Characterization of heart dynamics in echocardiography

ilustraciones, fotografías, gráficas

Autores:
Jara Hurtado, Jorge Daniel
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82918
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82918
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Pruebas de Función Cardíaca
Técnicas de Diagnóstico Cardiovascular
Heart Function Tests
Diagnostic Techniques, Cardiovascular
Dinámica cardíaca
Ecocadiografía
Función cardíaca
Enfermedades cardiovasculares
Imágenes de ultrasonido
Cardiac dynamic
Echocardiography
Cardiac function
Cardiovascular diseases
Ultrasound images
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_ef9b4abdffebf3a61557f549d5b465e7
oai_identifier_str oai:repositorio.unal.edu.co:unal/82918
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Characterization of heart dynamics in echocardiography
dc.title.translated.spa.fl_str_mv Caracterización de la Dinámica Cardíaca en Ecocardiografía
title Characterization of heart dynamics in echocardiography
spellingShingle Characterization of heart dynamics in echocardiography
620 - Ingeniería y operaciones afines
Pruebas de Función Cardíaca
Técnicas de Diagnóstico Cardiovascular
Heart Function Tests
Diagnostic Techniques, Cardiovascular
Dinámica cardíaca
Ecocadiografía
Función cardíaca
Enfermedades cardiovasculares
Imágenes de ultrasonido
Cardiac dynamic
Echocardiography
Cardiac function
Cardiovascular diseases
Ultrasound images
title_short Characterization of heart dynamics in echocardiography
title_full Characterization of heart dynamics in echocardiography
title_fullStr Characterization of heart dynamics in echocardiography
title_full_unstemmed Characterization of heart dynamics in echocardiography
title_sort Characterization of heart dynamics in echocardiography
dc.creator.fl_str_mv Jara Hurtado, Jorge Daniel
dc.contributor.advisor.none.fl_str_mv Romero Castro, Eduardo
dc.contributor.author.none.fl_str_mv Jara Hurtado, Jorge Daniel
dc.contributor.researchgroup.spa.fl_str_mv Cim@Lab
dc.contributor.orcid.spa.fl_str_mv Jara, Daniel [0000-0002-0666-0320]
dc.contributor.cvlac.spa.fl_str_mv Jara Hurtado, Jorge Daniel [0000128191]
dc.contributor.googlescholar.spa.fl_str_mv Jara-Hurtado, Daniel [gb6iLxMAAAAJ&hl]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Pruebas de Función Cardíaca
Técnicas de Diagnóstico Cardiovascular
Heart Function Tests
Diagnostic Techniques, Cardiovascular
Dinámica cardíaca
Ecocadiografía
Función cardíaca
Enfermedades cardiovasculares
Imágenes de ultrasonido
Cardiac dynamic
Echocardiography
Cardiac function
Cardiovascular diseases
Ultrasound images
dc.subject.decs.spa.fl_str_mv Pruebas de Función Cardíaca
Técnicas de Diagnóstico Cardiovascular
dc.subject.decs.eng.fl_str_mv Heart Function Tests
Diagnostic Techniques, Cardiovascular
dc.subject.proposal.spa.fl_str_mv Dinámica cardíaca
Ecocadiografía
Función cardíaca
Enfermedades cardiovasculares
Imágenes de ultrasonido
dc.subject.proposal.eng.fl_str_mv Cardiac dynamic
Echocardiography
Cardiac function
Cardiovascular diseases
Ultrasound images
description ilustraciones, fotografías, gráficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-28
dc.date.accessioned.none.fl_str_mv 2023-01-13T16:50:03Z
dc.date.available.none.fl_str_mv 2023-01-13T16:50:03Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82918
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.repo.none.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82918
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv World Health Organization. Cardiovascular diseases (cvds), Jun 2011.
Observatorio Nacional de Salud Instituto Nacional de Salud. Enfermedad cardiovascu- lar: principal causa de muerte en colombia, Dec 2013.
Doust J. Glasziou P. Lehman, R. Cardiac impairment or heart failure?, 2005.
Jane E Carreiro. Chapter 4 - the cardiovascular system. In Jane E Carreiro, editor, An Osteopathic Approach to Children (Second Edition), pages 73–83. Churchill Livingstone, Edinburgh, second edition edition, 2009.
et al. Trianini J. Fundamentos de la nueva mec ́anica cardiaca: la bomba de succio ́n. page 112, 2015.
Francisco Torrent-Guasp, Mladen J. Kocica, Antonio Corno, Masashi Komeda, James Cox, A. Flotats, Manel Ballester-Rodes, and Francesc Carreras-Costa. Systolic ventri- cular filling. European Journal of Cardio-Thoracic Surgery, 25(3):376–386, 03 2004.
Katherine C. Michelis, David L. Narotsky, and Brian G. Choi. Cardiovascular Imaging in Global Health Radiology, pages 207–224. Springer International Publishing, Cham, 2019.
Sasikumar N. Ahmed I. Echocardiography imaging techniques, 2021.
Rahko Peter S. Blauwet Lori A. Canaday Barry Finstuen Joshua A. Foster Michael C. Horton Kenneth Ogunyankin Kofo O. Palma Richard A. Velazquez Eric J. Mitchell, Carol. Imaging: Echocardiology—assessment of cardiac structure and function. pages 1–64. Elsevier, 2019.
D. Bamira and M.H. Picard. Imaging: Echocardiology—assessment of cardiac structure and function. In Ramachandran S. Vasan and Douglas B. Sawyer, editors, Encyclopedia of Cardiovascular Research and Medicine, pages 35–54. Elsevier, Oxford, 2018.
K. Kusunose. Current Cardiology Reports, 22(89), 2020.
Turner Patrick L. Gazewood, John D. Heart failure with preserved ejection fraction: Diagnosis and management. American family physician, 96(9):582–588, 2017.
Marc A. Pfeffer, Amil M. Shah, and Barry A. Borlaug. Heart failure with preserved ejection fraction in perspective. Circulation Research, 124(11):1598–1617, 2019.
Juan Cosın Aguilar. Francisco torrent-guasp (1931-2005). Revista Espanola de Cardiologıa (English Edition), 58(6):759–760, 2005.
Tatiana Chumarnaya, Olga Solovyova, Yulia Alueva, Sergey P. Mikhailov, Valentina V. Kochmasheva, and Vladimir S. Markhasin. Left ventricle functional geometry in cardiac pathology. In 2015 Computing in Cardiology Conference (CinC), pages 353–356, 2015.
Neha Goyal, Victor Mor-Avi, Valentina Volpato, Akhil Narang, Shuo Wang, Michael Salerno, Roberto M. Lang, and Amit R. Patel. Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventri- cular volumes from cardiac magnetic resonance images. Magnetic Resonance Imaging, 67:28–32, 2020.
Muqing Deng, Cong Wang, Min Tang, and Tongjia Zheng. Extracting cardiac dynamics within ecg signal for human identification and cardiovascular diseases classification. Neural Networks, 100:70–83, 2018.
et al. Nyrnes S. A. Blood speckle-tracking based on high–frame rate ultrasound imaging in pediatric cardiology. 33(4):493–503, 2020.
Sri Oktamuliani, Kaoru Hasegawa, and Yoshifumi Saijo. Left ventricular vortices in myocardial infarction observed with echodynamography. In 2019 41st Annual Interna- tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5816–5819, 2019.
Angelica Atehortua, Eduardo Romero, and Mireille Garreau. Characterization of motion patterns by a spatio-temporal saliency descriptor in cardiac cine mri. Computer Methods and Programs in Biomedicine, 218:106714, 2022.
Felipe M. Parages, Thomas S. Denney, Himanshu Gupta, Steven G. Lloyd, Louis J. Dell’Italia, and Jovan G. Brankov. Estimation of left ventricular motion from cardiac gated tagged mri using an image-matching deformable mesh model. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(2):147–157, 2017.
Vinayak Kumar, Alexander J. Ryu, Armando Manduca, Chaitanya Rao, Raymond J. Gibbons, Bernard J. Gersh, Krishnaswamy Chandrasekaran, Samuel J. Asirvatham, Philip A. Araoz, Jae K. Oh, Alexander C. Egbe, Atta Behfar, Barry A. Borlaug, and Nandan S. Anavekar. Cardiac mri demonstrates compressibility in healthy myocar- dium but not in myocardium with reduced ejection fraction. International Journal of Cardiology, 322:278–283, 2021.
Douglas L. Mann and Michael R. Bristow. Mechanisms and models in heart failure. Circulation, 111(21):2837–2849, 2005.
Han H. C. Voorhees, A. P. Biomechanics of cardiac function. Comprehensive Physiology, 5(4):1623–1644, 2015.
et al. Trianini J. Fundamentos de la Nueva Mec ́anica Cardiaca: la Bomba de Succi ́on. Lumen, 2015.
Michael Dandel, Hans Lehmkuhl, Christoph Knosalla, Nino Suramelashvili, and Roland Hetzer. Strain and strain rate imaging by echocardiography-basic concepts and clinical applicability. Current cardiology reviews, 5(2):133–148, 2009.
Joseph T Poterucha, Shelby Kutty, Rebecca K Lindquist, Ling Li, and Benjamin W Eidem. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. Journal of the American Society of Echocardiography, 25(7):733–740, 2012.
Javier Bermejo, Yolanda Benito, Marta Alhama, Raquel Yotti, Pablo Mart ́ınez-Legazpi, Candelas P ́erez del Villar, Esther P ́erez-David, Ana Gonz ́alez-Mansilla, Cristina Santa- Marta, Alicia Barrio, Francisco Ferna ́ndez-Avil ́es, and Juan C. del A ́lamo. Intraven- tricular vortex properties in nonischemic dilated cardiomyopathy. American Jour- nal of Physiology-Heart and Circulatory Physiology, 306(5):H718–H729, 2014. PMID: 24414062.
Iman Borazjani, John Westerdale, Eileen M McMahon, Prathish K Rajaraman, Je↵rey J Heys, and Marek Belohlavek. Left ventricular flow analysis: recent advances in numeri- cal methods and applications in cardiac ultrasound. Computational and mathematical methods in medicine, 2013, 2013.
Mehedi Hasan Talukder, Mitsuhara Ogiya, and Masato Takanokura. Hybrid technique for despeckling medical ultrasound images. In Proceedings of the International Multi- Conference of Engineers and Computer Scientists, volume 1, 2018.
Alberto Cadena-Bonfanti Sonia H. Contreras-Ortiz Jader Giraldo-Guzm ́an, Oscar Porto-Solano. Speckle reduction in echocardiography by temporal compounding and anisotropic di↵usion filtering, 2015.
G. Ramos-Llorden, G. Vegas-Sanchez-Ferrero, M. Martin-Fernandez, C. Alberola-Lopez, and S. Aja-Fernandez. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transactions on Image Processing, 24(1):345–358, Jan 2015.
S. Aja-Fernandez and C. Alberola-Lopez. On the estimation of the coe ffient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9):2694–2701, Sep. 2006.
Yanfeng Gu, Zhaoyu Cui, Chunhong Xiu, and Lanfeng Wang. Ultrasound echocardiography despeckling with non-local means time series filter. Neurocomputing, 124:120 – 130, 2014.
A. Buades, B. Coll, and J. . Morel. A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65 vol. 2, June 2005.
Simarjot Kaur Randhawa, Ramesh Kumar Sunkaria, and Emjee Puthooran. Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidimen- sional Systems and Signal Processing, Sep 2018.
Nishtha Rawat, Manminder Singh, and Birmohan Singh. Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wireless Personal Communications, 106(3):1547–1572, Jun 2019.
X. Zhang, S. Cheng, H. Ding, H. Wu, N. Gong, and R. Cheng. Ultrasound medical image denoising based on multi-direction median filter. In 2016 8th International Conference on Information Technology in Medicine and Education (ITME), pages 835–839, Dec 2016.
Parisa Gifani, Hamid Behnam, Farzan Haddadi, Zahra Alizadeh Sani, and Peyman Gifa- ni. Echocardiography noise reduction using sparse representation. Computers Electrical Engineering, 53:301 – 318, 2016.
S. Rajalaxmi and S. Nirmala. Entropy-based straight kernel filter for echocardiography image denoising. Journal of Digital Imaging, 27(5):610–624, Oct 2014.
Yongjian Yu and S. T. Acton. Speckle reducing anisotropic di↵usion. IEEE Transactions on Image Processing, 11(11):1260–1270, Nov 2002.
O. Bernard, J. G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-Pop, F. Cervenansky, S. Valette, O. Mirea, M. Bernier, P. Jodoin, J. S. Domingos, R. V. Stebbing, K. Keraudren, O. Oktay, J. Caballero, W. Shi, D. Rueckert, F. Milletari, S. Ahmadi, E. Smistad, F. Lindseth, M. van Stralen, C. Wang, O ̈. Smedby, E. Donal, M. Monaghan, A. Papachristidis, M. L. Geleijnse, E. Galli, and J. D’hooge. Standardized evaluation system for left ventricular segmentation algorithms in 3d echocardiography. IEEE Transactions on Medical Imaging, 35(4):967–977, April 2016.
Jose V. Manjon, Pierrick Coupe, Luis Martı-Bonmati, D. Louis Collins, and Montserrat Robles. Adaptive non-local means denoising of mr images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1):192–203, 2010.
Nagashettappa Biradar, M.L. Dewal, ManojKumar Rohit, and Ishan Jindal. Echocar- diographic image denoising using extreme total variation bilateral filter. Optik, 127(1):30 – 38, 2016.
Anita. Sadeghpour and Azin. Alizadehasl. Chapter 5 - echocardiography. In Majid Maleki, Azin Alizadehasl, and Majid Haghjoo, editors, Practical Cardiology, pages 67 – 111. Elsevier, 2018.
James N. Kirkpatrick, Mani A. Vannan, Jagat Narula, and Roberto M. Lang. Echocar- diography in heart failure. Journal of the American College of Cardiology, 50(5):381– 396, 2007.
Thomas H. Marwick. The role of echocardiography in heart failure. Journal of Nuclear Medicine, 56(Supplement 4):31S–38S, 2015.
et al. Dandel M. Strain and strain rate imaging by echocardiography – basic concepts and clinical applicability. 5(2):133–148, 2009.
et al. Vos H. J. Contrast-enhanced high-frame-rate ultrasound imaging of flow patterns in cardiac chambers and deep vessels. 46(11):2875–2890, 2020.
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Su ̈sstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.
Jorge Daniel Jara-Hurtado, Alvaro Andres Sandino, Angelica Atehortua, Carlos Alberto Ortız Davila, and Eduardo Romero. Speckle noise reduction in echocardiography using a bank of filters based on oriented structuring elements. In 15th International Symposium on Medical Information Processing and Analysis, volume 11330, pages 27 – 32. International Society for Optics and Photonics, SPIE, 2020.
Quinn T.A.-Holmes J. W. Richardson W. J., Clarke S. A. Richardson, w. j., clarke, s. a., quinn, t. a., holmes, j. w. (2015). physiological implications of myocardial scar structu- re. comprehensive physiology, 5(4), 1877–1909. https://doi.org/10.1002/cphy.c140067. Comprehensive Physiology, 5(4):1877–1909, 2015.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2022
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 34 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82918/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82918/2/1020776429.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82918/3/1020776429.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
8ba173d27b15f6cd8bf6509665393021
386a71e72564c7db6a7c2bfdfe875e03
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090011844280320
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, Eduardocdde36df751c8bac46785c53d50fefcaJara Hurtado, Jorge Danielda8bb06b13c0a3c2dba30cc4667e6d72600Cim@LabJara, Daniel [0000-0002-0666-0320]Jara Hurtado, Jorge Daniel [0000128191]Jara-Hurtado, Daniel [gb6iLxMAAAAJ&hl]2023-01-13T16:50:03Z2023-01-13T16:50:03Z2022-11-28https://repositorio.unal.edu.co/handle/unal/82918Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficasLas enfermedades cardiovasculares son la principal causa de muerte a nivel mundial. Para el 2019, se estimó que el 32% de todas las muertes a nivel mundial se dieron por esta causa. Este fenómeno se repite a nivel nacional, de acuerdo al Instituto Nacional de Salud, es la principal causa de muerte con un 23.5% de las muertes en el país. Para su diagnóstico, las imagenes ecocardiografía son la primer elección. La técnica permite evaluar las estructuras cardíacas y su función en la mayoría de ambientes clínicos. La ecocardiografía cuenta con diferentes modalidades que tomando ventaja de principios claves de ultrasonido permiten obtener modalidades como el análisis Doppler y técnicas de rastreo de patrones speckle, permitiendo a su vez evaluar el flujo de la sangre en puntos clave, así como el movimiento del músculo cardíaco. Además de los diferentes modos de imagen, de la ecografía se pueden obtener diferentes medidas para una evaluación completa: grosor de las paredes ventriculares, dimensiones de la cámara cardíaca, volúmenes de los ventrículos, velocidades de flujo y fracciones de eyección. Sin embargo, estas técnicas están dirigidas a ver las características de la sangre y del músculo por separado. Dadas estas razones y recordando que la función cardíaca es dependiente de interacciones entre tejidos de diferentes características (sangre y músculo), así como de la construcción misma del ventrículo (que explica varios elementos del movimiento cardíaco). Este trabajo propone explorar la evaluación de la función cardíaca en términos de la interacción dinámica entre estos tejidos, pues puede aportar información complementaria a los indicadores de evaluación actuales. (Texto tomado de la fuente)Cardiovascular diseases are the leading cause of death worldwide. In 2019, it was estimated that 32% of all deaths globally were due to this cause. This happens at national level, according to the colombian National Institute of Health (Instituto Nacional de Salud de Colombia - INS), this is the first cause of death with a 23.5% of all deaths in the country. In order to diagnose the cardiovascular disease, the echocardiography images are the first choice. This technique allows to evaluate the cardiac structures and its function in most of clinical environments. Echocardiography imaging has several modalities that by taking advantage of key principles of ultrasound, as Doppler imaging and speckle tracking techniques, allows to assess the blood flow in key points, as well as the motion of the cardiac muscle. Besides the different imaging techniques, from echocardiography, it is possible to obtain different measurements to perform a complete assessment: ventricular walls thickness, cardiac chamber dimensions, ventricular volumes, blood flow velocities and ejection fraction. Nevertheless, this techniques are devised to observe muscular and blood features separately. Given these reasons and remembering that the cardiac function is dependant on interactions between tissues of different characteristics (blood and muscle), This work aims to explore the cardiac function in terms of the dynamic interaction between these tissues, since it may provide complementary information to the current cardiac indicators.MaestríaMagíster en Ingeniería BiomédicaAnatomía digital por imágenesx, 34 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Ingeniería BiomédicaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesPruebas de Función CardíacaTécnicas de Diagnóstico CardiovascularHeart Function TestsDiagnostic Techniques, CardiovascularDinámica cardíacaEcocadiografíaFunción cardíacaEnfermedades cardiovascularesImágenes de ultrasonidoCardiac dynamicEchocardiographyCardiac functionCardiovascular diseasesUltrasound imagesCharacterization of heart dynamics in echocardiographyCaracterización de la Dinámica Cardíaca en EcocardiografíaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMWorld Health Organization. Cardiovascular diseases (cvds), Jun 2011.Observatorio Nacional de Salud Instituto Nacional de Salud. Enfermedad cardiovascu- lar: principal causa de muerte en colombia, Dec 2013.Doust J. Glasziou P. Lehman, R. Cardiac impairment or heart failure?, 2005.Jane E Carreiro. Chapter 4 - the cardiovascular system. In Jane E Carreiro, editor, An Osteopathic Approach to Children (Second Edition), pages 73–83. Churchill Livingstone, Edinburgh, second edition edition, 2009.et al. Trianini J. Fundamentos de la nueva mec ́anica cardiaca: la bomba de succio ́n. page 112, 2015.Francisco Torrent-Guasp, Mladen J. Kocica, Antonio Corno, Masashi Komeda, James Cox, A. Flotats, Manel Ballester-Rodes, and Francesc Carreras-Costa. Systolic ventri- cular filling. European Journal of Cardio-Thoracic Surgery, 25(3):376–386, 03 2004.Katherine C. Michelis, David L. Narotsky, and Brian G. Choi. Cardiovascular Imaging in Global Health Radiology, pages 207–224. Springer International Publishing, Cham, 2019.Sasikumar N. Ahmed I. Echocardiography imaging techniques, 2021.Rahko Peter S. Blauwet Lori A. Canaday Barry Finstuen Joshua A. Foster Michael C. Horton Kenneth Ogunyankin Kofo O. Palma Richard A. Velazquez Eric J. Mitchell, Carol. Imaging: Echocardiology—assessment of cardiac structure and function. pages 1–64. Elsevier, 2019.D. Bamira and M.H. Picard. Imaging: Echocardiology—assessment of cardiac structure and function. In Ramachandran S. Vasan and Douglas B. Sawyer, editors, Encyclopedia of Cardiovascular Research and Medicine, pages 35–54. Elsevier, Oxford, 2018.K. Kusunose. Current Cardiology Reports, 22(89), 2020.Turner Patrick L. Gazewood, John D. Heart failure with preserved ejection fraction: Diagnosis and management. American family physician, 96(9):582–588, 2017.Marc A. Pfeffer, Amil M. Shah, and Barry A. Borlaug. Heart failure with preserved ejection fraction in perspective. Circulation Research, 124(11):1598–1617, 2019.Juan Cosın Aguilar. Francisco torrent-guasp (1931-2005). Revista Espanola de Cardiologıa (English Edition), 58(6):759–760, 2005.Tatiana Chumarnaya, Olga Solovyova, Yulia Alueva, Sergey P. Mikhailov, Valentina V. Kochmasheva, and Vladimir S. Markhasin. Left ventricle functional geometry in cardiac pathology. In 2015 Computing in Cardiology Conference (CinC), pages 353–356, 2015.Neha Goyal, Victor Mor-Avi, Valentina Volpato, Akhil Narang, Shuo Wang, Michael Salerno, Roberto M. Lang, and Amit R. Patel. Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventri- cular volumes from cardiac magnetic resonance images. Magnetic Resonance Imaging, 67:28–32, 2020.Muqing Deng, Cong Wang, Min Tang, and Tongjia Zheng. Extracting cardiac dynamics within ecg signal for human identification and cardiovascular diseases classification. Neural Networks, 100:70–83, 2018.et al. Nyrnes S. A. Blood speckle-tracking based on high–frame rate ultrasound imaging in pediatric cardiology. 33(4):493–503, 2020.Sri Oktamuliani, Kaoru Hasegawa, and Yoshifumi Saijo. Left ventricular vortices in myocardial infarction observed with echodynamography. In 2019 41st Annual Interna- tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5816–5819, 2019.Angelica Atehortua, Eduardo Romero, and Mireille Garreau. Characterization of motion patterns by a spatio-temporal saliency descriptor in cardiac cine mri. Computer Methods and Programs in Biomedicine, 218:106714, 2022.Felipe M. Parages, Thomas S. Denney, Himanshu Gupta, Steven G. Lloyd, Louis J. Dell’Italia, and Jovan G. Brankov. Estimation of left ventricular motion from cardiac gated tagged mri using an image-matching deformable mesh model. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(2):147–157, 2017.Vinayak Kumar, Alexander J. Ryu, Armando Manduca, Chaitanya Rao, Raymond J. Gibbons, Bernard J. Gersh, Krishnaswamy Chandrasekaran, Samuel J. Asirvatham, Philip A. Araoz, Jae K. Oh, Alexander C. Egbe, Atta Behfar, Barry A. Borlaug, and Nandan S. Anavekar. Cardiac mri demonstrates compressibility in healthy myocar- dium but not in myocardium with reduced ejection fraction. International Journal of Cardiology, 322:278–283, 2021.Douglas L. Mann and Michael R. Bristow. Mechanisms and models in heart failure. Circulation, 111(21):2837–2849, 2005.Han H. C. Voorhees, A. P. Biomechanics of cardiac function. Comprehensive Physiology, 5(4):1623–1644, 2015.et al. Trianini J. Fundamentos de la Nueva Mec ́anica Cardiaca: la Bomba de Succi ́on. Lumen, 2015.Michael Dandel, Hans Lehmkuhl, Christoph Knosalla, Nino Suramelashvili, and Roland Hetzer. Strain and strain rate imaging by echocardiography-basic concepts and clinical applicability. Current cardiology reviews, 5(2):133–148, 2009.Joseph T Poterucha, Shelby Kutty, Rebecca K Lindquist, Ling Li, and Benjamin W Eidem. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. Journal of the American Society of Echocardiography, 25(7):733–740, 2012.Javier Bermejo, Yolanda Benito, Marta Alhama, Raquel Yotti, Pablo Mart ́ınez-Legazpi, Candelas P ́erez del Villar, Esther P ́erez-David, Ana Gonz ́alez-Mansilla, Cristina Santa- Marta, Alicia Barrio, Francisco Ferna ́ndez-Avil ́es, and Juan C. del A ́lamo. Intraven- tricular vortex properties in nonischemic dilated cardiomyopathy. American Jour- nal of Physiology-Heart and Circulatory Physiology, 306(5):H718–H729, 2014. PMID: 24414062.Iman Borazjani, John Westerdale, Eileen M McMahon, Prathish K Rajaraman, Je↵rey J Heys, and Marek Belohlavek. Left ventricular flow analysis: recent advances in numeri- cal methods and applications in cardiac ultrasound. Computational and mathematical methods in medicine, 2013, 2013.Mehedi Hasan Talukder, Mitsuhara Ogiya, and Masato Takanokura. Hybrid technique for despeckling medical ultrasound images. In Proceedings of the International Multi- Conference of Engineers and Computer Scientists, volume 1, 2018.Alberto Cadena-Bonfanti Sonia H. Contreras-Ortiz Jader Giraldo-Guzm ́an, Oscar Porto-Solano. Speckle reduction in echocardiography by temporal compounding and anisotropic di↵usion filtering, 2015.G. Ramos-Llorden, G. Vegas-Sanchez-Ferrero, M. Martin-Fernandez, C. Alberola-Lopez, and S. Aja-Fernandez. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transactions on Image Processing, 24(1):345–358, Jan 2015.S. Aja-Fernandez and C. Alberola-Lopez. On the estimation of the coe ffient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9):2694–2701, Sep. 2006.Yanfeng Gu, Zhaoyu Cui, Chunhong Xiu, and Lanfeng Wang. Ultrasound echocardiography despeckling with non-local means time series filter. Neurocomputing, 124:120 – 130, 2014.A. Buades, B. Coll, and J. . Morel. A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65 vol. 2, June 2005.Simarjot Kaur Randhawa, Ramesh Kumar Sunkaria, and Emjee Puthooran. Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidimen- sional Systems and Signal Processing, Sep 2018.Nishtha Rawat, Manminder Singh, and Birmohan Singh. Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wireless Personal Communications, 106(3):1547–1572, Jun 2019.X. Zhang, S. Cheng, H. Ding, H. Wu, N. Gong, and R. Cheng. Ultrasound medical image denoising based on multi-direction median filter. In 2016 8th International Conference on Information Technology in Medicine and Education (ITME), pages 835–839, Dec 2016.Parisa Gifani, Hamid Behnam, Farzan Haddadi, Zahra Alizadeh Sani, and Peyman Gifa- ni. Echocardiography noise reduction using sparse representation. Computers Electrical Engineering, 53:301 – 318, 2016.S. Rajalaxmi and S. Nirmala. Entropy-based straight kernel filter for echocardiography image denoising. Journal of Digital Imaging, 27(5):610–624, Oct 2014.Yongjian Yu and S. T. Acton. Speckle reducing anisotropic di↵usion. IEEE Transactions on Image Processing, 11(11):1260–1270, Nov 2002.O. Bernard, J. G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-Pop, F. Cervenansky, S. Valette, O. Mirea, M. Bernier, P. Jodoin, J. S. Domingos, R. V. Stebbing, K. Keraudren, O. Oktay, J. Caballero, W. Shi, D. Rueckert, F. Milletari, S. Ahmadi, E. Smistad, F. Lindseth, M. van Stralen, C. Wang, O ̈. Smedby, E. Donal, M. Monaghan, A. Papachristidis, M. L. Geleijnse, E. Galli, and J. D’hooge. Standardized evaluation system for left ventricular segmentation algorithms in 3d echocardiography. IEEE Transactions on Medical Imaging, 35(4):967–977, April 2016.Jose V. Manjon, Pierrick Coupe, Luis Martı-Bonmati, D. Louis Collins, and Montserrat Robles. Adaptive non-local means denoising of mr images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1):192–203, 2010.Nagashettappa Biradar, M.L. Dewal, ManojKumar Rohit, and Ishan Jindal. Echocar- diographic image denoising using extreme total variation bilateral filter. Optik, 127(1):30 – 38, 2016.Anita. Sadeghpour and Azin. Alizadehasl. Chapter 5 - echocardiography. In Majid Maleki, Azin Alizadehasl, and Majid Haghjoo, editors, Practical Cardiology, pages 67 – 111. Elsevier, 2018.James N. Kirkpatrick, Mani A. Vannan, Jagat Narula, and Roberto M. Lang. Echocar- diography in heart failure. Journal of the American College of Cardiology, 50(5):381– 396, 2007.Thomas H. Marwick. The role of echocardiography in heart failure. Journal of Nuclear Medicine, 56(Supplement 4):31S–38S, 2015.et al. Dandel M. Strain and strain rate imaging by echocardiography – basic concepts and clinical applicability. 5(2):133–148, 2009.et al. Vos H. J. Contrast-enhanced high-frame-rate ultrasound imaging of flow patterns in cardiac chambers and deep vessels. 46(11):2875–2890, 2020.Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Su ̈sstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.Jorge Daniel Jara-Hurtado, Alvaro Andres Sandino, Angelica Atehortua, Carlos Alberto Ortız Davila, and Eduardo Romero. Speckle noise reduction in echocardiography using a bank of filters based on oriented structuring elements. In 15th International Symposium on Medical Information Processing and Analysis, volume 11330, pages 27 – 32. International Society for Optics and Photonics, SPIE, 2020.Quinn T.A.-Holmes J. W. Richardson W. J., Clarke S. A. Richardson, w. j., clarke, s. a., quinn, t. a., holmes, j. w. (2015). physiological implications of myocardial scar structu- re. comprehensive physiology, 5(4), 1877–1909. https://doi.org/10.1002/cphy.c140067. Comprehensive Physiology, 5(4):1877–1909, 2015.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82918/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020776429.2022.pdf1020776429.2022.pdfTesis de Maestría en Ingeniería Biomédicaapplication/pdf2741113https://repositorio.unal.edu.co/bitstream/unal/82918/2/1020776429.2022.pdf8ba173d27b15f6cd8bf6509665393021MD52THUMBNAIL1020776429.2022.pdf.jpg1020776429.2022.pdf.jpgGenerated Thumbnailimage/jpeg4253https://repositorio.unal.edu.co/bitstream/unal/82918/3/1020776429.2022.pdf.jpg386a71e72564c7db6a7c2bfdfe875e03MD53unal/82918oai:repositorio.unal.edu.co:unal/829182024-08-14 23:41:24.684Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=