Best approximation in vector valued function spaces

Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic...

Full description

Autores:
Khalil, Roshdi
Tipo de recurso:
Article of journal
Fecha de publicación:
1985
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/48813
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/48813
http://bdigital.unal.edu.co/42270/
Palabra clave:
Unit circle
separable Hilbert space
space of bounded
holomorphic functions i
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ef17dfb9acdf3a30a648d374b18e3f26
oai_identifier_str oai:repositorio.unal.edu.co:unal/48813
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Khalil, Roshdica4bde2e-8bc0-40e9-bc12-fc86cc491f033002019-06-29T08:07:19Z2019-06-29T08:07:19Z1985https://repositorio.unal.edu.co/handle/unal/48813http://bdigital.unal.edu.co/42270/Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic functions in the unit disk with values in H. The object of this paper is to prove that (H∞+C)(T,H) is proximinal in L∞(T,H). This generalizes the scalar valued case done by Axler, S. et al. We also prove that (H∞+C)(T,l∞) |H∞(T,l∞) is an M-ideal of L∞(T,l∞) | H∞ (T, l∞), and V(T,l∞) is an M-ideal of L∞(T, l∞)whenever V is an M-ideal of L∞, where V(T,l∞) {g ϵ L∞(T,l∞): and lt;g(t), δn and gt; ϵ V for all n}.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32639Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 19, núm. 3-4 (1985); 313-322 2357-4100 0034-7426Khalil, Roshdi (1985) Best approximation in vector valued function spaces. Revista Colombiana de Matemáticas; Vol. 19, núm. 3-4 (1985); 313-322 2357-4100 0034-7426 .Best approximation in vector valued function spacesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTUnit circleseparable Hilbert spacespace of boundedholomorphic functions iORIGINAL32639-120775-1-PB.pdfapplication/pdf2830406https://repositorio.unal.edu.co/bitstream/unal/48813/1/32639-120775-1-PB.pdface2c88a2d50d917aa74e8b9ef1d2617MD51THUMBNAIL32639-120775-1-PB.pdf.jpg32639-120775-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6248https://repositorio.unal.edu.co/bitstream/unal/48813/2/32639-120775-1-PB.pdf.jpgfe98e03dc1849ae2ad79a6d78d6a48b2MD52unal/48813oai:repositorio.unal.edu.co:unal/488132023-11-05 23:17:14.054Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Best approximation in vector valued function spaces
title Best approximation in vector valued function spaces
spellingShingle Best approximation in vector valued function spaces
Unit circle
separable Hilbert space
space of bounded
holomorphic functions i
title_short Best approximation in vector valued function spaces
title_full Best approximation in vector valued function spaces
title_fullStr Best approximation in vector valued function spaces
title_full_unstemmed Best approximation in vector valued function spaces
title_sort Best approximation in vector valued function spaces
dc.creator.fl_str_mv Khalil, Roshdi
dc.contributor.author.spa.fl_str_mv Khalil, Roshdi
dc.subject.proposal.spa.fl_str_mv Unit circle
separable Hilbert space
space of bounded
holomorphic functions i
topic Unit circle
separable Hilbert space
space of bounded
holomorphic functions i
description Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic functions in the unit disk with values in H. The object of this paper is to prove that (H∞+C)(T,H) is proximinal in L∞(T,H). This generalizes the scalar valued case done by Axler, S. et al. We also prove that (H∞+C)(T,l∞) |H∞(T,l∞) is an M-ideal of L∞(T,l∞) | H∞ (T, l∞), and V(T,l∞) is an M-ideal of L∞(T, l∞)whenever V is an M-ideal of L∞, where V(T,l∞) {g ϵ L∞(T,l∞): and lt;g(t), δn and gt; ϵ V for all n}.
publishDate 1985
dc.date.issued.spa.fl_str_mv 1985
dc.date.accessioned.spa.fl_str_mv 2019-06-29T08:07:19Z
dc.date.available.spa.fl_str_mv 2019-06-29T08:07:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/48813
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/42270/
url https://repositorio.unal.edu.co/handle/unal/48813
http://bdigital.unal.edu.co/42270/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/32639
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 19, núm. 3-4 (1985); 313-322 2357-4100 0034-7426
dc.relation.references.spa.fl_str_mv Khalil, Roshdi (1985) Best approximation in vector valued function spaces. Revista Colombiana de Matemáticas; Vol. 19, núm. 3-4 (1985); 313-322 2357-4100 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/48813/1/32639-120775-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/48813/2/32639-120775-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv ace2c88a2d50d917aa74e8b9ef1d2617
fe98e03dc1849ae2ad79a6d78d6a48b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089731220176896