Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data

Ilustraciones

Autores:
Gómez Correa, Luisa Fernanda
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83020
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83020
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
Árboles maderables
Área de copa
Densidad de la madera
Disponibilidad de luz
Drones
Estrategias de historia de vida
Sobrevivencia arbórea
Tasas de crecimiento
Tamaño del árbol
Crown area
Drones
Growth rates
Life-history strategies
Light availability
Tree size
Tree survival
Wood density
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_f03d45cc16feff6292b02dcf07ee6066
oai_identifier_str oai:repositorio.unal.edu.co:unal/83020
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
dc.title.translated.spa.fl_str_mv Influencia de los factores de individuo y especie en la mortalidad de los árboles de dosel en un bosque de la Amazonía: vinculación de sensores remotos y datos terrestres
title Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
spellingShingle Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
570 - Biología::577 - Ecología
Árboles maderables
Área de copa
Densidad de la madera
Disponibilidad de luz
Drones
Estrategias de historia de vida
Sobrevivencia arbórea
Tasas de crecimiento
Tamaño del árbol
Crown area
Drones
Growth rates
Life-history strategies
Light availability
Tree size
Tree survival
Wood density
title_short Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
title_full Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
title_fullStr Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
title_full_unstemmed Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
title_sort Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
dc.creator.fl_str_mv Gómez Correa, Luisa Fernanda
dc.contributor.advisor.none.fl_str_mv Duque Montoya, Álvaro Javier
Zuleta Zapata, Daniel Felipe
dc.contributor.author.none.fl_str_mv Gómez Correa, Luisa Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Conservación, Uso y Biodiversidad
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
topic 570 - Biología::577 - Ecología
Árboles maderables
Área de copa
Densidad de la madera
Disponibilidad de luz
Drones
Estrategias de historia de vida
Sobrevivencia arbórea
Tasas de crecimiento
Tamaño del árbol
Crown area
Drones
Growth rates
Life-history strategies
Light availability
Tree size
Tree survival
Wood density
dc.subject.lemb.none.fl_str_mv Árboles maderables
dc.subject.proposal.spa.fl_str_mv Área de copa
Densidad de la madera
Disponibilidad de luz
Drones
Estrategias de historia de vida
Sobrevivencia arbórea
Tasas de crecimiento
Tamaño del árbol
dc.subject.proposal.eng.fl_str_mv Crown area
Drones
Growth rates
Life-history strategies
Light availability
Tree size
Tree survival
Wood density
description Ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-03
dc.date.accessioned.none.fl_str_mv 2023-01-18T21:10:45Z
dc.date.available.none.fl_str_mv 2023-01-18T21:10:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83020
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83020
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change 9: 384–388.
Araujo RF, Chambers JQ, Celes CHS, Muller-Landau HC, Santos APF dos, Emmert F, Ribeiro GHPM, Gimenez BO, Lima AJN, Campos MAA, et al. 2020. Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics (J Müllerová, Ed.). PLoS ONE 15: e0243079.
Araujo RF, Grubinger S, Celes CHS, Negrón-Juárez RI, Garcia M, Dandois JP, Muller-Landau HC. 2021. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50\,ha plot. Biogeosciences 18: 6517–6531.
Arellano G, Medina NG, Tan S, Mohamad M, Davies SJ. 2019. Crown damage and the mortality of tropical trees. New Phytologist 221: 169–179.
Augspurger CK, Kelly CK. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211–217.
Barton K. 2022. MuMIn: Multi-Model Inference.
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48.
Bauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, Bentley LP, Rifai SW, Aguirre-Gutiérrez J, Menor IO, Phillips OL, et al. 2022. Tropical tree mortality has increased with rising atmospheric water stress. Nature.
Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: 15139.
Bin Y, Li Y, Russo SE, Cao H, Ni Y, Ye W, Lian J. 2022. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Functional Ecology 36: 1010–1022.
Bohlman SA, O’Brien S. 2006. Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. Journal of Tropical Ecology 22: 123–136.
Burnham KP, Anderson DR. 2002. Model selection and multi- model inference. A practical information-theoretic approach (KP Burnham and DR Anderson, Eds.). New York, NY: Springer New York, NY.
Camac JS, Condit R, FitzJohn RG, McCalman L, Steinberg D, Westoby M, Wright SJ, Falster DS. 2018. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proceedings of the National Academy of Sciences 115: 12459–12464.
Chamorro C. 1989. Biología de los suelos del Parque Nacional Natural Amacayacu y zonas adyacentes (Amazonas, Colombia). Colombia Geográfica 15: 45–63.
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.
Chave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16: 2356–2367.
Cifuentes L, Moreno F. 2022. Trait coordination at leaf level explains the resistance to excess light stress in shade-tolerant tropical tree species (M Mencuccini, Ed.). Tree Physiology 42: 1325–1336.
Clark DA, Clark DB. 1992. Life History Diversity of Canopy and Emergent Trees in a Neotropical Rain Forest. Ecological Monographs 62: 315–344.
Condit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP, Foster RB. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20: 51–72.
Condit R, Pérez R, Lao S, Aguilar S, Hubbell SP. 2017. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. Forest Ecosystems 4: 17.
Cushman KC, Bunyavejchewin S, Cárdenas D, Condit R, Davies SJ, Duque Á, Hubbell SP, Kiratiprayoon S, Lum SKY, Muller‐Landau HC. 2021. Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53: 1442–1453.
Cushman KC, Detto M, García M, Muller-Landau HC. 2022. Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape. Ecology Letters 25: 1126–1138.
Davies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade A, Arellano G, Ashton PS, et al. 2021. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation 253: 108907.
Dawkins HC, Field DRB. 1978. A long-term surveillance system for british woodland vegetation. Oxford, United Kingdom: Department of Forestry, Oxford University.
Duque A, Muller-Landau HC, Valencia R, Cardenas D, Davies SJ, de Oliveira A, Pérez ÁJ, Romero-Saltos H, Vicentini A. 2017. Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation 26: 669–686.
Esquivel-Muelbert A, Phillips OL, Brienen RJW, Fauset S, Sullivan MJP, Baker TR, Chao K-J, Feldpausch TR, Gloor E, Higuchi N, et al. 2020. Tree mode of death and mortality risk factors across Amazon forests. Nature Communications 11: 5515.
Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L, Álvarez-Dávila E, et al. 2019. Compositional response of Amazon forests to climate change. Global Change Biology 25: 39–56.
Feeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. 2020. Climate-driven changes in the composition of New World plant communities. Nature Climate Change 10: 965–970.
Franklin JF, Shugart HH, Harmon ME. 1987. Tree death as an ecological process. BioScience 37: 550–556.
Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J, et al. 2022. Global Carbon Budget 2021. Earth System Science Data 14: 1917–2005.
Givnish T. 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15: 63.
Gora EM, Esquivel-Muelbert A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants 7: 384–391.
Grizonnet M, Michel J, Poughon V, Inglada J, Savinaud M, Cresson R. 2017. Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards 2: 15.
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461.
Harris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change 8: 579–587.
Hartig F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models.
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, et al. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579: 80–87.
Jucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize canopy packing in mixed‐species forests (J Baltzer, Ed.). Functional Ecology 29: 1078–1086.
Lüttge U. 2008. Tropical Forests. I. Physiognomy and Functional Structure. In: Lüttge U, ed. Physiological Ecology of Tropical Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 51–101.
Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson‐Teixeira KJ, Andrade A, Baltzer J, Becker KML, et al. 2018. Global importance of large‐diameter trees. Global Ecology and Biogeography 27: 849–864.
Martínez-Cano I, Muller-Landau HC, Joseph Wright S, Bohlman SA, Pacala SW. 2019. Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: A comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits. Biogeosciences 16: 847–862.
Mazerolle M. 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c).
McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368.
McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment 3: 294–308.
McMahon SM, Arellano G, Davies SJ. 2019. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10: e02615.
Metcalf CJE, Clark JS, Clark DA. 2009. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology 25: 1–12.
Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, et al. 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9: 575–588.
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models (RB O’Hara, Ed.). Methods in Ecology and Evolution 4: 133–142.
Nascimento HEM, Laurance WF, Condit R, Laurance SG, D’Angelo S, Andrade AC. 2005. Demographic and life‐history correlates for Amazonian trees. Journal of Vegetation Science 16: 625–634.
Negrón-Juárez R, Jenkins H, Raupp C, Riley W, Kueppers L, Magnabosco Marra D, Ribeiro G, Monteiro M, Candido L, Chambers J, et al. 2017. Windthrow variability in Central Amazonia. Atmosphere 8: 28.
Oliveira RS, Costa FRC, Baalen E, Jonge A, Bittencourt PR, Almanza Y, Barros F de V, Cordoba EC, Fagundes M V, Garcia S, et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221: 1457–1465.
Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, Obersteiner M, Piao S, Vautard R, Sardans J. 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution 1: 1438–1445.
Piponiot C, Anderson‐Teixeira KJ, Davies SJ, Allen D, Bourg NA, Burslem DFRP, Cárdenas D, Chang‐Yang C, Chuyong G, Cordell S, et al. 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist 234: 1664–1677.
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908–1920.
QGIS Geographic Information System. 2022. QGIS.
R Core Team. 2021. R: a language and environment for statistical computing.
Reis SM, Marimon BS, Esquivel‐Muelbert A, Marimon BH, Morandi PS, Elias F, Oliveira EA, Galbraith D, Feldpausch TR, Menor IO, et al. 2022. Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology 110: 876–888.
Rüger N, Huth A, Hubbell SP, Condit R. 2011. Determinants of mortality across a tropical lowland rainforest community. Oikos 120: 1047–1056.
Rüger N, Wirth C, Wright SJ, Condit R. 2012. Functional traits explain light and size response of growth rates in tropical tree species. Ecology 93: 2626–2636.
Russo SE, Davies SJ, King DA, Tan S. 2005. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93: 879–889.
Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, Davies SJ, Ashton PS, Bunyavejchewin S, Chang-Yang C-H, et al. 2021. The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology & Evolution 5: 174–183.
Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nature Climate Change 4: 17–22.
Valladares F, Niinemets Ü. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237–257.
Wright SJ. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1–14.
Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, et al. 2010. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91: 3664–3674.
Yanoviak SP, Gora EM, Bitzer PM, Burchfield JC, Muller‐Landau HC, Detto M, Paton S, Hubbell SP. 2020. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytologist 225: 1936–1944.
Zanne AE, López-González G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. Dryad Digital Repository.
Zuleta D, Arellano G, Muller‐Landau HC, McMahon SM, Aguilar S, Bunyavejchewin S, Cardenas D, Chang‐Yang C, Duque A, Mitre D, et al. 2022a. Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist 233: 705–721.
Zuleta D, Duque A, Cardenas D, Muller‐Landau HC, Davies SJ. 2017. Drought‐induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98: 2538–2546.
Zuleta D, Krishna Moorthy SM, Arellano G, Verbeeck H, Davies SJ. 2022b. Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management 508: 120056.
Zuleta D, Russo SE, Barona A, Barreto-Silva JS, Cardenas D, Castaño N, Davies SJ, Detto M, Sua S, Turner BL, et al. 2020. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil 450: 133–149.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 71 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83020/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83020/2/1037643252.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83020/3/1037643252.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
7e3d488ce34d7af6c401583a094c51f5
9ee0355ee5faa031010e6bc13246ef84
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089229013090304
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Montoya, Álvaro Javier749d6becedd1d80b24bcffd78d7e1ff3Zuleta Zapata, Daniel Felipef6308a97ecce6684e1c6a8b9dc47d3c8Gómez Correa, Luisa Fernandaf26c73f9eafdcb8bfa9ab582a777974b600Conservación, Uso y Biodiversidad2023-01-18T21:10:45Z2023-01-18T21:10:45Z2022-10-03https://repositorio.unal.edu.co/handle/unal/83020Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesTree mortality is a fundamental ecological process determining forest structure and functioning. Here, we linked remote sensing and ground-based data to assess the influence of tree crown exposure to light (relative to total crown area), individual deviations of growth rates, tree size (DBH), and species wood density on the mortality of 984 canopy trees for the Amacayacu Forest Dynamics Plot, northwestern Amazon, between 2013 and 2019. We fitted Generalized Linear Mixed-Effects models to investigate the variables or combination of variables that best explained the probability of death during this period. We found that canopy trees of low wood density species were less prone to die when their proportion of crown was more exposed to sunlight, whereas high wood density trees were slightly more prone to die with higher relative crown exposure to light. Trees growing less than their species average had higher mortality, especially in low wood density species. The role of wood density in determining the survival of canopy trees under varying light conditions indicates differential responses of life-history strategies. Our results highlight the importance of accounting for life-history strategies (e.g., proxied by wood density) when predicting forest demography under rapidly changing climate.La mortalidad de los árboles es un proceso ecológico fundamental que determina la estructura y funcionamiento de los bosques. En este estudio, vinculamos datos de sensores remotos y monitoreos terrestres para evaluar la influencia de la exposición de la copa de los árboles a la luz (en relación con el área total de la copa), la desviación individual de las tasas de crecimiento, el tamaño del árbol (DBH), y la densidad de la madera de las especies, sobre la mortalidad de 984 árboles de dosel en la Parcela Permanente Amacayacu, Amazonía noroccidental, entre el 2013 y 2019. Ajustamos Modelos Lineales Generalizados de Efectos Mixtos para investigar las variables o combinación de variables que mejor explicaba la probabilidad de muerte durante este período. Encontramos que los árboles de dosel de especies con baja densidad de la madera fueron menos propensos a morir cuando tuvieron mayor proporción de copa expuesta a la luz, mientras que, árboles de alta densidad de madera fueron ligeramente más propensos a morir a mayor proporción de su copa expuesta a la luz. Árboles que crecieron menos que el promedio de su especie presentaron mayor mortalidad, especialmente en especies con baja densidad de la madera. El rol de la densidad de la madera en la determinación de la sobrevivencia de los árboles de dosel bajo diferentes condiciones de luz indica respuestas diferenciales de las estrategias de historia de vida. Nuestros resultados destacan la importancia de tener en cuenta las estrategias de historia de vida (e.g., representadas por la densidad de la madera) al predecir la demografía de los bosques bajo el rápido cambio climático. (tomado de la fuente)Convocatoria 891 del 2020 "Jóvenes investigadores" MinCienciasMaestríaMagíster en Bosques y Conservación AmbientalEcología de ecosistemas terrestresÁrea Curricular en Bosques y Conservación Ambientalxvii, 71 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación AmbientalFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - EcologíaÁrboles maderablesÁrea de copaDensidad de la maderaDisponibilidad de luzDronesEstrategias de historia de vidaSobrevivencia arbóreaTasas de crecimientoTamaño del árbolCrown areaDronesGrowth ratesLife-history strategiesLight availabilityTree sizeTree survivalWood densityInfluence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based dataInfluencia de los factores de individuo y especie en la mortalidad de los árboles de dosel en un bosque de la Amazonía: vinculación de sensores remotos y datos terrestresTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaLaReferenciaAleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change 9: 384–388.Araujo RF, Chambers JQ, Celes CHS, Muller-Landau HC, Santos APF dos, Emmert F, Ribeiro GHPM, Gimenez BO, Lima AJN, Campos MAA, et al. 2020. Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics (J Müllerová, Ed.). PLoS ONE 15: e0243079.Araujo RF, Grubinger S, Celes CHS, Negrón-Juárez RI, Garcia M, Dandois JP, Muller-Landau HC. 2021. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50\,ha plot. Biogeosciences 18: 6517–6531.Arellano G, Medina NG, Tan S, Mohamad M, Davies SJ. 2019. Crown damage and the mortality of tropical trees. New Phytologist 221: 169–179.Augspurger CK, Kelly CK. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211–217.Barton K. 2022. MuMIn: Multi-Model Inference.Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48.Bauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, Bentley LP, Rifai SW, Aguirre-Gutiérrez J, Menor IO, Phillips OL, et al. 2022. Tropical tree mortality has increased with rising atmospheric water stress. Nature.Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: 15139.Bin Y, Li Y, Russo SE, Cao H, Ni Y, Ye W, Lian J. 2022. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Functional Ecology 36: 1010–1022.Bohlman SA, O’Brien S. 2006. Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. Journal of Tropical Ecology 22: 123–136.Burnham KP, Anderson DR. 2002. Model selection and multi- model inference. A practical information-theoretic approach (KP Burnham and DR Anderson, Eds.). New York, NY: Springer New York, NY.Camac JS, Condit R, FitzJohn RG, McCalman L, Steinberg D, Westoby M, Wright SJ, Falster DS. 2018. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proceedings of the National Academy of Sciences 115: 12459–12464.Chamorro C. 1989. Biología de los suelos del Parque Nacional Natural Amacayacu y zonas adyacentes (Amazonas, Colombia). Colombia Geográfica 15: 45–63.Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.Chave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16: 2356–2367.Cifuentes L, Moreno F. 2022. Trait coordination at leaf level explains the resistance to excess light stress in shade-tolerant tropical tree species (M Mencuccini, Ed.). Tree Physiology 42: 1325–1336.Clark DA, Clark DB. 1992. Life History Diversity of Canopy and Emergent Trees in a Neotropical Rain Forest. Ecological Monographs 62: 315–344.Condit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP, Foster RB. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20: 51–72.Condit R, Pérez R, Lao S, Aguilar S, Hubbell SP. 2017. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. Forest Ecosystems 4: 17.Cushman KC, Bunyavejchewin S, Cárdenas D, Condit R, Davies SJ, Duque Á, Hubbell SP, Kiratiprayoon S, Lum SKY, Muller‐Landau HC. 2021. Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53: 1442–1453.Cushman KC, Detto M, García M, Muller-Landau HC. 2022. Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape. Ecology Letters 25: 1126–1138.Davies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade A, Arellano G, Ashton PS, et al. 2021. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation 253: 108907.Dawkins HC, Field DRB. 1978. A long-term surveillance system for british woodland vegetation. Oxford, United Kingdom: Department of Forestry, Oxford University.Duque A, Muller-Landau HC, Valencia R, Cardenas D, Davies SJ, de Oliveira A, Pérez ÁJ, Romero-Saltos H, Vicentini A. 2017. Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation 26: 669–686.Esquivel-Muelbert A, Phillips OL, Brienen RJW, Fauset S, Sullivan MJP, Baker TR, Chao K-J, Feldpausch TR, Gloor E, Higuchi N, et al. 2020. Tree mode of death and mortality risk factors across Amazon forests. Nature Communications 11: 5515.Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L, Álvarez-Dávila E, et al. 2019. Compositional response of Amazon forests to climate change. Global Change Biology 25: 39–56.Feeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. 2020. Climate-driven changes in the composition of New World plant communities. Nature Climate Change 10: 965–970.Franklin JF, Shugart HH, Harmon ME. 1987. Tree death as an ecological process. BioScience 37: 550–556.Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J, et al. 2022. Global Carbon Budget 2021. Earth System Science Data 14: 1917–2005.Givnish T. 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15: 63.Gora EM, Esquivel-Muelbert A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants 7: 384–391.Grizonnet M, Michel J, Poughon V, Inglada J, Savinaud M, Cresson R. 2017. Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards 2: 15.Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461.Harris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change 8: 579–587.Hartig F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models.Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, et al. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579: 80–87.Jucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize canopy packing in mixed‐species forests (J Baltzer, Ed.). Functional Ecology 29: 1078–1086.Lüttge U. 2008. Tropical Forests. I. Physiognomy and Functional Structure. In: Lüttge U, ed. Physiological Ecology of Tropical Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 51–101.Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson‐Teixeira KJ, Andrade A, Baltzer J, Becker KML, et al. 2018. Global importance of large‐diameter trees. Global Ecology and Biogeography 27: 849–864.Martínez-Cano I, Muller-Landau HC, Joseph Wright S, Bohlman SA, Pacala SW. 2019. Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: A comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits. Biogeosciences 16: 847–862.Mazerolle M. 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c).McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368.McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment 3: 294–308.McMahon SM, Arellano G, Davies SJ. 2019. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10: e02615.Metcalf CJE, Clark JS, Clark DA. 2009. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology 25: 1–12.Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, et al. 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9: 575–588.Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models (RB O’Hara, Ed.). Methods in Ecology and Evolution 4: 133–142.Nascimento HEM, Laurance WF, Condit R, Laurance SG, D’Angelo S, Andrade AC. 2005. Demographic and life‐history correlates for Amazonian trees. Journal of Vegetation Science 16: 625–634.Negrón-Juárez R, Jenkins H, Raupp C, Riley W, Kueppers L, Magnabosco Marra D, Ribeiro G, Monteiro M, Candido L, Chambers J, et al. 2017. Windthrow variability in Central Amazonia. Atmosphere 8: 28.Oliveira RS, Costa FRC, Baalen E, Jonge A, Bittencourt PR, Almanza Y, Barros F de V, Cordoba EC, Fagundes M V, Garcia S, et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221: 1457–1465.Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, Obersteiner M, Piao S, Vautard R, Sardans J. 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution 1: 1438–1445.Piponiot C, Anderson‐Teixeira KJ, Davies SJ, Allen D, Bourg NA, Burslem DFRP, Cárdenas D, Chang‐Yang C, Chuyong G, Cordell S, et al. 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist 234: 1664–1677.Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908–1920.QGIS Geographic Information System. 2022. QGIS.R Core Team. 2021. R: a language and environment for statistical computing.Reis SM, Marimon BS, Esquivel‐Muelbert A, Marimon BH, Morandi PS, Elias F, Oliveira EA, Galbraith D, Feldpausch TR, Menor IO, et al. 2022. Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology 110: 876–888.Rüger N, Huth A, Hubbell SP, Condit R. 2011. Determinants of mortality across a tropical lowland rainforest community. Oikos 120: 1047–1056.Rüger N, Wirth C, Wright SJ, Condit R. 2012. Functional traits explain light and size response of growth rates in tropical tree species. Ecology 93: 2626–2636.Russo SE, Davies SJ, King DA, Tan S. 2005. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93: 879–889.Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, Davies SJ, Ashton PS, Bunyavejchewin S, Chang-Yang C-H, et al. 2021. The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology & Evolution 5: 174–183.Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nature Climate Change 4: 17–22.Valladares F, Niinemets Ü. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237–257.Wright SJ. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1–14.Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, et al. 2010. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91: 3664–3674.Yanoviak SP, Gora EM, Bitzer PM, Burchfield JC, Muller‐Landau HC, Detto M, Paton S, Hubbell SP. 2020. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytologist 225: 1936–1944.Zanne AE, López-González G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. Dryad Digital Repository.Zuleta D, Arellano G, Muller‐Landau HC, McMahon SM, Aguilar S, Bunyavejchewin S, Cardenas D, Chang‐Yang C, Duque A, Mitre D, et al. 2022a. Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist 233: 705–721.Zuleta D, Duque A, Cardenas D, Muller‐Landau HC, Davies SJ. 2017. Drought‐induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98: 2538–2546.Zuleta D, Krishna Moorthy SM, Arellano G, Verbeeck H, Davies SJ. 2022b. Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management 508: 120056.Zuleta D, Russo SE, Barona A, Barreto-Silva JS, Cardenas D, Castaño N, Davies SJ, Detto M, Sua S, Turner BL, et al. 2020. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil 450: 133–149.MincienciasEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83020/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1037643252.2022.pdf1037643252.2022.pdfTesis Maestría en Bosques y Conservación Ambientalapplication/pdf3871927https://repositorio.unal.edu.co/bitstream/unal/83020/2/1037643252.2022.pdf7e3d488ce34d7af6c401583a094c51f5MD52THUMBNAIL1037643252.2022.pdf.jpg1037643252.2022.pdf.jpgGenerated Thumbnailimage/jpeg5832https://repositorio.unal.edu.co/bitstream/unal/83020/3/1037643252.2022.pdf.jpg9ee0355ee5faa031010e6bc13246ef84MD53unal/83020oai:repositorio.unal.edu.co:unal/830202024-08-15 23:14:20.51Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=