Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado

ilustraciones, gráficos

Autores:
Castro García, Rubén Hernán
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85890
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85890
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Biopolímeros
Nanopartículas
Reología
Viscosidad
Recobro del petróleo
Campos petrolíferos
Biodegradación
Petróleo - Investigaciones
Petróleo - Pruebas
Recobro mejorado
Biopolímero
Escleroglucano
Nanofluidos
Nanohíbridos
Degradación química
Degradación microbiana
Degradación térmica
Degradación mecánica
Enhanced Oil Recovery (EOR)
Biopolymer
Scleroglucan
Nanofluids
Nanohybrids
Thermal degradation
Chemical degradation
Mechanical degradation
Microbial degradation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f090b9df6b762379964efee339086ff7
oai_identifier_str oai:repositorio.unal.edu.co:unal/85890
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
dc.title.translated.eng.fl_str_mv Experimental investigation of the interactions between the Scleroglucan, cross-linkers, and nanoparticles based on its rheological behavior and enhanced oil recovery performance
title Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
spellingShingle Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Biopolímeros
Nanopartículas
Reología
Viscosidad
Recobro del petróleo
Campos petrolíferos
Biodegradación
Petróleo - Investigaciones
Petróleo - Pruebas
Recobro mejorado
Biopolímero
Escleroglucano
Nanofluidos
Nanohíbridos
Degradación química
Degradación microbiana
Degradación térmica
Degradación mecánica
Enhanced Oil Recovery (EOR)
Biopolymer
Scleroglucan
Nanofluids
Nanohybrids
Thermal degradation
Chemical degradation
Mechanical degradation
Microbial degradation
title_short Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
title_full Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
title_fullStr Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
title_full_unstemmed Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
title_sort Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado
dc.creator.fl_str_mv Castro García, Rubén Hernán
dc.contributor.advisor.none.fl_str_mv Cortés Correa, Farid Bernardo
Corredor Rojas, Laura Milena
dc.contributor.author.none.fl_str_mv Castro García, Rubén Hernán
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Fenómenos de Superficie “Michael Polanyi”
dc.contributor.orcid.spa.fl_str_mv Ruben Hernan Castro Garcia [0000-0001-7267-4221]
dc.contributor.cvlac.spa.fl_str_mv Rubén Hernán Castro
dc.contributor.scopus.spa.fl_str_mv Castro-García, Rubén Hernán [55932131800]
dc.contributor.researchgate.spa.fl_str_mv Ruben Castro
dc.contributor.googlescholar.spa.fl_str_mv RUBEN HERNAN CASTRO GARCIA, PhD(c)
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Biopolímeros
Nanopartículas
Reología
Viscosidad
Recobro del petróleo
Campos petrolíferos
Biodegradación
Petróleo - Investigaciones
Petróleo - Pruebas
Recobro mejorado
Biopolímero
Escleroglucano
Nanofluidos
Nanohíbridos
Degradación química
Degradación microbiana
Degradación térmica
Degradación mecánica
Enhanced Oil Recovery (EOR)
Biopolymer
Scleroglucan
Nanofluids
Nanohybrids
Thermal degradation
Chemical degradation
Mechanical degradation
Microbial degradation
dc.subject.lemb.none.fl_str_mv Biopolímeros
Nanopartículas
Reología
Viscosidad
Recobro del petróleo
Campos petrolíferos
Biodegradación
Petróleo - Investigaciones
Petróleo - Pruebas
dc.subject.proposal.spa.fl_str_mv Recobro mejorado
Biopolímero
Escleroglucano
Nanofluidos
Nanohíbridos
Degradación química
Degradación microbiana
Degradación térmica
Degradación mecánica
dc.subject.proposal.eng.fl_str_mv Enhanced Oil Recovery (EOR)
Biopolymer
Scleroglucan
Nanofluids
Nanohybrids
Thermal degradation
Chemical degradation
Mechanical degradation
Microbial degradation
description ilustraciones, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-09T20:14:30Z
dc.date.available.none.fl_str_mv 2024-04-09T20:14:30Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85890
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85890
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Castro, R. H., Burgos, I., Corredor, L. M., Llanos, S., Franco, C. A., Cor-tés, F. B., & Romero Bohórquez, A. R. Carboxymethyl Scleroglu-can Synthesized via O-Alkylation Reaction with Different Degrees of Substitution: Rheology and Thermal Stability. Polymers. 2024. 16(2), 207
Castro, R. H., Corredor, L. M., Burgos, I., Llanos, S., Franco, C. A., Cortés, F. B., Idrobo, E. A. & Romero Bohórquez, A. R. Synthesis and Characterization of New Nanohybrids Based on Carboxymethyl Scleroglucan and Silica Nanoparticles. Nanomaterials. 2024. 14(6), 499
Rubén Castro, S.L., Jenny Rodríguez, Henderson Quintero, José Francisco Zapata Arango. Heavy Oil and High-Temperature Polymer EOR Applications. Ciencia, Tecnología y Futuro – CT&F, 2020(Edicion Especial Recobro Mejorado 2020): p. 12.DOI: 10.29047/01225383.258
API, R., Recommended Practices for Evaluation of Polymers Used in enhanced oil recovery operations. June. 1: p. 1990.
Rodríguez-Mateus, Z.-P., et al., Biodegradation and toxicity of scleroglucan for enhanced oil recovery. 2022. 12(1): p. 5-12.
TM, N.J.N.A.o.C.E.I., Houston, Texas, Standard Test Method–Field Monitoring of Bacterial Growth in Oil and Gas Systems. 2004.
Castro, R.H., Corredor, L.M., Llanos, S., Rodríguez, Z.P., Burgos, I., Niño, J.A., Idrobo, E. A., Romero Bohórquez, A. R., Zapata, K. & Cortés, F. B. Evaluation of the Thermal, Chemical, Mechanical, and Microbial Stability of New Nanohybrids based on Carboxymethyl-Scleroglucan and Silica Nanoparticles for EOR Applications. Nanomaterials. 2024. 14.
Casadei, M.A., et al., Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. 2007. 67(3): p. 682-689.DOI: https://doi.org/10.1016/j.ejpb.2007.04.010.
Jouenne, S.J.J.o.P.S. and Engineering, Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. 2020. 195: p. 107545.
Castro, R.H. and Daza J.A., Tecnologías de inyección de polímero HPAM: review Colombia. 2022
Franco, C.A., et al., Field Applications of nanotechnology in the oil and gas industry: Recent advances and perspectives. 2021. 35(23): p. 19266-19287.
Corredor, L.M., et al., Oil Displacement Efficiency of a Silica/HPAM Nanohybrid. 2021. 35(16): p. 13077-13085.
Castro, R.H., et al., Polymers for EOR Application in High Temperature and High Viscosity Oils: Rock–Fluid Behavior. Energies, 2020. 13(22): p. 5944.
Bluhm, T.L., et al., Solid-state and solution conformation of scleroglucan. Carbohydrate Research, 1982. 100(1): p. 117-130.
Farina, J., et al., Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001. 44(1): p. 41-50.
Liang, K., et al., Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 2019. 4(6): p. 10620-10628.
Seright, R.S., J.M. Seheult, and T. Talashek. Injectivity characteristics of EOR polymers. in SPE annual technical conference. 2008. Society of Petroleum Engineers.
Zhang, G. and R. Seright. Hydrodynamic retention and rheology of EOR polymers in porous media. in SPE International Symposium on Oilfield Chemistry. 2015. Society of Petroleum Engineers.
Fournier, R., J.-E. Tiehi, and A. Zaitoun. Laboratory Study of a New EOR-Grade Scleroglucan. in SPE EOR Conference at Oil and Gas West Asia. 2018. Society of Petroleum Engineers.
Kozlowicz, B., et al. Qualification and Field Injection of Scleroglucan. in IOR 2019–20th European Symposium on Improved Oil Recovery. 2019.
Kozlowicz, B., et al. Scleroglucan Polymer Stability: Thermal, Chemical, and Microbial. in SPE Improved Oil Recovery Conference. SPE, 2020. Society of Petroleum Engineers.
Liu, Z., K. Zhang, and X.J.R.A. Cheng, Rheology of bacterial suspensions under confinement. 2019. 58: p. 439-451.
Hatwalne, Y., et al., Rheology of active-particle suspensions. 2004. 92(11): p. 118101.
Chui, J.Y., et al., Rheology of bacterial superfluids in viscous environments. 2021. 17(29): p. 7004-7013.
Wilson, W.W., et al., Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. 2001. 43(3): p. 153-164.
Survase, S.A., et al., Scleroglucan: fermentative production, downstream processing and applications. 2007. 45(2): p. 107-118.
Pizarro, S., A.M. Ronco, and M.J.R.c.d.n. Gotteland, ß-glucanos:¿ qué tipos existen y cuáles son sus beneficios en la salud? 2014. 41(4): p. 439-446.
Castillo, N.A., A.L. Valdez, and J.I.J.F.i.m. Fariña, Microbial production of scleroglucan and downstream processing. 2015. 6: p. 1106.
Mamonova, I., et al., Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. 2015. 10(1-2): p. 128-134.
Khalandi, B., et al., A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. 2017. 11(02): p. 70-76.
Selvarajan, V., S. Obuobi, and P.L.R.J.F.i.c. Ee, Silica nanoparticles—a versatile tool for the treatment of bacterial infections. 2020. 8: p. 602.
Wang, L., C. Hu, and L.J.I.j.o.n. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. 2017: p. 1227-1249.
Chwalibog, A., et al., Visualization of interaction between inorganic nanoparticles and bacteria or fungi. 2010: p. 1085-1094.
Linklater, D.P., et al., Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. 2020. 32(52): p. 2005679.
Gutiérrez-Rojas, I., N. Moreno-Sarmiento, and D.J.R.I.d.M. Montoya, Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. 2015. 32(1): p. 1-12.
Muñoz‐Elías, E.J. and J.D.J.C.m. McKinney, Carbon metabolism of intracellular bacteria. 2006. 8(1): p. 10-22.
Pathak, V.M.J.B. and Bioprocessing, Review on the current status of polymer degradation: a microbial approach. 2017. 4(1): p. 1-31.
Arora, A. and A.J.M.T.P. Mishra, Antibacterial polymers–a mini review. 2018. 5(9): p. 17156-17161.
Raffa, P. and P. Druetta, Chemical Enhanced Oil Recovery: Advances in Polymer Flooding and Nanotechnology. 2019: Walter de Gruyter GmbH & Co KG.
Gbadamosi, A.O., et al., An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 2019: p. 1-32.
Shahzad Kamal, M. and A.S. Sultan, Enhanced Oil Recovery. Functional Polymers, 2019: p. 1045-1077.
Sorbie, K.S., Polymer-improved oil recovery. 2013: Springer Science & Business Media.
Abidin, A., T. Puspasari, and W. Nugroho, Polymers for enhanced oil recovery technology. Procedia Chemistry, 2012. 4: p. 11-16.
Seright, R., Potential for polymer flooding reservoirs with viscous oils. SPE Reservoir Evaluation & Engineering, 2010. 13(04): p. 730-740.
Seright, R.S., et al., Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. Spe Journal, 2010. 15(02): p. 341-348.
Seright, R.S., J.M. Seheult, and T. Talashek. Injectivity characteristics of EOR polymers. in SPE annual technical conference and exhibition. 2008. Society of Petroleum Engineers.
Sveistrup, M., et al., Viability of biopolymers for enhanced oil recovery. Journal of Dispersion Science and Technology, 2016. 37(8): p. 1160-1169.
Acharya, K., C. Schulman, and M.H. Young, Physiological response of daphnia magna to linear anionic polyacrylamide: ecological implications for receiving waters. Water, Air, & Soil Pollution, 2010. 212(1-4): p. 309-317.
King, D.J. and R.R. Noss, Toxicity of polyacrylamide and acrylamide monomer. Reviews on environmental health, 1989. 8(1-4): p. 3-16.
Walker, C., et al., Principles of ecotoxicology Taylor and Francis. Nueva York, 2001: p. 163-78.
Liang, K., et al., Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 2019. 4(6): p. 10620-10628.
Ali, J.A., et al., Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egyptian journal of petroleum, 2018.
Corredor-Rojas, L.M., et al., Rheological behavior of surface modified silica nanoparticles dispersed in Partially Hydrolyzed Polyacrylamide and Xanthan Gum solutions: Experimental measurements, mechanistic understanding, and model development. Energy & Fuels, 2018.
Bera, A., et al., Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020: p. 124833.
Castro-Garcia, R.-H., et al., Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(3): p. 71-90.
Manrique, E., M. Ahmadi, and S. Samani, Historical and recent observations in polymer floods: an update review. CT&F-Ciencia, Tecnología y Futuro, 2017. 6(5): p. 17-48.
Pu, W., et al., A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. Journal of Industrial and Engineering Chemistry, 2018. 61: p. 1-11.
Al-Saleh, M.A., et al., Biopolymer Solution Evaluation Methodology: Thermal and Mechanical Assessment for Enhanced Oil Recovery with High Salinity Brines. Processes, 2019. 7(6): p. 339.
Rivenq, R., A. Donche, and C. Nolk, Improved scleroglucan for polymer flooding under harsh reservoir conditions. SPE reservoir engineering, 1992. 7(01): p. 15-20.
Kalpakci, B., et al. Thermal stability of scleroglucan at realistic reservoir conditions. in SPE/DOE Enhanced Oil Recovery Symposium. 1990. Society of Petroleum Engineers.
Viñarta, S.C., et al., Sclerotium rolfsii scleroglucan: the promising behavior of a natural polysaccharide as a drug delivery vehicle, suspension stabilizer and emulsifier. 2007. 41(3): p. 314-323.
Bakhshi, M., et al., Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer. Korean Journal of Chemical Engineering, 2017. 34(3): p. 903-912
Schmid, J., V. Meyer, and V. Sieber, Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Applied microbiology and biotechnology, 2011. 91(4): p. 937-947.
Rivenq, R., A. Donche, and C.J.S.r.e. Nolk, Improved scleroglucan for polymer flooding under harsh reservoir conditions. 1992. 7(01): p. 15-20.
Seright, R.S., et al., Stability and behavior in carbonate cores for new enhanced-oil-recovery polymers at elevated temperatures in hard saline brines. 2021. 24(01): p. 1-18.
Jensen, T., et al. Chemical EOR under harsh conditions: Scleroglucan as a viable commercial solution. in SPE Improved Oil Recovery Conference. 2018. OnePetro.
Carreau, P.J., Rheological equations from molecular network theories. Transactions of the Society of Rheology, 1972. 16(1): p. 99-127.
Farina, J., et al., Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001. 44(1): p. 41-50.
Jones, O.G. and D.J. McClements, Functional biopolymer particles: design, fabrication, and applications. Comprehensive Reviews in Food Science and Food Safety, 2010. 9(4): p. 374-397.
Sheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.
Survase, S.A., et al., Scleroglucan: fermentative production, downstream processing and applications. 2007. 45(2): p. 107-118.
Valeur, E. and M.J.C.S.R. Bradley, Amide bond formation: beyond the myth of coupling reagents. 2009. 38(2): p. 606-631.DOI: https://doi.org/10.1039/B701677H.
Abraham, T.W. and E.S. Sumner. Method for solubilizing biopolymer solids for enhanced oil recovery applications. 2019, Google Patents.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 184 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85890/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85890/2/80170660.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85890/3/80170660.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
169a8636735f6970c831aff180413a5f
edd71f8edc2ffb833da234f3378f7683
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089748415774720
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correa, Farid Bernardo3b35826f8c2b2379b0289696615550a4Corredor Rojas, Laura Milenaf6cbe38aa7e6fe6086f1f02483d9ed18Castro García, Rubén Hernánad598a10681de0b886c33beb62cb81f3Grupo de Investigación en Fenómenos de Superficie “Michael Polanyi”Ruben Hernan Castro Garcia [0000-0001-7267-4221]Rubén Hernán CastroCastro-García, Rubén Hernán [55932131800]Ruben CastroRUBEN HERNAN CASTRO GARCIA, PhD(c)2024-04-09T20:14:30Z2024-04-09T20:14:30Z2024https://repositorio.unal.edu.co/handle/unal/85890Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosLos biopolímeros como goma xantana (XG), goma diutan (DG), hidroxietilcelulosa (HEC), carboximetilcelulosa (CMC), esquizofilan (SPG) y escleroglucano (SG), surgen como candidatos prometedores para aplicaciones de recobro mejorado (EOR) debido a sus estructuras moleculares. Estos biopolímeros exhiben buenas propiedades reológicas y alta resistencia a la hidrólisis, el pH, los electrolitos, esfuerzos mecánicos y a la temperatura, pero son susceptibles a la oxidación y la degradación biológica. En este estudio se realizaron pruebas experimentales fluido- fluido para evaluar el efecto de la fuerza iónica, el pH, la temperatura y el esfuerzo de corte sobre la viscosidad de soluciones de SG (grado EOR). Se observó que el SG conservó sus propiedades reológicas y estabilidad en las condiciones evaluadas debido a su estructura semirrígida de triple hélice y naturaleza no iónica. Además, las soluciones de SG exhibieron una excelente filtrabilidad. En las pruebas experimentales roca-fluido realizadas a condiciones de yacimiento, el SG aumentó la eficiencia de desplazamiento de petróleo entre un 18 y un 35 % en comparación con la inyección de agua. Finalmente, el estudio experimental de biodegradación demostró que el SG es susceptible a la degradación microbiana, en ausencia o presencia del biocida, debido a que las bacterias utilizan el biopolímero como fuente de carbono. Se evaluó el efecto de nanopartículas (Nps) de diferentes tamaños y naturalezas al agregarlas a soluciones de SG, evaluando inicialmente el cambio de viscosidad y posteriormente su impacto en la degradación microbiana del biopolímero. Se utilizó el método de dos pasos para preparar los nanofluidos (las Nps primero se sintetizan y luego se dispersan en el fluido). El método de dos pasos se utiliza en las industrias para producir nanofluidos a gran escala debido a su bajo costo de producción. Sin embargo, es un desafío evitar la aglomeración de las Nps. Por esta razón, se evaluó el efecto de cuatro métodos de preparación y de nueve nanopartículas (SiO2, Al2O3 y TiO2) sobre la viscosidad y estabilidad del SG. La evaluación de estabilidad exhibió que los nanofluidos SG+Al2O3 y SG+TiO2 son altamente inestables, pero los nanofluidos SG+SiO2 son estables independiente del método de preparación. Todos los nanofluidos mostraron una filtrabilidad deficiente. Teniendo en cuenta el desempeño de los nanofluidos, se planteó la síntesis de carboximetil-escleroglucano con Nps de SiO2. Para esto, se adaptó una reacción de O-Alquilación para insertar un grupo hidrofílico (ácido monocloroacético - MCAA) en las subunidades de anhidroglucosa (AGU) del SG. De esta reacción se obtuvieron dos derivados de SG (denominados CMS) con diferentes grados de sustitución (0,22 para CMS-A y 0,44 para CMS-B), los cuales se obtuvieron al cambiar la cantidad de bicarbonato de sodio utilizado en la carboximetilación. Posteriormente, la formación del enlace amida entre la Nps de sílice aminofuncionalizadas y ambos carboximetil-escleroglucanos se realizó por medio una reacción de amidación usando una carbodiimida (DCC). Los materiales sintetizados fueron caracterizados mediante diferentes técnicas analíticas. Se evaluó la resistencia de los CMS y de los nanohíbridos (NH) a la degradación térmica, química, mecánica y microbiana para determinar la aplicabilidad de estos nuevos productos como aditivos EOR. Los resultados mostraron que los materiales tienen un comportamiento similar al SG. Sin embargo, en las pruebas de biodegradación del CMS sin biocida se observó una reducción de la viscosidad del biopolímero entre un 30 y un 38% (similar a los resultados de SG con biocida), frente a la del 92% del SG sin biocida. En las pruebas de biodegradación de NH se observó que la población de bacterias disminuyó, evidenciándose un control antimicrobiano y efecto de la viscosidad del biopolímero, incluso en ausencia de biocida. El principal objetivo de este estudio se basó en evaluar si las modificaciones físicas y químicas del sistema SG y nanopartículas mejoran la estabilidad del biopolímero en ambientes degradados (térmico, químico, mecánico y microbiano), lo que le permitirá conservar su poder viscosificante e incrementar la eficiencia de desplazamiento de petróleo a condiciones del yacimiento. Este estudio proporciona evidencia clara de nuevos nanohíbridos base celulosa y ofrece una comprensión de su resistencia a los efectos degradativos para procesos EOR. Finalmente, abre el panorama sobre el efecto antimicrobiano de la nanotecnología en la inyección de biopolímeros y EOR. (Tomado de la fuente)Biopolymers such as xanthan gum (XG), diutan gum (DG), hydroxyethylcellulose (HEC), carboxymethylcellulose (CMC), schizophyllan (SPG), and scleroglucan (SG) have emerged as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures. These biopolymers exhibit remarkable rheological properties and resistance to hydrolysis, pH, electrolytes, mechanical shearing, and temperature but are susceptible to oxidation and biological degradation. Fluid-fluid experimental tests were performed to evaluate the effect of the ionic strength, pH, temperature, and shear stress on the viscosity of the EOR-grade SG solutions. It was observed that the SG retained its rheological properties and stability under the evaluated conditions due to its semi-rigid triple helix structure and non-ionic nature. Additionally, the SG solutions exhibited excellent filterability. In the rock-fluid experiments performed at reservoir conditions, the SG increased the oil displacement efficiency between 18–35% compared to waterflooding. Finally, the experimental biodegradation study showed that SG is susceptible to microbial degradation, in the absence or presence of the biocide, because bacteria use the biopolymer as a carbon source. The effect of nanoparticles (Nps) of different sizes and natures was evaluated by adding them to the SG solutions, initially evaluating the change in the viscosity and subsequently its impact on the microbial degradation of the biopolymer. A two-step method was used to prepare the nanofluids (the Nps are first synthesized and then dispersed into the fluid). The two-step method is used in industries to produce nanofluids at a large scale due to its low production cost. However, it is challenging to avoid the agglomeration of NPs. For this reason, the effect of the four preparation methods and the nine nanoparticles (SiO2, Al2O3, and TiO2) on the viscosity and stability of the Scleroglucan (SG) was evaluated. The stability tests showed that the SG+Al2O3 and SG+TiO2 nanofluids are highly unstable but the SG+SiO2 nanofluids are stable (regardless of the preparation method). All nanofluids exhibited poor filterability. According to the performance of the nanofluids, the synthesis of carboxymethyl-scleroglucan-SiO2 NPs nanohybrids (NH) was proposed. An O-Alquilation reaction was adapted to insert a hydrophilic group (monochloroacetic acid - MCAA) into the SG's anhydroglucose subunits (AGUs). From this reaction, two carboxymethyl derivatives of SG (CMS) with different degrees of substitution (0,22 for CMS-A and 0,44 for CMS-B) were obtained by changing the amount of sodium bicarbonate used. Subsequently, the amide bond formation between the amino-functionalized nano-silica and both carboxymethyl-scleroglucans was mediated by a carbodiimide using an amidation reaction. The synthesized materials were characterized using different analytical techniques. The resistance of the CMS and Nanohybrids (NH) to thermal, chemical, mechanical, and microbial degradation was evaluated to determine the applicability of these new products as EOR additives. The results showed that the materials have a similar behavior to the SG. However, in biodegradation tests of the CMS without biocide, a reduction in the viscosity of the biopolymer between 30 and 38% (similar to SG with biocide results) was observed, compared to that of 92% of the SG without biocide. In the NH biodegradation tests, it was observed that the bacteria population decreased, evidencing an antimicrobial control and viscosity increase of the biopolymer, even in the absence of biocide. The main objective of this study was to evaluate if the physical and chemical modifications of the SG and nanoparticles system improve the biopolymer stability in degradative environments (thermal, chemical, mechanical, and microbial), which will allow it to retain its viscosifying power, and increase the oil displacement efficiency at reservoir conditions. This study provides clear evidence of novel cellulose-based nanohybrids and offers an understanding of their resistance to the degradative effects on EOR performance. Finally, it opens the landscape on the antimicrobial effects of nanotechnology in biopolymer flooding and EOR.Contrato FP44842-326-2017 suscrito entre Ecopetrol, Unalmed y Colciencias, entidades que aportaron los recursos requeridos para el desarrolloDoctoradoDoctor en IngenieríaSe sintetizaron, caracterizaron y validaron cuatro nuevos productos, los cuales presentan un avance significativo en cuanto a materiales ecológicos base celulosa para implementación en procesos EOR: -Dos nuevos biopolímeros EOR sintetizados mediante reacción de O-Alquilación del biopolímero escleroglucano (grado EOR), denominados CMS-A y CMS-B (los cuales poseen diferente grado de sustitución). -Dos nuevos nanohíbridos de biopolímero sintetizados mediante reacción de amidación de los CMS-A y CMS-B y nanopartículas de sílice funcionalizada con APTES 2%, denominados NH-A y NH-B, los cuales poseen alta resistencia a efectos degradativos térmicos, químicos, mecánicos y especialmente microbianos (que afectan al escleroglucano y en general a los biopolímeros por su naturaleza de fuente de carbono que sirve de nutrientes a las bacterias). Se demostró que los nuevos nanohíbridos EOR base celulosa presentan control microbiano debido al impedimento estérico que generan las nuevas estructuras base nanotecnología acopladas a la celulosa del biopolímero escleroglucano, abriendo una discusión a nivel mundial de mejoramiento y resistencia a degradación por bacterias de biopolímeros de la misma naturaleza probados en procesos EOR en campo (p.e. goma diutan -DG, hidroxietilcelulosa -HEC, carboximetilcelulosa -CMC, esquizofilan -SPG y el mismo escleroglucano -SG con otros grados de pureza).Recobro Mejorado de Petróleo Mediante el Uso de NanotecnologíaIngeniería Química E Ingeniería De Petróleos.Sede Medellín184 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaBiopolímerosNanopartículasReologíaViscosidadRecobro del petróleoCampos petrolíferosBiodegradaciónPetróleo - InvestigacionesPetróleo - PruebasRecobro mejoradoBiopolímeroEscleroglucanoNanofluidosNanohíbridosDegradación químicaDegradación microbianaDegradación térmicaDegradación mecánicaEnhanced Oil Recovery (EOR)BiopolymerScleroglucanNanofluidsNanohybridsThermal degradationChemical degradationMechanical degradationMicrobial degradationEvaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejoradoExperimental investigation of the interactions between the Scleroglucan, cross-linkers, and nanoparticles based on its rheological behavior and enhanced oil recovery performanceTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaCastro, R. H., Burgos, I., Corredor, L. M., Llanos, S., Franco, C. A., Cor-tés, F. B., & Romero Bohórquez, A. R. Carboxymethyl Scleroglu-can Synthesized via O-Alkylation Reaction with Different Degrees of Substitution: Rheology and Thermal Stability. Polymers. 2024. 16(2), 207Castro, R. H., Corredor, L. M., Burgos, I., Llanos, S., Franco, C. A., Cortés, F. B., Idrobo, E. A. & Romero Bohórquez, A. R. Synthesis and Characterization of New Nanohybrids Based on Carboxymethyl Scleroglucan and Silica Nanoparticles. Nanomaterials. 2024. 14(6), 499Rubén Castro, S.L., Jenny Rodríguez, Henderson Quintero, José Francisco Zapata Arango. Heavy Oil and High-Temperature Polymer EOR Applications. Ciencia, Tecnología y Futuro – CT&F, 2020(Edicion Especial Recobro Mejorado 2020): p. 12.DOI: 10.29047/01225383.258API, R., Recommended Practices for Evaluation of Polymers Used in enhanced oil recovery operations. June. 1: p. 1990.Rodríguez-Mateus, Z.-P., et al., Biodegradation and toxicity of scleroglucan for enhanced oil recovery. 2022. 12(1): p. 5-12.TM, N.J.N.A.o.C.E.I., Houston, Texas, Standard Test Method–Field Monitoring of Bacterial Growth in Oil and Gas Systems. 2004.Castro, R.H., Corredor, L.M., Llanos, S., Rodríguez, Z.P., Burgos, I., Niño, J.A., Idrobo, E. A., Romero Bohórquez, A. R., Zapata, K. & Cortés, F. B. Evaluation of the Thermal, Chemical, Mechanical, and Microbial Stability of New Nanohybrids based on Carboxymethyl-Scleroglucan and Silica Nanoparticles for EOR Applications. Nanomaterials. 2024. 14.Casadei, M.A., et al., Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. 2007. 67(3): p. 682-689.DOI: https://doi.org/10.1016/j.ejpb.2007.04.010.Jouenne, S.J.J.o.P.S. and Engineering, Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. 2020. 195: p. 107545.Castro, R.H. and Daza J.A., Tecnologías de inyección de polímero HPAM: review Colombia. 2022Franco, C.A., et al., Field Applications of nanotechnology in the oil and gas industry: Recent advances and perspectives. 2021. 35(23): p. 19266-19287.Corredor, L.M., et al., Oil Displacement Efficiency of a Silica/HPAM Nanohybrid. 2021. 35(16): p. 13077-13085.Castro, R.H., et al., Polymers for EOR Application in High Temperature and High Viscosity Oils: Rock–Fluid Behavior. Energies, 2020. 13(22): p. 5944.Bluhm, T.L., et al., Solid-state and solution conformation of scleroglucan. Carbohydrate Research, 1982. 100(1): p. 117-130.Farina, J., et al., Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001. 44(1): p. 41-50.Liang, K., et al., Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 2019. 4(6): p. 10620-10628.Seright, R.S., J.M. Seheult, and T. Talashek. Injectivity characteristics of EOR polymers. in SPE annual technical conference. 2008. Society of Petroleum Engineers.Zhang, G. and R. Seright. Hydrodynamic retention and rheology of EOR polymers in porous media. in SPE International Symposium on Oilfield Chemistry. 2015. Society of Petroleum Engineers.Fournier, R., J.-E. Tiehi, and A. Zaitoun. Laboratory Study of a New EOR-Grade Scleroglucan. in SPE EOR Conference at Oil and Gas West Asia. 2018. Society of Petroleum Engineers.Kozlowicz, B., et al. Qualification and Field Injection of Scleroglucan. in IOR 2019–20th European Symposium on Improved Oil Recovery. 2019.Kozlowicz, B., et al. Scleroglucan Polymer Stability: Thermal, Chemical, and Microbial. in SPE Improved Oil Recovery Conference. SPE, 2020. Society of Petroleum Engineers.Liu, Z., K. Zhang, and X.J.R.A. Cheng, Rheology of bacterial suspensions under confinement. 2019. 58: p. 439-451.Hatwalne, Y., et al., Rheology of active-particle suspensions. 2004. 92(11): p. 118101.Chui, J.Y., et al., Rheology of bacterial superfluids in viscous environments. 2021. 17(29): p. 7004-7013.Wilson, W.W., et al., Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. 2001. 43(3): p. 153-164.Survase, S.A., et al., Scleroglucan: fermentative production, downstream processing and applications. 2007. 45(2): p. 107-118.Pizarro, S., A.M. Ronco, and M.J.R.c.d.n. Gotteland, ß-glucanos:¿ qué tipos existen y cuáles son sus beneficios en la salud? 2014. 41(4): p. 439-446.Castillo, N.A., A.L. Valdez, and J.I.J.F.i.m. Fariña, Microbial production of scleroglucan and downstream processing. 2015. 6: p. 1106.Mamonova, I., et al., Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. 2015. 10(1-2): p. 128-134.Khalandi, B., et al., A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. 2017. 11(02): p. 70-76.Selvarajan, V., S. Obuobi, and P.L.R.J.F.i.c. Ee, Silica nanoparticles—a versatile tool for the treatment of bacterial infections. 2020. 8: p. 602.Wang, L., C. Hu, and L.J.I.j.o.n. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. 2017: p. 1227-1249.Chwalibog, A., et al., Visualization of interaction between inorganic nanoparticles and bacteria or fungi. 2010: p. 1085-1094.Linklater, D.P., et al., Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. 2020. 32(52): p. 2005679.Gutiérrez-Rojas, I., N. Moreno-Sarmiento, and D.J.R.I.d.M. Montoya, Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. 2015. 32(1): p. 1-12.Muñoz‐Elías, E.J. and J.D.J.C.m. McKinney, Carbon metabolism of intracellular bacteria. 2006. 8(1): p. 10-22.Pathak, V.M.J.B. and Bioprocessing, Review on the current status of polymer degradation: a microbial approach. 2017. 4(1): p. 1-31.Arora, A. and A.J.M.T.P. Mishra, Antibacterial polymers–a mini review. 2018. 5(9): p. 17156-17161.Raffa, P. and P. Druetta, Chemical Enhanced Oil Recovery: Advances in Polymer Flooding and Nanotechnology. 2019: Walter de Gruyter GmbH & Co KG.Gbadamosi, A.O., et al., An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 2019: p. 1-32.Shahzad Kamal, M. and A.S. Sultan, Enhanced Oil Recovery. Functional Polymers, 2019: p. 1045-1077.Sorbie, K.S., Polymer-improved oil recovery. 2013: Springer Science & Business Media.Abidin, A., T. Puspasari, and W. Nugroho, Polymers for enhanced oil recovery technology. Procedia Chemistry, 2012. 4: p. 11-16.Seright, R., Potential for polymer flooding reservoirs with viscous oils. SPE Reservoir Evaluation & Engineering, 2010. 13(04): p. 730-740.Seright, R.S., et al., Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. Spe Journal, 2010. 15(02): p. 341-348.Seright, R.S., J.M. Seheult, and T. Talashek. Injectivity characteristics of EOR polymers. in SPE annual technical conference and exhibition. 2008. Society of Petroleum Engineers.Sveistrup, M., et al., Viability of biopolymers for enhanced oil recovery. Journal of Dispersion Science and Technology, 2016. 37(8): p. 1160-1169.Acharya, K., C. Schulman, and M.H. Young, Physiological response of daphnia magna to linear anionic polyacrylamide: ecological implications for receiving waters. Water, Air, & Soil Pollution, 2010. 212(1-4): p. 309-317.King, D.J. and R.R. Noss, Toxicity of polyacrylamide and acrylamide monomer. Reviews on environmental health, 1989. 8(1-4): p. 3-16.Walker, C., et al., Principles of ecotoxicology Taylor and Francis. Nueva York, 2001: p. 163-78.Liang, K., et al., Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 2019. 4(6): p. 10620-10628.Ali, J.A., et al., Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egyptian journal of petroleum, 2018.Corredor-Rojas, L.M., et al., Rheological behavior of surface modified silica nanoparticles dispersed in Partially Hydrolyzed Polyacrylamide and Xanthan Gum solutions: Experimental measurements, mechanistic understanding, and model development. Energy & Fuels, 2018.Bera, A., et al., Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020: p. 124833.Castro-Garcia, R.-H., et al., Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(3): p. 71-90.Manrique, E., M. Ahmadi, and S. Samani, Historical and recent observations in polymer floods: an update review. CT&F-Ciencia, Tecnología y Futuro, 2017. 6(5): p. 17-48.Pu, W., et al., A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. Journal of Industrial and Engineering Chemistry, 2018. 61: p. 1-11.Al-Saleh, M.A., et al., Biopolymer Solution Evaluation Methodology: Thermal and Mechanical Assessment for Enhanced Oil Recovery with High Salinity Brines. Processes, 2019. 7(6): p. 339.Rivenq, R., A. Donche, and C. Nolk, Improved scleroglucan for polymer flooding under harsh reservoir conditions. SPE reservoir engineering, 1992. 7(01): p. 15-20.Kalpakci, B., et al. Thermal stability of scleroglucan at realistic reservoir conditions. in SPE/DOE Enhanced Oil Recovery Symposium. 1990. Society of Petroleum Engineers.Viñarta, S.C., et al., Sclerotium rolfsii scleroglucan: the promising behavior of a natural polysaccharide as a drug delivery vehicle, suspension stabilizer and emulsifier. 2007. 41(3): p. 314-323.Bakhshi, M., et al., Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer. Korean Journal of Chemical Engineering, 2017. 34(3): p. 903-912Schmid, J., V. Meyer, and V. Sieber, Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Applied microbiology and biotechnology, 2011. 91(4): p. 937-947.Rivenq, R., A. Donche, and C.J.S.r.e. Nolk, Improved scleroglucan for polymer flooding under harsh reservoir conditions. 1992. 7(01): p. 15-20.Seright, R.S., et al., Stability and behavior in carbonate cores for new enhanced-oil-recovery polymers at elevated temperatures in hard saline brines. 2021. 24(01): p. 1-18.Jensen, T., et al. Chemical EOR under harsh conditions: Scleroglucan as a viable commercial solution. in SPE Improved Oil Recovery Conference. 2018. OnePetro.Carreau, P.J., Rheological equations from molecular network theories. Transactions of the Society of Rheology, 1972. 16(1): p. 99-127.Farina, J., et al., Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001. 44(1): p. 41-50.Jones, O.G. and D.J. McClements, Functional biopolymer particles: design, fabrication, and applications. Comprehensive Reviews in Food Science and Food Safety, 2010. 9(4): p. 374-397.Sheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.Survase, S.A., et al., Scleroglucan: fermentative production, downstream processing and applications. 2007. 45(2): p. 107-118.Valeur, E. and M.J.C.S.R. Bradley, Amide bond formation: beyond the myth of coupling reagents. 2009. 38(2): p. 606-631.DOI: https://doi.org/10.1039/B701677H.Abraham, T.W. and E.S. Sumner. Method for solubilizing biopolymer solids for enhanced oil recovery applications. 2019, Google Patents.Convocatoria No. 758-2016 Doctorado Nacional en EmpresaMinisterio de Ciencia Tecnología e Innovación- MincienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85890/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL80170660.2024.pdf80170660.2024.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf7048875https://repositorio.unal.edu.co/bitstream/unal/85890/2/80170660.2024.pdf169a8636735f6970c831aff180413a5fMD52THUMBNAIL80170660.2024.pdf.jpg80170660.2024.pdf.jpgGenerated Thumbnailimage/jpeg6250https://repositorio.unal.edu.co/bitstream/unal/85890/3/80170660.2024.pdf.jpgedd71f8edc2ffb833da234f3378f7683MD53unal/85890oai:repositorio.unal.edu.co:unal/858902024-04-09 23:05:30.006Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=