://doi.org/10.1016/j.ijantimicag.2015.06.01Londoño, S., Lallès, J. P. & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomía, 69(2), 7911-7918. https://doi.org/10.15446/rfna.v69n2.59136MacGowan, A. & Macnaughton, E. (2017). Antibiotic resistance. Medicine. Elsevier Ltd., 45(10): 622–628. https://doi.org/10.1016/j.mpmed.2017.07.006Madrid, G. T. (2015). Evaluación del aceite esencial del orégano Lippia origanoides como promotor nutricional de crecimiento en pollos de engorde. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín.Moeser, A. J., Pohl, C. S. & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313-321. https://doi.org/10.1016/j.aninu.2017.06.003.OCDE/FAO. (2017). OECD-FAO Agricultural Outlook 2017-2026. Paris: OECD Publishing. TOMADO DE: https://doi.org/10.1787/agr_outlook-2017-enPluske, J. R. (2016). Invited review: aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(Suppl 3) 399–411. https://doi.org/10.2527/jas.2015-9767PorkColombia. 2020. Revista PorkColombia, Bogotá.Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (Text with EEA relevance).Stensland, I., Kim, J. C., Bowring, B., Collins, A. M., Mansfield, J. P. & Pluske, J. R. (2015). A comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde anda permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimen. Animals, 5(4), 1147-1168. https://doi.org/doi.org/10.3390/ani5040403Torres-Pitarch, A., Hermans, D., Manzanilla, E. G., Bindelle, J., Everaert, N., Beckers, Y., Torrallardona, D., Bruggeman, G., Gardiner, G. E. & Lawlor, P. G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Animal Feed Science and Technology, 233, 145–159. https://doi.org/10.1016/j.anifeedsci.2017.04.024USDA. (2017). Livestock, Dairy, and Poultry Outlook: December 2017. Retrieved from https://www.ers.usda.gov/webdocs/publications/86243/ldp-m-282.pdf?v=43087USDA. (2020). Foreign Agricultural Service/USDA: Global Market Analysis. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdfZhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z. & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119EstudiantesInvestigadoresMaestrosORIGINAL1020418193.2021.pdf1020418193.2021.pdfTesis de Doctorado en Biotecnologíaapplication/pdf1597654https://repositorio.unal.edu.co/bitstream/unal/81382/3/1020418193.2021.pdf0ddc155d1617760cfb7bfd57070d161bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81382/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1020418193.2021.pdf.jpg1020418193.2021.pdf.jpgGenerated Thumbnailimage/jpeg3824https://repositorio.unal.edu.co/bitstream/unal/81382/5/1020418193.2021.pdf.jpgeade10f0b7a0012343d7455d9bed8987MD55unal/81382oai:repositorio.unal.edu.co:unal/813822024-08-05 23:10:21.866Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |