Best approximation in vector valued function spaces
Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic...
- Autores:
-
Khalil, Roshdi
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1985
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/48813
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/48813
http://bdigital.unal.edu.co/42270/
- Palabra clave:
- Unit circle
separable Hilbert space
space of bounded
holomorphic functions i
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic functions in the unit disk with values in H. The object of this paper is to prove that (H∞+C)(T,H) is proximinal in L∞(T,H). This generalizes the scalar valued case done by Axler, S. et al. We also prove that (H∞+C)(T,l∞) |H∞(T,l∞) is an M-ideal of L∞(T,l∞) | H∞ (T, l∞), and V(T,l∞) is an M-ideal of L∞(T, l∞)whenever V is an M-ideal of L∞, where V(T,l∞) {g ϵ L∞(T,l∞): and lt;g(t), δn and gt; ϵ V for all n}. |
---|