City safety perception model based on street images using machine learning and image processing techniques
Abstract: Safety perception measurement has been a subject of interest in many cities of the world. This importance is due to its social relevance, and to its influence on many of the economic activities that take place in a city. The methods and procedures presented in this work make use of image p...
- Autores:
-
Acosta Lenis, Sergio Francisco
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/69617
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/69617
http://bdigital.unal.edu.co/71630/
- Palabra clave:
- 37 Educación / Education
53 Física / Physics
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Urban safety perception
Transfer learning
Deep learning
Support vector machine
TrueSkill
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_f0217ae87137e53f74c4ef2aee1e3e49 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/69617 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Camargo Mendoza, Jorge EliecerAcosta Lenis, Sergio Francisco8a33b5e8-4993-4e33-b2d3-4db9eb6310dc3002019-07-03T10:30:53Z2019-07-03T10:30:53Z2018-03-18https://repositorio.unal.edu.co/handle/unal/69617http://bdigital.unal.edu.co/71630/Abstract: Safety perception measurement has been a subject of interest in many cities of the world. This importance is due to its social relevance, and to its influence on many of the economic activities that take place in a city. The methods and procedures presented in this work make use of image processing and machine learning techniques to model citizen's safety perception using visual information of city street images. Even though people safety perception is a subjective topic, results show that it is possible to find out common patterns given a limited geographical and sociocultural context, and based on people judgment of the visual appearance of a street image. Technics based on Support Vector Machines and Neural Networks are presented. The exposed models along with ranking methods are used to predict how safe a given street of Bogotá City is perceived. Results suggest that the obtained models can detect different patterns, where a common visual feature of a street or an urban environment, is linked to an activity or street condition that has a significant influence on their associated safety perception. This feature makes the proposed models an alternative tool for decision makers concerning urban planning, safety, and public health policies, as well as a collective memory associated with a particular urban environment.Maestríaapplication/pdfspahttp://wmodi.com/http://wmodi.com/Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasAcosta Lenis, Sergio Francisco (2018) City safety perception model based on street images using machine learning and image processing techniques. Maestría thesis, Universidad Nacional de Colombia Bogotá.37 Educación / Education53 Física / Physics6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringUrban safety perceptionTransfer learningDeep learningSupport vector machineTrueSkillCity safety perception model based on street images using machine learning and image processing techniquesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALSergioFranciscoAcostaLenis.2019.pdfapplication/pdf8684522https://repositorio.unal.edu.co/bitstream/unal/69617/1/SergioFranciscoAcostaLenis.2019.pdf549afb80ca24a3275143223b363c7e72MD51THUMBNAILSergioFranciscoAcostaLenis.2019.pdf.jpgSergioFranciscoAcostaLenis.2019.pdf.jpgGenerated Thumbnailimage/jpeg3718https://repositorio.unal.edu.co/bitstream/unal/69617/2/SergioFranciscoAcostaLenis.2019.pdf.jpgefd4d06585ef0e9fe1e689eda3ad01f0MD52unal/69617oai:repositorio.unal.edu.co:unal/696172024-06-01 23:11:14.295Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
City safety perception model based on street images using machine learning and image processing techniques |
title |
City safety perception model based on street images using machine learning and image processing techniques |
spellingShingle |
City safety perception model based on street images using machine learning and image processing techniques 37 Educación / Education 53 Física / Physics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Urban safety perception Transfer learning Deep learning Support vector machine TrueSkill |
title_short |
City safety perception model based on street images using machine learning and image processing techniques |
title_full |
City safety perception model based on street images using machine learning and image processing techniques |
title_fullStr |
City safety perception model based on street images using machine learning and image processing techniques |
title_full_unstemmed |
City safety perception model based on street images using machine learning and image processing techniques |
title_sort |
City safety perception model based on street images using machine learning and image processing techniques |
dc.creator.fl_str_mv |
Acosta Lenis, Sergio Francisco |
dc.contributor.author.spa.fl_str_mv |
Acosta Lenis, Sergio Francisco |
dc.contributor.spa.fl_str_mv |
Camargo Mendoza, Jorge Eliecer |
dc.subject.ddc.spa.fl_str_mv |
37 Educación / Education 53 Física / Physics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering |
topic |
37 Educación / Education 53 Física / Physics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Urban safety perception Transfer learning Deep learning Support vector machine TrueSkill |
dc.subject.proposal.spa.fl_str_mv |
Urban safety perception Transfer learning Deep learning Support vector machine TrueSkill |
description |
Abstract: Safety perception measurement has been a subject of interest in many cities of the world. This importance is due to its social relevance, and to its influence on many of the economic activities that take place in a city. The methods and procedures presented in this work make use of image processing and machine learning techniques to model citizen's safety perception using visual information of city street images. Even though people safety perception is a subjective topic, results show that it is possible to find out common patterns given a limited geographical and sociocultural context, and based on people judgment of the visual appearance of a street image. Technics based on Support Vector Machines and Neural Networks are presented. The exposed models along with ranking methods are used to predict how safe a given street of Bogotá City is perceived. Results suggest that the obtained models can detect different patterns, where a common visual feature of a street or an urban environment, is linked to an activity or street condition that has a significant influence on their associated safety perception. This feature makes the proposed models an alternative tool for decision makers concerning urban planning, safety, and public health policies, as well as a collective memory associated with a particular urban environment. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-03-18 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T10:30:53Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T10:30:53Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/69617 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/71630/ |
url |
https://repositorio.unal.edu.co/handle/unal/69617 http://bdigital.unal.edu.co/71630/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://wmodi.com/ http://wmodi.com/ |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Acosta Lenis, Sergio Francisco (2018) City safety perception model based on street images using machine learning and image processing techniques. Maestría thesis, Universidad Nacional de Colombia Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/69617/1/SergioFranciscoAcostaLenis.2019.pdf https://repositorio.unal.edu.co/bitstream/unal/69617/2/SergioFranciscoAcostaLenis.2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
549afb80ca24a3275143223b363c7e72 efd4d06585ef0e9fe1e689eda3ad01f0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089344347013120 |