Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito

Ilustraciones, diagramas, tablas

Autores:
Cardona Posada, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81652
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81652
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Localización de fallas eléctricas
Electric fault location
Electric power distribution
Distribución de energía eléctrica
Transformada Wavelet
Análisis de Fallas Eléctricas
Sistemas de Distribución de Energía Eléctrica
Funciones Madre
Respuesta al Impulso de Filtros Digitales
Wavelet Transform
Electric Fault Analysis
Power Distribution Systems
Mother Functions
Digital Filter Impulse Response
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f02c0eef56051303227dddfd28a8e012
oai_identifier_str oai:repositorio.unal.edu.co:unal/81652
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
dc.title.translated.eng.fl_str_mv Detection and classification of electrical faults in electrical power distribution systems using the continuous wavelet transform and infinite support mother functions
title Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
spellingShingle Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Localización de fallas eléctricas
Electric fault location
Electric power distribution
Distribución de energía eléctrica
Transformada Wavelet
Análisis de Fallas Eléctricas
Sistemas de Distribución de Energía Eléctrica
Funciones Madre
Respuesta al Impulso de Filtros Digitales
Wavelet Transform
Electric Fault Analysis
Power Distribution Systems
Mother Functions
Digital Filter Impulse Response
title_short Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
title_full Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
title_fullStr Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
title_full_unstemmed Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
title_sort Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
dc.creator.fl_str_mv Cardona Posada, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Bolaños Martinez, Freddy (Thesis advisor)
Pérez Gonzales, Ernesto
dc.contributor.author.none.fl_str_mv Cardona Posada, Juan Camilo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Automática de la Universidad Nacional Gaunal
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Localización de fallas eléctricas
Electric fault location
Electric power distribution
Distribución de energía eléctrica
Transformada Wavelet
Análisis de Fallas Eléctricas
Sistemas de Distribución de Energía Eléctrica
Funciones Madre
Respuesta al Impulso de Filtros Digitales
Wavelet Transform
Electric Fault Analysis
Power Distribution Systems
Mother Functions
Digital Filter Impulse Response
dc.subject.lemb.none.fl_str_mv Localización de fallas eléctricas
Electric fault location
Electric power distribution
Distribución de energía eléctrica
dc.subject.proposal.spa.fl_str_mv Transformada Wavelet
Análisis de Fallas Eléctricas
Sistemas de Distribución de Energía Eléctrica
Funciones Madre
Respuesta al Impulso de Filtros Digitales
dc.subject.proposal.eng.fl_str_mv Wavelet Transform
Electric Fault Analysis
Power Distribution Systems
Mother Functions
Digital Filter Impulse Response
description Ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-29T14:09:03Z
dc.date.available.none.fl_str_mv 2022-06-29T14:09:03Z
dc.date.issued.none.fl_str_mv 2022-06-27
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81652
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81652
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv C. Zapata, Confiabilidad de Sistemas Eléctricos de Potencia. Pereira: Universidad Tecnológica de Pereira, 2011. doi: 10.2307/j.ctt1zk0m77.5.
P. Kundur et al., “Definition and classification of power system stability,” IEEE Transactions on Power Systems, 2004, doi: 10.1109/TPWRS.2004.825981.
M. Ventosa, P. Linares, and I. J. Pérez-Arriaga, “Power System Economics,” Power Systems, vol. 61, no. October 1982, pp. 47–123, 2013, doi: 10.1007/978-1-4471-5034-3_2.
S. Silva, P. Costa, M. Santana, and D. Leite, “Evolving neuro-fuzzy network for real-time high impedance fault detection and classification,” Neural Computing and Applications, vol. 32, no. 12, pp. 7597–7610, 2020, doi: 10.1007/s00521-018-3789-2.
P. Jafarian and M. Sanaye-Pasand, “A traveling-wave-based protection technique using wavelet/pca analysis,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 588–599, 2010, doi: 10.1109/TPWRD.2009.2037819.
D. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.
M. Parsi, P. Crossley, P. L. Dragotti, and D. Cole, “Wavelet based fault location on power transmission lines using real-world travelling wave data,” Electric Power Systems Research, vol. 186, no. February, p. 106261, 2020, doi: 10.1016/j.epsr.2020.106261.
L. Y. Bewley, “Traveling Waves on Transmission Systems,” Transactions of the American Institute of Electrical Engineers, 1931, doi: 10.1109/T-AIEE.1931.5055827.
M. Pourahmadi-Nakhli and A. A. Safavi, “Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks,” IEEE Transactions on Power Delivery, 2011, doi: 10.1109/TPWRD.2010.2050218.
S. M. Korobeynikov, N. Y. Ilyushov, Y. A. Lavrov, S. S. Shevchenko, and V. A. Loman, “High-Frequency Transients Suppression at Substation,” 2019. doi: 10.1109/ICHVE.2018.8641972.
Y. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1279–1284, 2000, doi: 10.1109/61.891515.
F. H. Magnago and A. Abur, “A new fault location technique for radial distribution systems based on high frequency signals,” 1999. doi: 10.1109/PESS.1999.784386.
T. M. Lai, L. A. Snider, E. Lo, and D. Sutanto, “High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 397–407, 2005, doi: 10.1109/TPWRD.2004.837836.
M. Goudarzi, B. Vahidi, R. A. Naghizadeh, and S. H. Hosseinian, “Improved fault location algorithm for radial distribution systems with discrete and continuous wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 67, no. May, pp. 423–430, 2015, doi: 10.1016/j.ijepes.2014.12.014.
S. Khokhar, A. A. B. Mohd Zin, A. S. B. Mokhtar, and M. Pesaran, “A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances,” Renewable and Sustainable Energy Reviews. 2015. doi: 10.1016/j.rser.2015.07.068.
A. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Transactions on Power Delivery, vol. 14, no. 4, pp. 1469–1476, 1999, doi: 10.1109/61.796242.
A. R. Sedighi, M. R. Haghifam, O. P. Malik, and M. H. Ghassemian, “High impedance fault detection based on wavelet transform and statistical pattern recognition,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2414–2421, 2005, doi: 10.1109/TPWRD.2005.852367.
Z. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.
C. L. Tu, W. L. Hwang, and J. Ho, “Analysis of singularities from modulus maxima of complex wavelets,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 1049–1062, 2005, doi: 10.1109/TIT.2004.842706.
K. M. Silva, B. A. Souza, and N. S. D. Brito, “Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, vol. 21, no. 4, pp. 2058–2063, 2006, doi: 10.1109/TPWRD.2006.876659.
L. O. Barthold and G. K. Carter, “Digital Traveling-Wave Solutions: I—Single-Phase Equivalents,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1961, doi: 10.1109/AIEEPAS.1961.4501145.
F. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.
M. Vrhel, C. Lee, and M. Unser, “THE CONTINUOUS WAVELET TRANSFORM: A TOOL FOR SIGNAL INVESTIGATION AND UNDERSTANDING,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1995.
L. U. Iurinic, A. S. Bretas, and E. S. Guimaraes, “Continuous-wavelet transform fault location algorithm inferred from faulty signal,” 2012. doi: 10.1109/PESGM.2012.6344853.
A. Borghetti, M. Bosetti, C. A. Nucci, M. Paolone, and A. Abur, “Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: Theory and experimental validation,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3139–3146, 2010, doi: 10.1109/TPWRD.2010.2046655.
H. w. Dommel and J. M. Michels, “HIGH SPEED RELAYING USING TRAVELING WAVE TRANSIENT ANALYSIS.,” 1978.
M. T. Hagh, K. Razi, and H. Taghizadeh, “Fault classification and location of power transmission lines using artificial neural network,” 2007.
A. Abdollahi and S. Seyedtabaii, “Comparison of fourier & wavelet transform methods for transmission line fault classification,” PEOCO 2010 - 4th International Power Engineering and Optimization Conference, Program and Abstracts, no. June, pp. 579–584, 2010, doi: 10.1109/PEOCO.2010.5559232.
L. J. Collazo and E. O’Neill-Carrillo, “Comparison of windowed Fourier transform and dynamic phasors for power quality analysis,” 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, pp. 1–5, 2009, doi: 10.1109/PSCE.2009.4840147.
D. Donnelly, “The Fast Fourier and Hilbert-Huang Transforms: A Comparison,” in IMACS Multiconference on “Computational Engineering in Systems Applications” (CESA), 2006, vol. 12, no. 3, pp. 84–88.
S. Vandeput, Heart rate variability : linear and nonlinear analysis with applications in human physiology. 2010.
J. B. Allen and L. R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and Synthesis,” Proceedings of the IEEE, 1977, doi: 10.1109/PROC.1977.10770.
R. Subhashree, C. S. Preethi, and P. Supriya, “Fault distance identification in transmission line using STFT algorithm,” 2016. doi: 10.1109/ICCCI.2016.7480036.
R. Bhattacharjee and A. De, “A robust STFT based algorithm for detection of symmetrical fault during power swing,” 2017. doi: 10.1109/POWERI.2016.8077364.
S. Mallat, A Wavelet Tour of Signal Processing The Sparse Way. 2009.
J. O. Strömberg, “A modified franklin system and higher-order spline systems on Rn as unconditional bases for hardy spaces,” in Fundamental Papers in Wavelet Theory, 2009. doi: 10.1515/9781400827268.197.
J. D. Kropotov, Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment. 2016. doi: 10.1016/C2012-0-07144-X.
A. Grossmann and J. Morlet, “Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape,” SIAM Journal on Mathematical Analysis, vol. 15, no. 4, 1984.
Y. Meyer, Wavelets and Operators. 1993. doi: 10.1017/cbo9780511623820.
A. Cohen, I. Daubechies, and J. ‐C Feauveau, “Biorthogonal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1992, doi: 10.1002/cpa.3160450502.
I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1988, doi: 10.1002/cpa.3160410705.
I. Daubechies, “2. The Continuous Wavelet Transform,” in Ten Lectures on Wavelets, 1992. doi: 10.1137/1.9781611970104.ch2.
I. Daubechies, Ten Lectures on Wavelets. 1992. doi: 10.1137/1.9781611970104.
P. Qi, S. Jovanovic, J. Lezama, and P. Schweitzer, “Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks,” Electric Power Systems Research, vol. 143, no. June 2018, pp. 130–139, 2017, doi: 10.1016/j.epsr.2016.10.008.
D. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.
F. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, 1998, doi: 10.1109/61.714808.
F. B. Costa, B. A. Souza, N. S. D. Brito, J. A. C. B. Silva, and W. C. Santos, “Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform,” IEEE Transactions on Industry Applications, 2015, doi: 10.1109/TIA.2015.2434993.
M. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.
A. Borghetti, S. Corsi, C. A. Nucci, M. Paolone, L. Peretto, and R. Tinarelli, “On the use of continuous-wavelet transform for fault location in distribution power systems,” International Journal of Electrical Power and Energy Systems, 2006, doi: 10.1016/j.ijepes.2006.03.001.
A. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.
K. Nanayakkara, A. D. Rajapakse, and R. Wachal, “Fault Location in Extra Long HVDC Transmission Lines using Continuous Wavelet Transform,” 2011.
MATHWORKS, “Continuous Wavelet Analysis,” https://la.mathworks.com/help/wavelet/gs/continuous-wavelet-analysis.html, 2021.
J. Lilly, “A data analysis package for Matlab,” 2016.
A. R. Adly, S. H. E. Abdel Aleem, M. A. Elsadd, and Z. M. Ali, “Wavelet packet transform applied to a series-compensated line: A novel scheme for fault identification,” Measurement: Journal of the International Measurement Confederation, vol. 151, p. 107156, 2020, doi: 10.1016/j.measurement.2019.107156.
G. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.
E. Y. Hamid and Z. I. Kawasaki, “Wavelet-based data compression of power system disturbances using the minimum description length criterion,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 460–466, 2002, doi: 10.1109/61.997918.
L. Jin, M. Jiang, and G. Yang, “Fault analysis of microgrid and adaptive distance protection based on complex wavelet transform,” 2014. doi: 10.1109/PEAC.2014.7037882.
Z. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.
J. G. Proakis and D. G. Monolakis, Digital signal processing: principles, algorithms, and applications. 1996.
J. Klomjit, A. Ngaopitakkul, and B. Sreewirote, “Comparison of mother wavelet for classification fault on hybrid transmission line systems,” 2017. doi: 10.1109/ICAwST.2017.8256514.
C. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), vol. 10, no. 4, pp. 1–16, 2020, doi: 10.3390/app10041203.
W. Fluty and Y. Liao, “Electric Transmission Fault Location Techniques Using Traveling Wave Method and Discrete Wavelet Transform,” Clemson University Power Systems Conference, PSC 2020, 2020, doi: 10.1109/PSC50246.2020.9131271.
B. Rathore and A. G. Shaik, “Wavelet-Alienation Based Transmission Line Protection Scheme,” pp. 1–15.
H. R. Karimi, W. Pawlus, and K. G. Robbersmyr, “Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets,” Neurocomputing, 2012, doi: 10.1016/j.neucom.2012.04.010.
A. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.
A. Calderón, “Intermediate spaces and interpolation, the complex method,” Studia Mathematica, 1964, doi: 10.4064/sm-24-2-113-190.
P. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.
U. B. Parikh, B. Das, and R. P. Maheshwari, “Combined wavelet-SVM technique for fault zone detection in a series compensated transmission line,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1789–1794, 2008, doi: 10.1109/TPWRD.2008.919395.
R. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad, “Recognition of Power-Quality Disturbances Using S-Transform-Based ANN Classifier and Rule-Based Decision Tree,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1249–1258, 2015, doi: 10.1109/TIA.2014.2356639.
N. Zhang and M. Kezunovic, “Transmission line boundary protection using wavelet transform and neural network,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 859–869, 2007, doi: 10.1109/TPWRD.2007.893596.
N. Tailor, S. Joshi, and O. P. Mahela, “Transmission line protection schemes based on wigner distribution function and discrete wavelet transform,” PIICON 2020 - 9th IEEE Power India International Conference, 2020, doi: 10.1109/PIICON49524.2020.9113011.
A. K. Pradhan, A. Routray, S. Pati, and D. K. Pradhan, “Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line,” IEEE Transactions on Power Delivery, 2004, doi: 10.1109/TPWRD.2003.822535.
Z. L. Gaing, “Wavelet-based neural network for power disturbance recognition and classification,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1560–1568, 2004, doi: 10.1109/TPWRD.2004.835281.
D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2295–2304, 2016, doi: 10.1109/TSG.2015.2487501.
M. Dashtdar, M. Esmaeilbeig, M. Najafi, and M. E. N. Bushehri, “Fault Location in the Transmission Network Using Artificial Neural Network,” Automatic Control and Computer Sciences, vol. 54, no. 1, pp. 39–51, 2020, doi: 10.3103/S0146411620010022.
A. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, 2016, doi: 10.1109/TPWRD.2015.2464098.
A. H. Osman and O. P. Malik, “Transmission line distance protection based on wavelet transform,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 515–523, 2004, doi: 10.1109/TPWRD.2003.822531.
A. Bermúdez, E. Spinelli, and C. Muravch, “Detección de eventos en señales de EEG mediante Entropía,” 2011. Accessed: Oct. 20, 2021. [Online]. Available: http://www.sabi2011.fi.mdp.edu.ar/proceedings/SABI/Pdf/SABI2011_75.pdf
H. Zheng-you, C. Xiaoqing, and L. Guoming, “Wavelet Entropy Measure Definition and Its Application for Transmission Line Fault Detection and Identification; (Part I: Definition and Methodology),” 2007. doi: 10.1109/icpst.2006.321939.
Z. He, L. Fu, S. Lin, and Z. Bo, “Fault detection and classification in EHV transmission line based on wavelet singular entropy,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2156–2163, 2010, doi: 10.1109/TPWRD.2010.2042624.
S. Khokhar, A. A. Mohd Zin, A. P. Memon, and A. S. Mokhtar, “A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network,” Measurement: Journal of the International Measurement Confederation, vol. 95, pp. 246–259, 2017, doi: 10.1016/j.measurement.2016.10.013.
H. H. Chang and N. V. Linh, “Statistical feature extraction for fault locations in nonintrusive fault detection of low voltage distribution systems,” Energies (Basel), vol. 10, no. 5, pp. 1–19, 2017, doi: 10.3390/en10050611.
H. Lala and S. Karmakar, “Continuous wavelet transform and artificial neural network based fault diagnosis in 52 bus hybrid distributed generation system,” 4th Students Conference on Engineering and Systems, SCES 2015, 2016, doi: 10.1109/SCES.2015.7506463.
Y. Y. Hong and M. T. A. M. Cabatac, “Fault Detection, Classification, and Location by Static Switch in Microgrids Using Wavelet Transform and Taguchi-Based Artificial Neural Network,” IEEE Systems Journal, vol. 14, no. 2, pp. 2725–2735, 2020, doi: 10.1109/JSYST.2019.2925594.
B. Rathore and A. G. Shaik, “Wavelet-alienation based transmission line protection scheme,” IET Generation, Transmission and Distribution, vol. 11, no. 4, pp. 995–1003, Mar. 2017, doi: 10.1049/iet-gtd.2016.1022.
P. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.
F. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.
G. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.
M. Hirn, “Lecture 16: Wavelet Modulus Maxima,” 2020. Accessed: Sep. 14, 2021. [Online]. Available: https://matthewhirn.files.wordpress.com/2020/03/math994_spring2020_lecture16-1.pdf
D. Guillen, M. R. A. Paternina, A. Zamora, J. M. Ramirez, and G. Idarraga, “Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm,” IET Generation, Transmission and Distribution, 2015, doi: 10.1049/iet-gtd.2014.1064.
C. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), 2020, doi: 10.3390/app10041203.
P. Lertwanitrot and A. Ngaopitakkul, “Discriminating between Capacitor Bank Faults and External Faults for an Unbalanced Current Protection Relay Using DWT,” IEEE Access, vol. 8, pp. 180022–180044, 2020, doi: 10.1109/ACCESS.2020.3026744.
D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, 2016, doi: 10.1109/TSG.2015.2487501.
L. Breiman, “Random Forests,” Berkeley, CA: University of California, 2001.
H. Ampadu, “Random Forests Understanding,” https://ai-pool.com/a/s/random-forests-understanding, May 01, 2021.
M. Awad and R. Khanna, “Support Vector Machines for Classification,” in Efficient Learning Machines, 2015. doi: 10.1007/978-1-4302-5990-9_3.
A. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 428–436, 2016, doi: 10.1109/TPWRD.2015.2464098.
S. Kaewarsa, K. Attakitmongcol, and T. Kulworawanichpong, “Recognition of power quality events by using multiwavelet-based neural network,” Proceedings - 6th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2007; 1st IEEE/ACIS International Workshop on e-Activity, IWEA 2007, no. Icis, pp. 993–998, 2007, doi: 10.1109/ICIS.2007.153.
M. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.
O. A. S. Youssef, “Combined fuzzy-logic wavelet-based fault classification technique for power system relaying,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 582–589, 2004, doi: 10.1109/TPWRD.2004.826386.
J. Jan, Digital Signal Filtering, Analysis and Restoration. 2000. doi: 10.1049/pbte044e.
R. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra from the Point of View of Communications Engineering — Part II,” Bell System Technical Journal, vol. 37, no. 2, 1958, doi: 10.1002/j.1538-7305.1958.tb01530.x.
F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proceedings of the IEEE, vol. 66, no. 1, 1978, doi: 10.1109/PROC.1978.10837.
Chegg, “Problem 8 (Window Functions),” https://www.chegg.com/homework-help/questions-and-answers/problem-8-window-functions-figure-71-shows-three-window-functions-corresponding-amplitude--q51974895.
S. W. Smith, Properties of Convolution:The Scientist and Engineer’s Guide to Digital Signal Processing. 1999.
S. Bon, M. Vigny, and J. Massoulie, “Order A Journal On The Theory Of Ordered Sets And Its Applications,” Biochemistry, vol. 76, no. 6, 1979.
W. K. Chen, Passive, active, and digital filters. 2009. doi: 10.1201/9781315219141.
R. B. Randall, J. Antoni, and P. Borghesani, “Applied Digital Signal Processing,” in Handbook of Experimental Structural Dynamics, 2020. doi: 10.1007/978-1-4939-6503-8_6-1.
R. Holmes, “Applied Underwater Acoustics,” Physics Bulletin, vol. 18, no. 1, 1967, doi: 10.1088/0031-9112/18/1/021.
A. Borghetti, M. Bosetti, M. di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.
T. Carsey and J. Harden, Monte Carlo Simulation and Resampling Methods for Social Science. 2014. doi: 10.4135/9781483319605.
MATHWORKS, “FILTER REFERENCE,” https://la.mathworks.com/help/matlab/ref/filter.html.
K. P. Balanda and H. L. Macgillivray, “Kurtosis: A critical review,” American Statistician, vol. 42, no. 2, 1988, doi: 10.1080/00031305.1988.10475539.
MATHWORKS, “KURTOSIS REFERENCE,” https://la.mathworks.com/help/stats/kurtosis.html.
ATRIA Innovation, “Qué son las redes neuronales y sus funciones,” https://www.atriainnovation.com/que-son-las-redes-neuronales-y-sus-funciones/, Oct. 19, 2019.
B. Yegnanarayana, “Artificial neural networks for pattern recognition,” Sadhana, vol. 19, no. 2, 1994, doi: 10.1007/BF02811896.
K. Mehrotra, C. Mohan, and S. Ranka, Elements of Artificial Neural Networks. 2019. doi: 10.7551/mitpress/2687.001.0001.
I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Artificial neural networks: A practical course. 2016. doi: 10.1007/978-3-319-43162-8.
P. J. Braspenning, F. Thuijsman, and A. Weijters, Artificial neural networks: an introduction to ANN theory and practice, vol. 931. 1995.
PICO, “https://www.pico.net/kb/the-role-of-bias-in-neural-networks/,” https://www.pico.net/kb/the-role-of-bias-in-neural-networks/.
R. Tadeusiewicz, “Neural networks: A comprehensive foundation,” Control Engineering Practice, vol. 3, no. 5, 1995, doi: 10.1016/0967-0661(95)90080-2.
I. S. Korovin and M. v. Khisamutdinov, “Hybrid method of dynamograms wavelet analysis for oil-production equipment state identification,” in Advanced Materials Research, 2014, vol. 909. doi: 10.4028/www.scientific.net/AMR.909.252.
J. Villanueva, “Redes neuronales desde cero (I) – Introducción,” https://www.iartificial.net/redes-neuronales-desde-cero-i-introduccion/.
IEEE, “IEEE PES Test Feeder,” https://cmte.ieee.org/pes-testfeeders/resources/.
Distribution System Analysis Subcommittee IEEE, “IEEE 13 Node Test Feeder.”
D. A. Sánchez Muñoz, “Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica,” Medellín, 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 136 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81652/1/1037650152.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81652/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81652/3/1037650152.2022.pdf.jpg
bitstream.checksum.fl_str_mv c1306e79448106bde5e909787c14e85e
8153f7789df02f0a4c9e079953658ab2
4f73a8932488b4a75e7678fff03ee3ff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886675599589376
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bolaños Martinez, Freddy (Thesis advisor)c9120d55540364b7b3145412bd0444ba600Pérez Gonzales, Ernesto5d91669f92ae29d764ebcb241a3ad692Cardona Posada, Juan Camilod26851e8cedf44f3459831bc9f7cab01600Grupo de Automática de la Universidad Nacional Gaunal2022-06-29T14:09:03Z2022-06-29T14:09:03Z2022-06-27https://repositorio.unal.edu.co/handle/unal/81652Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, diagramas, tablasEl análisis de fallas eléctricas en Sistemas Eléctricos de Potencia ha visto un avance significativo en la implementación de metodologías fundamentadas en el Procesamiento Digital de Señales, como el análisis en tiempo y frecuencia. En este trabajo se propone una metodología para utilizar filtros con Respuesta Infinita al Impulso como Funciones Madre para computar la Transformada Wavelet Continua mediante la evaluación del concepto del remuestreo digital de señales. Esta metodología es evaluada al compararla con la metodología más comúnmente reportada en la literatura (Transformada Wavelet Discreta con Función Madre tipo Daubechies 4) y se investigan los efectos de los parámetros más relevantes inherentes al método y a las señales. La implementación del código se realiza en el software de MATLAB y los resultados se validan comparando la energía espectral asociada a los coeficientes Wavelet obtenidos. Por otro lado, se propone evaluar las etapas de detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica utilizando una serie de señales simuladas en el Software ATP/EMTP y redes neuronales artificiales. Los resultados obtenidos validan la metodología propuesta además de presentar una mejora notoria en cuanto a la tasa de detección y clasificación de eventos al compararla con el método tradicional. Finalmente, se resumen las limitaciones de la investigación y se propone una serie de recomendaciones a modo de trabajo futuro con el objetivo de continuar la evaluación de la metodología propuesta. (Texto tomado de la fuente)Electric fault analysis in Power Systems has seen significant progress in the adoption of methodologies based on Digital Signal Processing, such as time and frequency analysis. In this work, a novel method is proposed to use filters with Infinite Impulse Response as Mother Functions to compute the Continuous Wavelet Transform by evaluating the concept of digital signal resampling. This methodology is evaluated by comparing it with the most common method in the literature (Discrete Wavelet Transform with Daubechies 4-type Mother Function) and the effects of the most relevant parameters inherent to the method and to the signals are investigated. The implementation of the code is carried out in the MATLAB software and the results are validated by comparing the spectral energy associated with the Wavelet Coefficients obtained. On the other hand, an evaluation of the stages of detection and classification of electrical faults in electrical power distribution systems is proposed by using a series of simulated signals in the ATP/EMTP Software and artificial neural networks. The results obtained validate the proposed methodology in addition to presenting a notable improvement in the rate of detection and classification of events when compared to the traditional method. Finally, the limitations of the research are summarized, and a series of recommendations are proposed for future work with the aim of continuing the evaluation of the proposed method.MaestríaMagíster en Ingeniería - Ingeniería EléctricaProtección de Sistemas Eléctricos de PotenciaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlxxi, 136 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaLocalización de fallas eléctricasElectric fault locationElectric power distributionDistribución de energía eléctricaTransformada WaveletAnálisis de Fallas EléctricasSistemas de Distribución de Energía EléctricaFunciones MadreRespuesta al Impulso de Filtros DigitalesWavelet TransformElectric Fault AnalysisPower Distribution SystemsMother FunctionsDigital Filter Impulse ResponseDetección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinitoDetection and classification of electrical faults in electrical power distribution systems using the continuous wavelet transform and infinite support mother functionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMC. Zapata, Confiabilidad de Sistemas Eléctricos de Potencia. Pereira: Universidad Tecnológica de Pereira, 2011. doi: 10.2307/j.ctt1zk0m77.5.P. Kundur et al., “Definition and classification of power system stability,” IEEE Transactions on Power Systems, 2004, doi: 10.1109/TPWRS.2004.825981.M. Ventosa, P. Linares, and I. J. Pérez-Arriaga, “Power System Economics,” Power Systems, vol. 61, no. October 1982, pp. 47–123, 2013, doi: 10.1007/978-1-4471-5034-3_2.S. Silva, P. Costa, M. Santana, and D. Leite, “Evolving neuro-fuzzy network for real-time high impedance fault detection and classification,” Neural Computing and Applications, vol. 32, no. 12, pp. 7597–7610, 2020, doi: 10.1007/s00521-018-3789-2.P. Jafarian and M. Sanaye-Pasand, “A traveling-wave-based protection technique using wavelet/pca analysis,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 588–599, 2010, doi: 10.1109/TPWRD.2009.2037819.D. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.M. Parsi, P. Crossley, P. L. Dragotti, and D. Cole, “Wavelet based fault location on power transmission lines using real-world travelling wave data,” Electric Power Systems Research, vol. 186, no. February, p. 106261, 2020, doi: 10.1016/j.epsr.2020.106261.L. Y. Bewley, “Traveling Waves on Transmission Systems,” Transactions of the American Institute of Electrical Engineers, 1931, doi: 10.1109/T-AIEE.1931.5055827.M. Pourahmadi-Nakhli and A. A. Safavi, “Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks,” IEEE Transactions on Power Delivery, 2011, doi: 10.1109/TPWRD.2010.2050218.S. M. Korobeynikov, N. Y. Ilyushov, Y. A. Lavrov, S. S. Shevchenko, and V. A. Loman, “High-Frequency Transients Suppression at Substation,” 2019. doi: 10.1109/ICHVE.2018.8641972.Y. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1279–1284, 2000, doi: 10.1109/61.891515.F. H. Magnago and A. Abur, “A new fault location technique for radial distribution systems based on high frequency signals,” 1999. doi: 10.1109/PESS.1999.784386.T. M. Lai, L. A. Snider, E. Lo, and D. Sutanto, “High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 397–407, 2005, doi: 10.1109/TPWRD.2004.837836.M. Goudarzi, B. Vahidi, R. A. Naghizadeh, and S. H. Hosseinian, “Improved fault location algorithm for radial distribution systems with discrete and continuous wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 67, no. May, pp. 423–430, 2015, doi: 10.1016/j.ijepes.2014.12.014.S. Khokhar, A. A. B. Mohd Zin, A. S. B. Mokhtar, and M. Pesaran, “A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances,” Renewable and Sustainable Energy Reviews. 2015. doi: 10.1016/j.rser.2015.07.068.A. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Transactions on Power Delivery, vol. 14, no. 4, pp. 1469–1476, 1999, doi: 10.1109/61.796242.A. R. Sedighi, M. R. Haghifam, O. P. Malik, and M. H. Ghassemian, “High impedance fault detection based on wavelet transform and statistical pattern recognition,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2414–2421, 2005, doi: 10.1109/TPWRD.2005.852367.Z. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.C. L. Tu, W. L. Hwang, and J. Ho, “Analysis of singularities from modulus maxima of complex wavelets,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 1049–1062, 2005, doi: 10.1109/TIT.2004.842706.K. M. Silva, B. A. Souza, and N. S. D. Brito, “Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, vol. 21, no. 4, pp. 2058–2063, 2006, doi: 10.1109/TPWRD.2006.876659.L. O. Barthold and G. K. Carter, “Digital Traveling-Wave Solutions: I—Single-Phase Equivalents,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1961, doi: 10.1109/AIEEPAS.1961.4501145.F. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.M. Vrhel, C. Lee, and M. Unser, “THE CONTINUOUS WAVELET TRANSFORM: A TOOL FOR SIGNAL INVESTIGATION AND UNDERSTANDING,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1995.L. U. Iurinic, A. S. Bretas, and E. S. Guimaraes, “Continuous-wavelet transform fault location algorithm inferred from faulty signal,” 2012. doi: 10.1109/PESGM.2012.6344853.A. Borghetti, M. Bosetti, C. A. Nucci, M. Paolone, and A. Abur, “Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: Theory and experimental validation,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3139–3146, 2010, doi: 10.1109/TPWRD.2010.2046655.H. w. Dommel and J. M. Michels, “HIGH SPEED RELAYING USING TRAVELING WAVE TRANSIENT ANALYSIS.,” 1978.M. T. Hagh, K. Razi, and H. Taghizadeh, “Fault classification and location of power transmission lines using artificial neural network,” 2007.A. Abdollahi and S. Seyedtabaii, “Comparison of fourier & wavelet transform methods for transmission line fault classification,” PEOCO 2010 - 4th International Power Engineering and Optimization Conference, Program and Abstracts, no. June, pp. 579–584, 2010, doi: 10.1109/PEOCO.2010.5559232.L. J. Collazo and E. O’Neill-Carrillo, “Comparison of windowed Fourier transform and dynamic phasors for power quality analysis,” 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, pp. 1–5, 2009, doi: 10.1109/PSCE.2009.4840147.D. Donnelly, “The Fast Fourier and Hilbert-Huang Transforms: A Comparison,” in IMACS Multiconference on “Computational Engineering in Systems Applications” (CESA), 2006, vol. 12, no. 3, pp. 84–88.S. Vandeput, Heart rate variability : linear and nonlinear analysis with applications in human physiology. 2010.J. B. Allen and L. R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and Synthesis,” Proceedings of the IEEE, 1977, doi: 10.1109/PROC.1977.10770.R. Subhashree, C. S. Preethi, and P. Supriya, “Fault distance identification in transmission line using STFT algorithm,” 2016. doi: 10.1109/ICCCI.2016.7480036.R. Bhattacharjee and A. De, “A robust STFT based algorithm for detection of symmetrical fault during power swing,” 2017. doi: 10.1109/POWERI.2016.8077364.S. Mallat, A Wavelet Tour of Signal Processing The Sparse Way. 2009.J. O. Strömberg, “A modified franklin system and higher-order spline systems on Rn as unconditional bases for hardy spaces,” in Fundamental Papers in Wavelet Theory, 2009. doi: 10.1515/9781400827268.197.J. D. Kropotov, Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment. 2016. doi: 10.1016/C2012-0-07144-X.A. Grossmann and J. Morlet, “Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape,” SIAM Journal on Mathematical Analysis, vol. 15, no. 4, 1984.Y. Meyer, Wavelets and Operators. 1993. doi: 10.1017/cbo9780511623820.A. Cohen, I. Daubechies, and J. ‐C Feauveau, “Biorthogonal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1992, doi: 10.1002/cpa.3160450502.I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1988, doi: 10.1002/cpa.3160410705.I. Daubechies, “2. The Continuous Wavelet Transform,” in Ten Lectures on Wavelets, 1992. doi: 10.1137/1.9781611970104.ch2.I. Daubechies, Ten Lectures on Wavelets. 1992. doi: 10.1137/1.9781611970104.P. Qi, S. Jovanovic, J. Lezama, and P. Schweitzer, “Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks,” Electric Power Systems Research, vol. 143, no. June 2018, pp. 130–139, 2017, doi: 10.1016/j.epsr.2016.10.008.D. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.F. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, 1998, doi: 10.1109/61.714808.F. B. Costa, B. A. Souza, N. S. D. Brito, J. A. C. B. Silva, and W. C. Santos, “Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform,” IEEE Transactions on Industry Applications, 2015, doi: 10.1109/TIA.2015.2434993.M. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.A. Borghetti, S. Corsi, C. A. Nucci, M. Paolone, L. Peretto, and R. Tinarelli, “On the use of continuous-wavelet transform for fault location in distribution power systems,” International Journal of Electrical Power and Energy Systems, 2006, doi: 10.1016/j.ijepes.2006.03.001.A. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.K. Nanayakkara, A. D. Rajapakse, and R. Wachal, “Fault Location in Extra Long HVDC Transmission Lines using Continuous Wavelet Transform,” 2011.MATHWORKS, “Continuous Wavelet Analysis,” https://la.mathworks.com/help/wavelet/gs/continuous-wavelet-analysis.html, 2021.J. Lilly, “A data analysis package for Matlab,” 2016.A. R. Adly, S. H. E. Abdel Aleem, M. A. Elsadd, and Z. M. Ali, “Wavelet packet transform applied to a series-compensated line: A novel scheme for fault identification,” Measurement: Journal of the International Measurement Confederation, vol. 151, p. 107156, 2020, doi: 10.1016/j.measurement.2019.107156.G. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.E. Y. Hamid and Z. I. Kawasaki, “Wavelet-based data compression of power system disturbances using the minimum description length criterion,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 460–466, 2002, doi: 10.1109/61.997918.L. Jin, M. Jiang, and G. Yang, “Fault analysis of microgrid and adaptive distance protection based on complex wavelet transform,” 2014. doi: 10.1109/PEAC.2014.7037882.Z. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.J. G. Proakis and D. G. Monolakis, Digital signal processing: principles, algorithms, and applications. 1996.J. Klomjit, A. Ngaopitakkul, and B. Sreewirote, “Comparison of mother wavelet for classification fault on hybrid transmission line systems,” 2017. doi: 10.1109/ICAwST.2017.8256514.C. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), vol. 10, no. 4, pp. 1–16, 2020, doi: 10.3390/app10041203.W. Fluty and Y. Liao, “Electric Transmission Fault Location Techniques Using Traveling Wave Method and Discrete Wavelet Transform,” Clemson University Power Systems Conference, PSC 2020, 2020, doi: 10.1109/PSC50246.2020.9131271.B. Rathore and A. G. Shaik, “Wavelet-Alienation Based Transmission Line Protection Scheme,” pp. 1–15.H. R. Karimi, W. Pawlus, and K. G. Robbersmyr, “Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets,” Neurocomputing, 2012, doi: 10.1016/j.neucom.2012.04.010.A. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.A. Calderón, “Intermediate spaces and interpolation, the complex method,” Studia Mathematica, 1964, doi: 10.4064/sm-24-2-113-190.P. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.U. B. Parikh, B. Das, and R. P. Maheshwari, “Combined wavelet-SVM technique for fault zone detection in a series compensated transmission line,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1789–1794, 2008, doi: 10.1109/TPWRD.2008.919395.R. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad, “Recognition of Power-Quality Disturbances Using S-Transform-Based ANN Classifier and Rule-Based Decision Tree,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1249–1258, 2015, doi: 10.1109/TIA.2014.2356639.N. Zhang and M. Kezunovic, “Transmission line boundary protection using wavelet transform and neural network,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 859–869, 2007, doi: 10.1109/TPWRD.2007.893596.N. Tailor, S. Joshi, and O. P. Mahela, “Transmission line protection schemes based on wigner distribution function and discrete wavelet transform,” PIICON 2020 - 9th IEEE Power India International Conference, 2020, doi: 10.1109/PIICON49524.2020.9113011.A. K. Pradhan, A. Routray, S. Pati, and D. K. Pradhan, “Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line,” IEEE Transactions on Power Delivery, 2004, doi: 10.1109/TPWRD.2003.822535.Z. L. Gaing, “Wavelet-based neural network for power disturbance recognition and classification,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1560–1568, 2004, doi: 10.1109/TPWRD.2004.835281.D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2295–2304, 2016, doi: 10.1109/TSG.2015.2487501.M. Dashtdar, M. Esmaeilbeig, M. Najafi, and M. E. N. Bushehri, “Fault Location in the Transmission Network Using Artificial Neural Network,” Automatic Control and Computer Sciences, vol. 54, no. 1, pp. 39–51, 2020, doi: 10.3103/S0146411620010022.A. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, 2016, doi: 10.1109/TPWRD.2015.2464098.A. H. Osman and O. P. Malik, “Transmission line distance protection based on wavelet transform,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 515–523, 2004, doi: 10.1109/TPWRD.2003.822531.A. Bermúdez, E. Spinelli, and C. Muravch, “Detección de eventos en señales de EEG mediante Entropía,” 2011. Accessed: Oct. 20, 2021. [Online]. Available: http://www.sabi2011.fi.mdp.edu.ar/proceedings/SABI/Pdf/SABI2011_75.pdfH. Zheng-you, C. Xiaoqing, and L. Guoming, “Wavelet Entropy Measure Definition and Its Application for Transmission Line Fault Detection and Identification; (Part I: Definition and Methodology),” 2007. doi: 10.1109/icpst.2006.321939.Z. He, L. Fu, S. Lin, and Z. Bo, “Fault detection and classification in EHV transmission line based on wavelet singular entropy,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2156–2163, 2010, doi: 10.1109/TPWRD.2010.2042624.S. Khokhar, A. A. Mohd Zin, A. P. Memon, and A. S. Mokhtar, “A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network,” Measurement: Journal of the International Measurement Confederation, vol. 95, pp. 246–259, 2017, doi: 10.1016/j.measurement.2016.10.013.H. H. Chang and N. V. Linh, “Statistical feature extraction for fault locations in nonintrusive fault detection of low voltage distribution systems,” Energies (Basel), vol. 10, no. 5, pp. 1–19, 2017, doi: 10.3390/en10050611.H. Lala and S. Karmakar, “Continuous wavelet transform and artificial neural network based fault diagnosis in 52 bus hybrid distributed generation system,” 4th Students Conference on Engineering and Systems, SCES 2015, 2016, doi: 10.1109/SCES.2015.7506463.Y. Y. Hong and M. T. A. M. Cabatac, “Fault Detection, Classification, and Location by Static Switch in Microgrids Using Wavelet Transform and Taguchi-Based Artificial Neural Network,” IEEE Systems Journal, vol. 14, no. 2, pp. 2725–2735, 2020, doi: 10.1109/JSYST.2019.2925594.B. Rathore and A. G. Shaik, “Wavelet-alienation based transmission line protection scheme,” IET Generation, Transmission and Distribution, vol. 11, no. 4, pp. 995–1003, Mar. 2017, doi: 10.1049/iet-gtd.2016.1022.P. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.F. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.G. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.M. Hirn, “Lecture 16: Wavelet Modulus Maxima,” 2020. Accessed: Sep. 14, 2021. [Online]. Available: https://matthewhirn.files.wordpress.com/2020/03/math994_spring2020_lecture16-1.pdfD. Guillen, M. R. A. Paternina, A. Zamora, J. M. Ramirez, and G. Idarraga, “Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm,” IET Generation, Transmission and Distribution, 2015, doi: 10.1049/iet-gtd.2014.1064.C. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), 2020, doi: 10.3390/app10041203.P. Lertwanitrot and A. Ngaopitakkul, “Discriminating between Capacitor Bank Faults and External Faults for an Unbalanced Current Protection Relay Using DWT,” IEEE Access, vol. 8, pp. 180022–180044, 2020, doi: 10.1109/ACCESS.2020.3026744.D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, 2016, doi: 10.1109/TSG.2015.2487501.L. Breiman, “Random Forests,” Berkeley, CA: University of California, 2001.H. Ampadu, “Random Forests Understanding,” https://ai-pool.com/a/s/random-forests-understanding, May 01, 2021.M. Awad and R. Khanna, “Support Vector Machines for Classification,” in Efficient Learning Machines, 2015. doi: 10.1007/978-1-4302-5990-9_3.A. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 428–436, 2016, doi: 10.1109/TPWRD.2015.2464098.S. Kaewarsa, K. Attakitmongcol, and T. Kulworawanichpong, “Recognition of power quality events by using multiwavelet-based neural network,” Proceedings - 6th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2007; 1st IEEE/ACIS International Workshop on e-Activity, IWEA 2007, no. Icis, pp. 993–998, 2007, doi: 10.1109/ICIS.2007.153.M. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.O. A. S. Youssef, “Combined fuzzy-logic wavelet-based fault classification technique for power system relaying,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 582–589, 2004, doi: 10.1109/TPWRD.2004.826386.J. Jan, Digital Signal Filtering, Analysis and Restoration. 2000. doi: 10.1049/pbte044e.R. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra from the Point of View of Communications Engineering — Part II,” Bell System Technical Journal, vol. 37, no. 2, 1958, doi: 10.1002/j.1538-7305.1958.tb01530.x.F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proceedings of the IEEE, vol. 66, no. 1, 1978, doi: 10.1109/PROC.1978.10837.Chegg, “Problem 8 (Window Functions),” https://www.chegg.com/homework-help/questions-and-answers/problem-8-window-functions-figure-71-shows-three-window-functions-corresponding-amplitude--q51974895.S. W. Smith, Properties of Convolution:The Scientist and Engineer’s Guide to Digital Signal Processing. 1999.S. Bon, M. Vigny, and J. Massoulie, “Order A Journal On The Theory Of Ordered Sets And Its Applications,” Biochemistry, vol. 76, no. 6, 1979.W. K. Chen, Passive, active, and digital filters. 2009. doi: 10.1201/9781315219141.R. B. Randall, J. Antoni, and P. Borghesani, “Applied Digital Signal Processing,” in Handbook of Experimental Structural Dynamics, 2020. doi: 10.1007/978-1-4939-6503-8_6-1.R. Holmes, “Applied Underwater Acoustics,” Physics Bulletin, vol. 18, no. 1, 1967, doi: 10.1088/0031-9112/18/1/021.A. Borghetti, M. Bosetti, M. di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.T. Carsey and J. Harden, Monte Carlo Simulation and Resampling Methods for Social Science. 2014. doi: 10.4135/9781483319605.MATHWORKS, “FILTER REFERENCE,” https://la.mathworks.com/help/matlab/ref/filter.html.K. P. Balanda and H. L. Macgillivray, “Kurtosis: A critical review,” American Statistician, vol. 42, no. 2, 1988, doi: 10.1080/00031305.1988.10475539.MATHWORKS, “KURTOSIS REFERENCE,” https://la.mathworks.com/help/stats/kurtosis.html.ATRIA Innovation, “Qué son las redes neuronales y sus funciones,” https://www.atriainnovation.com/que-son-las-redes-neuronales-y-sus-funciones/, Oct. 19, 2019.B. Yegnanarayana, “Artificial neural networks for pattern recognition,” Sadhana, vol. 19, no. 2, 1994, doi: 10.1007/BF02811896.K. Mehrotra, C. Mohan, and S. Ranka, Elements of Artificial Neural Networks. 2019. doi: 10.7551/mitpress/2687.001.0001.I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Artificial neural networks: A practical course. 2016. doi: 10.1007/978-3-319-43162-8.P. J. Braspenning, F. Thuijsman, and A. Weijters, Artificial neural networks: an introduction to ANN theory and practice, vol. 931. 1995.PICO, “https://www.pico.net/kb/the-role-of-bias-in-neural-networks/,” https://www.pico.net/kb/the-role-of-bias-in-neural-networks/.R. Tadeusiewicz, “Neural networks: A comprehensive foundation,” Control Engineering Practice, vol. 3, no. 5, 1995, doi: 10.1016/0967-0661(95)90080-2.I. S. Korovin and M. v. Khisamutdinov, “Hybrid method of dynamograms wavelet analysis for oil-production equipment state identification,” in Advanced Materials Research, 2014, vol. 909. doi: 10.4028/www.scientific.net/AMR.909.252.J. Villanueva, “Redes neuronales desde cero (I) – Introducción,” https://www.iartificial.net/redes-neuronales-desde-cero-i-introduccion/.IEEE, “IEEE PES Test Feeder,” https://cmte.ieee.org/pes-testfeeders/resources/.Distribution System Analysis Subcommittee IEEE, “IEEE 13 Node Test Feeder.”D. A. Sánchez Muñoz, “Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica,” Medellín, 2020.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1037650152.2022.pdf1037650152.2022.pdfTesis de Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf4370155https://repositorio.unal.edu.co/bitstream/unal/81652/1/1037650152.2022.pdfc1306e79448106bde5e909787c14e85eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81652/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1037650152.2022.pdf.jpg1037650152.2022.pdf.jpgGenerated Thumbnailimage/jpeg3497https://repositorio.unal.edu.co/bitstream/unal/81652/3/1037650152.2022.pdf.jpg4f73a8932488b4a75e7678fff03ee3ffMD53unal/81652oai:repositorio.unal.edu.co:unal/816522024-08-06 23:10:49.48Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK