Estimation of Population Mean in the Presence of Non-Response and Measurement Error
Under classical survey sampling theory the errors mainly studied in the estimation are sampling errors. However, often non-sampling errors are more influential to the properties of the estimator than sampling errors. This is recognized by practitioners, researchers and many great works of literature...
- Autores:
-
Kumar, Sunil
Bhogal, Sandeep
Nataraja, N. S.
Viswanathaiah, M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66546
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66546
http://bdigital.unal.edu.co/67574/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Estimation
Mean Squared Error
Measurement Error
Nonresponse
Ratio Estimator
Sampling Error
Error cuadrático medio
Error de medición
Error de muestreo
Estimación
Estimador de razón.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_efcaac81567e1622e3c613f50ff44e53 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66546 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
title |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
spellingShingle |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Estimation Mean Squared Error Measurement Error Nonresponse Ratio Estimator Sampling Error Error cuadrático medio Error de medición Error de muestreo Estimación Estimador de razón. |
title_short |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
title_full |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
title_fullStr |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
title_full_unstemmed |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
title_sort |
Estimation of Population Mean in the Presence of Non-Response and Measurement Error |
dc.creator.fl_str_mv |
Kumar, Sunil Bhogal, Sandeep Nataraja, N. S. Viswanathaiah, M. |
dc.contributor.author.spa.fl_str_mv |
Kumar, Sunil Bhogal, Sandeep Nataraja, N. S. Viswanathaiah, M. |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Estimation Mean Squared Error Measurement Error Nonresponse Ratio Estimator Sampling Error Error cuadrático medio Error de medición Error de muestreo Estimación Estimador de razón. |
dc.subject.proposal.spa.fl_str_mv |
Estimation Mean Squared Error Measurement Error Nonresponse Ratio Estimator Sampling Error Error cuadrático medio Error de medición Error de muestreo Estimación Estimador de razón. |
description |
Under classical survey sampling theory the errors mainly studied in the estimation are sampling errors. However, often non-sampling errors are more influential to the properties of the estimator than sampling errors. This is recognized by practitioners, researchers and many great works of literature regarding non-sampling errors have been published during last two decades, especially regarding non-response error which is one of the cornerstones of the non-sampling errors. The literature handles one kind of non-sampling error at a time, although in real surveys more than one non-sampling error is usually present.In this paper, two kinds of non-sampling errors are considered at the estimation stage: non-response and measurement error. An exponential ratio type estimator has been developed to estimate the population mean of the response variable in the presence of non-response and measurement errors. Theoretically and empirically, it has been shown that the proposed estimator is more efficient than usual unbiased estimator and other existing estimators. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:20:43Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:20:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66546 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67574/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66546 http://bdigital.unal.edu.co/67574/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/48807 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Kumar, Sunil and Bhogal, Sandeep and Nataraja, N. S. and Viswanathaiah, M. (2015) Estimation of Population Mean in the Presence of Non-Response and Measurement Error. Revista Colombiana de Estadística, 38 (1). pp. 145-161. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66546/1/48807-239247-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66546/2/48807-239247-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
b66dac1b7231bc44c6939eb3bdf85165 4aecada53b15b9ca5d91b75ba9ca4353 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089495507632128 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kumar, Sunil0ab01f20-ba5d-46c8-b751-62acaea43154300Bhogal, Sandeep4afddc78-024b-478b-b1d0-0419db6a5cbd300Nataraja, N. S.85a954a3-cbee-497b-ace7-2f24d57d087f300Viswanathaiah, M.1c87f359-cbe3-4c3b-86cc-9d882a5028633002019-07-03T02:20:43Z2019-07-03T02:20:43Z2015-01-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66546http://bdigital.unal.edu.co/67574/Under classical survey sampling theory the errors mainly studied in the estimation are sampling errors. However, often non-sampling errors are more influential to the properties of the estimator than sampling errors. This is recognized by practitioners, researchers and many great works of literature regarding non-sampling errors have been published during last two decades, especially regarding non-response error which is one of the cornerstones of the non-sampling errors. The literature handles one kind of non-sampling error at a time, although in real surveys more than one non-sampling error is usually present.In this paper, two kinds of non-sampling errors are considered at the estimation stage: non-response and measurement error. An exponential ratio type estimator has been developed to estimate the population mean of the response variable in the presence of non-response and measurement errors. Theoretically and empirically, it has been shown that the proposed estimator is more efficient than usual unbiased estimator and other existing estimators.En la teoría de muestreo de la encuesta clásica los errores estudiados principalmente en la estimación son el muestreo errores. Sin embargo, a menudo los errores ajenos al muestreo son más influyentes que las propiedades del estimador de errores de muestreo. Esto es reconocido por los profesionales, los investigadores y muchos grandes obras de la literatura en relación con los errores ajenos al muestreo se ha publicado en los últimos dos decenios, especialmente en relación con el error de falta de respuesta, que es una de las piedras angulares de los errores ajenos al muestreo. La literatura se ocupa de un tipo de error no muestral a la vez, aunque en las encuestas reales más de un error no muestral suele estar presente. En este trabajo, dos tipos de errores ajenos al muestreo son considerados en la etapa de la estimación: la falta de respuesta y el error de medición. Un tipo exponencial estimador de razón ha sido desarrollado para estimar la media poblacional de la variable de respuesta en presencia de errores de falta de respuesta y de medición. Teóricamente y empíricamente, se ha mostrado que el estimador propuesto es más eficiente que estimador insesgado habitual y otros estimadores existentes.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/48807Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaKumar, Sunil and Bhogal, Sandeep and Nataraja, N. S. and Viswanathaiah, M. (2015) Estimation of Population Mean in the Presence of Non-Response and Measurement Error. Revista Colombiana de Estadística, 38 (1). pp. 145-161. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsEstimationMean Squared ErrorMeasurement ErrorNonresponseRatio EstimatorSampling ErrorError cuadrático medioError de mediciónError de muestreoEstimaciónEstimador de razón.Estimation of Population Mean in the Presence of Non-Response and Measurement ErrorArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL48807-239247-1-PB.pdfapplication/pdf642265https://repositorio.unal.edu.co/bitstream/unal/66546/1/48807-239247-1-PB.pdfb66dac1b7231bc44c6939eb3bdf85165MD51THUMBNAIL48807-239247-1-PB.pdf.jpg48807-239247-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5475https://repositorio.unal.edu.co/bitstream/unal/66546/2/48807-239247-1-PB.pdf.jpg4aecada53b15b9ca5d91b75ba9ca4353MD52unal/66546oai:repositorio.unal.edu.co:unal/665462024-05-16 23:09:44.027Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |