Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations

fotografía a color, gráficas, ilustraciones, tablas

Autores:
Gallego Garcés, Andrés Junior
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82251
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82251
https://repositorio.unal.edu.co/
Palabra clave:
Detectores de metales
Detectores
Metal detectors
Detectors
Singularity Expansion Method
Cauchy
Singular Value Decomposition
Linear Prediction Matrix
Vector Fitting
Ground Penetrating Radar
Improvised Explosive Device
Landmine
ARM
processor
Complex Natural Resonances
Poles
Signal Processing
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_f04e7f2cd6dcb5008f955cd7939d529b
oai_identifier_str oai:repositorio.unal.edu.co:unal/82251
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
dc.title.translated.spa.fl_str_mv Técnicas basadas en hardware de extracción de resonancias naturales complejas para operaciones de radar de penetración terrestre
title Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
spellingShingle Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
Detectores de metales
Detectores
Metal detectors
Detectors
Singularity Expansion Method
Cauchy
Singular Value Decomposition
Linear Prediction Matrix
Vector Fitting
Ground Penetrating Radar
Improvised Explosive Device
Landmine
ARM
processor
Complex Natural Resonances
Poles
Signal Processing
title_short Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
title_full Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
title_fullStr Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
title_full_unstemmed Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
title_sort Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations
dc.creator.fl_str_mv Gallego Garcés, Andrés Junior
dc.contributor.advisor.none.fl_str_mv Román Campos, Francisco
dc.contributor.author.none.fl_str_mv Gallego Garcés, Andrés Junior
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Emc-Un
dc.subject.lemb.spa.fl_str_mv Detectores de metales
Detectores
topic Detectores de metales
Detectores
Metal detectors
Detectors
Singularity Expansion Method
Cauchy
Singular Value Decomposition
Linear Prediction Matrix
Vector Fitting
Ground Penetrating Radar
Improvised Explosive Device
Landmine
ARM
processor
Complex Natural Resonances
Poles
Signal Processing
dc.subject.lemb.eng.fl_str_mv Metal detectors
Detectors
dc.subject.proposal.eng.fl_str_mv Singularity Expansion Method
Cauchy
Singular Value Decomposition
Linear Prediction Matrix
Vector Fitting
Ground Penetrating Radar
Improvised Explosive Device
Landmine
ARM
processor
Complex Natural Resonances
Poles
Signal Processing
description fotografía a color, gráficas, ilustraciones, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-05T16:10:27Z
dc.date.available.none.fl_str_mv 2022-09-05T16:10:27Z
dc.date.issued.none.fl_str_mv 2022-08-19
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82251
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82251
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv H. M. Jol, Ground penetrating radar theory and applications. elsevier, 2008.
R. Persico, Introduction to ground penetrating radar: inverse scattering and data processing. John Wiley & Sons, 2014.
RFSpace. TSA600 Ultra-Wideband PCB Tapered Slot Antenna. (2022, Feb 23). [Online]. Available: http://rfspace.com/RFSPACE/Antennasf iles/TSA600.pdf
S. Lambot, E. C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, “Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties,” IEEE transactions on geoscience and remote sensing, vol. 42, no. 11, pp. 2555–2568, 2004.
S. A. Guti´errez Duarte, “Application of time-frequency transformations in polarimetric ultra-wideband mimo-gpr signals for detection of colombian improvised explosive devices,” Departamento de Ingenier´ıa El´ectrica y Electr´onica, 2019.
A. Gallego, F. Roman, E. Neira, F. Vega, and C. Kasmi, “Linear prediction matrix segmentation for matrix pencil method in backscattering signal scenarios,” in 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2021, pp. 1–3.
D. Chaparro-Arce, A. Gallego, F. Albarracin-Vargas, C. Gutierrez, F. Vega, and C. Pedraza, “Matrix pencil method applied to the compression of audio data in naval operations,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 254–256.
A. Rangel, A. Gallego, F. Vega, J. Becerra, and R. Campos, “Parametric macromodeling of the coupling between two nearby parabolic antennas using the cauchy method,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 64–65.
C. E. Baum, A. E. Hopper, and H. N. Hambric, Unexploded Ordnance(UXO): the problem. SUMMA, 1999.
C. N. de Memoria Hist´orica y Fundaci´on Prolongar, La guerra escondida. Minas antipersonal y remanentes de explosivos en Colombia. Bogot´a, Colombia: CNMH, 2017.
“Estad´ısticas de asistencia integral a las v´ıctimas de map y muse,” Jan 2022. [Online]. Available: http://www.accioncontraminas.gov.co/Estadisticas/estadisticas-de-victimas
K. M. Lowe, L. A. Wallis, C. Pardoe, B. Marwick, C. Clarkson, T. Manne, M. A. Smith, and R. Fullagar, “Ground-penetrating radar and burial practices in western a rnhem l and, a ustralia,” Archaeology in Oceania, vol. 49, no. 3, pp. 148–157, 2014.
A. Benedetto and S. Pensa, “Indirect diagnosis of pavement structural damages using surface gpr reflection techniques,” Journal of Applied geophysics, vol. 62, no. 2, pp. 107–123, 2007.
M. Kuloglu and C.-C. Chen, “Ground penetrating radar for tunnel detection,” in 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010, pp. 4314–4317.
M. Manteghi, D. B. Cooper, and P. P. Vlachos, “Application of singularity expansion method for monitoring the deployment of arterial stents,” Microwave and Optical Technology Letters, vol. 54, no. 10, pp. 2241–2246, 2012.
T. Kelly, M. Angel, D. O’Connor, C. Huff, L. Morris, and G. Wach, “A novel approach to 3d modelling ground-penetrating radar (gpr) data – a case study of a cemetery and applications for criminal investigation,” Forensic Science International, vol. 325, p. 110882, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0379073821002024
M. Sato, J. Fujiwara, X. Feng, Z.-S. Zhou, and T. Kobayashi, “Development of a hand-held gpr md sensor system (alis),” in Detection and Remediation Technologies for Mines and Minelike Targets X, vol. 5794. SPIE, 2005, pp. 1000–1007.
V. Kovalenko, Advanced GPR data processing algorithms for detection of anti-personnel landmines. TU Delft, Delft University of Technology, 2006.
C. Rappaport, M. El-Shenawee, and H. Zhan, “Suppressing gpr clutter from randomly rough ground surfaces to enhance nonmetallic mine detection,” Subsurface Sensing Technologies and Applications, vol. 4, no. 4, pp. 311–326, 2003.
J. Sachs, Handbook of ultra-wideband short-range sensing: theory, sensors, applications. John Wiley & Sons, 2013.
L. Van Kempen and H. Sahli, “Signal processing techniques for clutter parameters estimation and clutter removal in gpr data for landmine detection,” in Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563). IEEE, 2001, pp. 158–161.
D. Daniels, “Ground penetrating radar, ser,” IEE Radar, Sonar, Navigation and Avionics Series. London: The Institution of Electrical Engineers, vol. 15, 2004.
S. Lambot, E. Slob, I. Van Den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain,” Water Resources Research, vol. 40, no. 4, 2004.
S. Lambot, E. Slob, I. Van den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Gpr design and modeling for identifying the shallow subsurface dielectric properties,” in Proceedings of the 2nd International Workshop onAdvanced Ground Penetrating Radar, 2003. IEEE, 2003, pp. 130–135.
A. Gallego, E. Pineda, S. Gutierrez, and F. Rom´an, “Complex natural resonances extraction methods for ground penetrating radar operations,” Digital Signal Processing, 2021, manuscript Under Review.
E. Kennaugh and D. Moffatt, “Transient and impulse response approximations,” Proceedings of the IEEE, vol. 53, no. 8, pp. 893–901, 1965.
R. K. Mains, Complex natural resonances of an object in detection and discrimination. ElectroScience Laboratory, Department of Electrical Engineering, The Ohio . . . , 1974, vol. 74, no. 282.
C. E. Baum, “On the singularity expansion method for the solution of electromagnetic interaction problems,” DTIC Document, Tech. Rep., 1971.
A. Ramm, “Theoretical and practical aspects of singularity and eigenmode expansion methods,” IEEE Transactions on Antennas and Propagation, vol. 28, no. 6, pp. 897–901, 1980.
F. Tesche, “On the analysis of scattering and antenna problems using the singularity expansion technique,” IEEE Transactions on Antennas and Propagation, vol. 21, no. 1, pp. 53–62, 1973.
C. Baum, “On the use of contour integration for finding poles, zeros, saddles and other function values in the singularity expansion method,” Mathematics Notes, 1974.
J. M. Myers, S. S. Sandler, and T. T. Wu, “Electromagnetic resonances of a straight wire,” IEEE transactions on Antennas and Propagation, vol. 59, no. 1, pp. 129–134, 2010.
C. Bouwkamp, “Hall´en’s theory for a straight, perfectly conducting wire, used as a transmitting or receiving aerial,” Physica, vol. 9, no. 7, pp. 609–631, 1942.
C. E. Baum, “The singularity expansion method: Background and developments,” Electromagnetics, vol. 1, no. 4, pp. 351–360, 1981.
C. Baum, E. Rothwell, K.-M. Chen, and D. Nyquist, “The singularity expansion method and its application to target\nidentification,” Proceedings of the IEEE, vol. 79, no. 10, pp. 1481–1492, 1991.
C. L. Dolph, “the Singularity Expansion Method and Complex Singularities of Exterior Scalar and Vector Scattering in Acoustics & Electromagnetic Theory,” p. 77, 1979.
W. Lee, “Identification of a target using its natural poles using both frequency and time domain response,” 2013.
Y. Hua and T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, 1990.
M. A. Rahman and K. B. Yu, “Total least squares approach for frequency estimation using linear prediction,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1440–1454, 1987.
W. Lee, T. K. Sarkar, H. Moon, and M. Salazar-Palma, “Computation of the natural poles of an object in the frequency domain using the cauchy method,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1137–1140, 2012.
L. C. Chan, Subsurface electromagnetic target characterization and identification. The Ohio State University, 1979.
J. Young, L. J. Peters, and C.-c. Chen, Chapter 5: Characteristic resonance identification techniques for buried targets seen by Ground Penetrating Radar. SUMMA, 1999.
D. V. Giri and F. M. Tesche, “An overview of the natural frequencies of a straight wire by various methods,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5859–5866, 2012.
R. Prony, “Essai experimental et analytique sur les lois de la dilatabilite des fluides elastiques et sur celles de la force expansive de la vapeur de leau et de la vapeur de lalkool, r differentes temperatures,” Journal Polytechnique ou Bulletin du Travail fait r Lecole Centrale des Travaux Publics, Paris, Premier Cahier, pp. 24–76, 1795.
D. Tufts and R. Kumaresan, “Singular value decomposition and improved frequency estimation using linear prediction,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 4, pp. 671–675, 1982
J. Makhoul, “Linear Prediction: A Tutorial Review,” Proceedings of the IEEE, vol. 63, no. 4, pp. 561–580, 1975.
G. H. Golub and C. F. Van Loan, “An Analysis of the Total Least Squares Problem,” pp. 883–893, 1980.
T. K. Sarkar, F. Hu, Y. Hua, and M. Wicks, “A real-time signal processing technique for approximating a function by a sum of complex exponentials utilizing the matrix-pencil approach,” Digital Signal Processing, vol. 4, no. 2, pp. 127–140, 1994.
T. K. Sarkar and O. Pereira, “Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.
A. Caboussat and G. K. Miers, “Numerical approximation of electromagnetic signals arising in the evaluation of geological formations,” 2009.
D. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, “Locating ships using time reversal and matrix pencil method by their underwater acoustic signals,” Sensors, vol. 21, no. 15, p. 5065, 2021.
T. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.
A.-L. Cauchy, “Sur la formule de Lagrange relative `a l’interpolation,” in Cours d’analyse de l’ ´ Ecole Royale Polytechnique:. Cambridge: Cambridge University Press, 1821, pp. 525–529. [Online]. Available: https://www.cambridge.org/core/books/cours-danalysede- lecole-royale-polytechnique/ sur-la-formule-de-lagrange-relative-a-linterpolation/ BBE87600C81E0072348EA4676F1551CE
J. Yang and T. K. Sarkar, “Interpolation/extrapolation of radar cross-section (RCS) data in the frequency domain using the cauchy method,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 10, pp. 2844–2851, 2007.
A. Gallego, F. Vega, and A. Rangel, “Hybrid method for the estimation of complex natural resonances using cauchy and vector fitting,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 69–71.
A. P. Duffy, A. J. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S. Woolfson, “Feature selective validation (fsv) for validation of computational electromagnetics (cem). part i-the fsv method,” IEEE transactions on electromagnetic compatibility, vol. 48, no. 3, pp. 449–459, 2006.
B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Transactions on power delivery, vol. 14, no. 3, pp. 1052–1061, 1999.
P. A. Businger and G. H. Golub, “Algorithm 358: singular value decomposition of a complex matrix [f1, 4, 5],” Communications of the ACM, vol. 12, no. 10, pp. 564–565, 1969.
D. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, “Locating ships using time reversal and matrix pencil method by their underwater acoustic signals,” Sensors, vol. 21, no. 15, p. 5065, 2021.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82251/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82251/4/1023887295.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82251/5/1023887295.2022.pdf.jpg
bitstream.checksum.fl_str_mv b577153cc0e11f0aeb5fc5005dc82d8a
a583460b0bd91cb22ad8c637d0ffd6fd
6f16d771df514f8ca90fc4b943afe418
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089385574924288
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Román Campos, Franciscof9ba3a73d11c658bc3c7499260984624Gallego Garcés, Andrés Juniorf54c8e09f5f59f95be95095968978121Grupo de Investigación Emc-Un2022-09-05T16:10:27Z2022-09-05T16:10:27Z2022-08-19https://repositorio.unal.edu.co/handle/unal/82251Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografía a color, gráficas, ilustraciones, tablasHere, a contribution to the Improvised Explosive Devices remote detection in Colombia in terms of Ground Penetrating Radar signal analysis is presented. The Complex Natural Resonances Extraction Methods for characterizing buried objects are compared, and from this evaluation and analysis, a new method is proposed with an increased accuracy and hardware suitability factor. Finally, a hardware implementation of this method is tested in an ARM processor.En este libro se presenta una contribución a la detección remota de minas antipersonales en Colombia, en términos del análisis de señales de radar de penetración terrestre. Los métodos de extracción de resonancias naturales complejas para la caracterización de objetos enterrados son comparados, y a partir de esta evaluación y análisis, un nuevo método que muestra un aumento en la presición y en la implementabilidad en hardware es propuesto. Finalmente, este método es implementado en un procesador ARM.Esta investigación fue financiada parcialmente por el crédito condonable de Minciencias 727 de 2015.DoctoradoDoctor en Ingenieríaxi, 78 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáHardware-based complex natural resonances extraction techniques for portable ground penetrating radar operationsTécnicas basadas en hardware de extracción de resonancias naturales complejas para operaciones de radar de penetración terrestreTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaH. M. Jol, Ground penetrating radar theory and applications. elsevier, 2008.R. Persico, Introduction to ground penetrating radar: inverse scattering and data processing. John Wiley & Sons, 2014.RFSpace. TSA600 Ultra-Wideband PCB Tapered Slot Antenna. (2022, Feb 23). [Online]. Available: http://rfspace.com/RFSPACE/Antennasf iles/TSA600.pdfS. Lambot, E. C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, “Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties,” IEEE transactions on geoscience and remote sensing, vol. 42, no. 11, pp. 2555–2568, 2004.S. A. Guti´errez Duarte, “Application of time-frequency transformations in polarimetric ultra-wideband mimo-gpr signals for detection of colombian improvised explosive devices,” Departamento de Ingenier´ıa El´ectrica y Electr´onica, 2019.A. Gallego, F. Roman, E. Neira, F. Vega, and C. Kasmi, “Linear prediction matrix segmentation for matrix pencil method in backscattering signal scenarios,” in 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2021, pp. 1–3.D. Chaparro-Arce, A. Gallego, F. Albarracin-Vargas, C. Gutierrez, F. Vega, and C. Pedraza, “Matrix pencil method applied to the compression of audio data in naval operations,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 254–256.A. Rangel, A. Gallego, F. Vega, J. Becerra, and R. Campos, “Parametric macromodeling of the coupling between two nearby parabolic antennas using the cauchy method,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 64–65.C. E. Baum, A. E. Hopper, and H. N. Hambric, Unexploded Ordnance(UXO): the problem. SUMMA, 1999.C. N. de Memoria Hist´orica y Fundaci´on Prolongar, La guerra escondida. Minas antipersonal y remanentes de explosivos en Colombia. Bogot´a, Colombia: CNMH, 2017.“Estad´ısticas de asistencia integral a las v´ıctimas de map y muse,” Jan 2022. [Online]. Available: http://www.accioncontraminas.gov.co/Estadisticas/estadisticas-de-victimasK. M. Lowe, L. A. Wallis, C. Pardoe, B. Marwick, C. Clarkson, T. Manne, M. A. Smith, and R. Fullagar, “Ground-penetrating radar and burial practices in western a rnhem l and, a ustralia,” Archaeology in Oceania, vol. 49, no. 3, pp. 148–157, 2014.A. Benedetto and S. Pensa, “Indirect diagnosis of pavement structural damages using surface gpr reflection techniques,” Journal of Applied geophysics, vol. 62, no. 2, pp. 107–123, 2007.M. Kuloglu and C.-C. Chen, “Ground penetrating radar for tunnel detection,” in 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010, pp. 4314–4317.M. Manteghi, D. B. Cooper, and P. P. Vlachos, “Application of singularity expansion method for monitoring the deployment of arterial stents,” Microwave and Optical Technology Letters, vol. 54, no. 10, pp. 2241–2246, 2012.T. Kelly, M. Angel, D. O’Connor, C. Huff, L. Morris, and G. Wach, “A novel approach to 3d modelling ground-penetrating radar (gpr) data – a case study of a cemetery and applications for criminal investigation,” Forensic Science International, vol. 325, p. 110882, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0379073821002024M. Sato, J. Fujiwara, X. Feng, Z.-S. Zhou, and T. Kobayashi, “Development of a hand-held gpr md sensor system (alis),” in Detection and Remediation Technologies for Mines and Minelike Targets X, vol. 5794. SPIE, 2005, pp. 1000–1007.V. Kovalenko, Advanced GPR data processing algorithms for detection of anti-personnel landmines. TU Delft, Delft University of Technology, 2006.C. Rappaport, M. El-Shenawee, and H. Zhan, “Suppressing gpr clutter from randomly rough ground surfaces to enhance nonmetallic mine detection,” Subsurface Sensing Technologies and Applications, vol. 4, no. 4, pp. 311–326, 2003.J. Sachs, Handbook of ultra-wideband short-range sensing: theory, sensors, applications. John Wiley & Sons, 2013.L. Van Kempen and H. Sahli, “Signal processing techniques for clutter parameters estimation and clutter removal in gpr data for landmine detection,” in Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563). IEEE, 2001, pp. 158–161.D. Daniels, “Ground penetrating radar, ser,” IEE Radar, Sonar, Navigation and Avionics Series. London: The Institution of Electrical Engineers, vol. 15, 2004.S. Lambot, E. Slob, I. Van Den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain,” Water Resources Research, vol. 40, no. 4, 2004.S. Lambot, E. Slob, I. Van den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Gpr design and modeling for identifying the shallow subsurface dielectric properties,” in Proceedings of the 2nd International Workshop onAdvanced Ground Penetrating Radar, 2003. IEEE, 2003, pp. 130–135.A. Gallego, E. Pineda, S. Gutierrez, and F. Rom´an, “Complex natural resonances extraction methods for ground penetrating radar operations,” Digital Signal Processing, 2021, manuscript Under Review.E. Kennaugh and D. Moffatt, “Transient and impulse response approximations,” Proceedings of the IEEE, vol. 53, no. 8, pp. 893–901, 1965.R. K. Mains, Complex natural resonances of an object in detection and discrimination. ElectroScience Laboratory, Department of Electrical Engineering, The Ohio . . . , 1974, vol. 74, no. 282.C. E. Baum, “On the singularity expansion method for the solution of electromagnetic interaction problems,” DTIC Document, Tech. Rep., 1971.A. Ramm, “Theoretical and practical aspects of singularity and eigenmode expansion methods,” IEEE Transactions on Antennas and Propagation, vol. 28, no. 6, pp. 897–901, 1980.F. Tesche, “On the analysis of scattering and antenna problems using the singularity expansion technique,” IEEE Transactions on Antennas and Propagation, vol. 21, no. 1, pp. 53–62, 1973.C. Baum, “On the use of contour integration for finding poles, zeros, saddles and other function values in the singularity expansion method,” Mathematics Notes, 1974.J. M. Myers, S. S. Sandler, and T. T. Wu, “Electromagnetic resonances of a straight wire,” IEEE transactions on Antennas and Propagation, vol. 59, no. 1, pp. 129–134, 2010.C. Bouwkamp, “Hall´en’s theory for a straight, perfectly conducting wire, used as a transmitting or receiving aerial,” Physica, vol. 9, no. 7, pp. 609–631, 1942.C. E. Baum, “The singularity expansion method: Background and developments,” Electromagnetics, vol. 1, no. 4, pp. 351–360, 1981.C. Baum, E. Rothwell, K.-M. Chen, and D. Nyquist, “The singularity expansion method and its application to target\nidentification,” Proceedings of the IEEE, vol. 79, no. 10, pp. 1481–1492, 1991.C. L. Dolph, “the Singularity Expansion Method and Complex Singularities of Exterior Scalar and Vector Scattering in Acoustics & Electromagnetic Theory,” p. 77, 1979.W. Lee, “Identification of a target using its natural poles using both frequency and time domain response,” 2013.Y. Hua and T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, 1990.M. A. Rahman and K. B. Yu, “Total least squares approach for frequency estimation using linear prediction,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1440–1454, 1987.W. Lee, T. K. Sarkar, H. Moon, and M. Salazar-Palma, “Computation of the natural poles of an object in the frequency domain using the cauchy method,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1137–1140, 2012.L. C. Chan, Subsurface electromagnetic target characterization and identification. The Ohio State University, 1979.J. Young, L. J. Peters, and C.-c. Chen, Chapter 5: Characteristic resonance identification techniques for buried targets seen by Ground Penetrating Radar. SUMMA, 1999.D. V. Giri and F. M. Tesche, “An overview of the natural frequencies of a straight wire by various methods,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5859–5866, 2012.R. Prony, “Essai experimental et analytique sur les lois de la dilatabilite des fluides elastiques et sur celles de la force expansive de la vapeur de leau et de la vapeur de lalkool, r differentes temperatures,” Journal Polytechnique ou Bulletin du Travail fait r Lecole Centrale des Travaux Publics, Paris, Premier Cahier, pp. 24–76, 1795.D. Tufts and R. Kumaresan, “Singular value decomposition and improved frequency estimation using linear prediction,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 4, pp. 671–675, 1982J. Makhoul, “Linear Prediction: A Tutorial Review,” Proceedings of the IEEE, vol. 63, no. 4, pp. 561–580, 1975.G. H. Golub and C. F. Van Loan, “An Analysis of the Total Least Squares Problem,” pp. 883–893, 1980.T. K. Sarkar, F. Hu, Y. Hua, and M. Wicks, “A real-time signal processing technique for approximating a function by a sum of complex exponentials utilizing the matrix-pencil approach,” Digital Signal Processing, vol. 4, no. 2, pp. 127–140, 1994.T. K. Sarkar and O. Pereira, “Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.A. Caboussat and G. K. Miers, “Numerical approximation of electromagnetic signals arising in the evaluation of geological formations,” 2009.D. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, “Locating ships using time reversal and matrix pencil method by their underwater acoustic signals,” Sensors, vol. 21, no. 15, p. 5065, 2021.T. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.A.-L. Cauchy, “Sur la formule de Lagrange relative `a l’interpolation,” in Cours d’analyse de l’ ´ Ecole Royale Polytechnique:. Cambridge: Cambridge University Press, 1821, pp. 525–529. [Online]. Available: https://www.cambridge.org/core/books/cours-danalysede- lecole-royale-polytechnique/ sur-la-formule-de-lagrange-relative-a-linterpolation/ BBE87600C81E0072348EA4676F1551CEJ. Yang and T. K. Sarkar, “Interpolation/extrapolation of radar cross-section (RCS) data in the frequency domain using the cauchy method,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 10, pp. 2844–2851, 2007.A. Gallego, F. Vega, and A. Rangel, “Hybrid method for the estimation of complex natural resonances using cauchy and vector fitting,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 69–71.A. P. Duffy, A. J. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S. Woolfson, “Feature selective validation (fsv) for validation of computational electromagnetics (cem). part i-the fsv method,” IEEE transactions on electromagnetic compatibility, vol. 48, no. 3, pp. 449–459, 2006.B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Transactions on power delivery, vol. 14, no. 3, pp. 1052–1061, 1999.P. A. Businger and G. H. Golub, “Algorithm 358: singular value decomposition of a complex matrix [f1, 4, 5],” Communications of the ACM, vol. 12, no. 10, pp. 564–565, 1969.D. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, “Locating ships using time reversal and matrix pencil method by their underwater acoustic signals,” Sensors, vol. 21, no. 15, p. 5065, 2021.Detectores de metalesDetectoresMetal detectorsDetectorsSingularity Expansion MethodCauchySingular Value DecompositionLinear Prediction MatrixVector FittingGround Penetrating RadarImprovised Explosive DeviceLandmineARMprocessorComplex Natural ResonancesPolesSignal ProcessingInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82251/3/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD53ORIGINAL1023887295.2022.pdf1023887295.2022.pdfTesis de Doctorado en Ingeniería Eléctricaapplication/pdf30029976https://repositorio.unal.edu.co/bitstream/unal/82251/4/1023887295.2022.pdfa583460b0bd91cb22ad8c637d0ffd6fdMD54THUMBNAIL1023887295.2022.pdf.jpg1023887295.2022.pdf.jpgGenerated Thumbnailimage/jpeg4878https://repositorio.unal.edu.co/bitstream/unal/82251/5/1023887295.2022.pdf.jpg6f16d771df514f8ca90fc4b943afe418MD55unal/82251oai:repositorio.unal.edu.co:unal/822512024-08-11 01:02:35.251Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==