Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D
Las ondas de las perturbaciones de los agujeros negros dependen de los parámetros geométricos del espacio-tiempo que los describe. En este trabajo se investigan las perturbaciones en campos escalares y electromagnéticos sobre la geometría de un agujero negro AdS cargado eléctricamente en la gravedad...
- Autores:
-
Ladino Mendez, Jose Miguel
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83673
- Palabra clave:
- Astrofísica
Física cósmica
Astrophysics
Cosmic physics
Relatividad General
Agujeros Negros
Gravedad Modificada
Modos Cuasinormales
General Relativity
Black Holes
Modified Gravity
Quasinormal Modes
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_eeaa6ec36f7569c2e47ed844d5a6ac73 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83673 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
dc.title.translated.eng.fl_str_mv |
Quasinormal modes of an electrically charged AdS black hole in 4D Einstein-Gauss-Bonnet gravity |
title |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
spellingShingle |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D Astrofísica Física cósmica Astrophysics Cosmic physics Relatividad General Agujeros Negros Gravedad Modificada Modos Cuasinormales General Relativity Black Holes Modified Gravity Quasinormal Modes |
title_short |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
title_full |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
title_fullStr |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
title_full_unstemmed |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
title_sort |
Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D |
dc.creator.fl_str_mv |
Ladino Mendez, Jose Miguel |
dc.contributor.advisor.none.fl_str_mv |
Larrañaga Rubio, Eduard Alexis |
dc.contributor.author.none.fl_str_mv |
Ladino Mendez, Jose Miguel |
dc.contributor.researchgroup.spa.fl_str_mv |
Astronomía, Astrofísica y Cosmologia |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0001-9812-4949 |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Jose-Ladino |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?hl=en&user=ETGdXGgAAAAJ&view_op=list_works&gmla=AJsN-F7THeorVOkAORGgF1eSwTsqDx29mm7znFeRLG0KU3nqtHSZr9BjrnlB-LAd_OXQC7w_OvzZwBvEiFopnl1KFS2rf5LtOw |
dc.subject.lemb.spa.fl_str_mv |
Astrofísica Física cósmica |
topic |
Astrofísica Física cósmica Astrophysics Cosmic physics Relatividad General Agujeros Negros Gravedad Modificada Modos Cuasinormales General Relativity Black Holes Modified Gravity Quasinormal Modes |
dc.subject.lemb.eng.fl_str_mv |
Astrophysics Cosmic physics |
dc.subject.proposal.spa.fl_str_mv |
Relatividad General Agujeros Negros Gravedad Modificada Modos Cuasinormales |
dc.subject.proposal.eng.fl_str_mv |
General Relativity Black Holes Modified Gravity Quasinormal Modes |
description |
Las ondas de las perturbaciones de los agujeros negros dependen de los parámetros geométricos del espacio-tiempo que los describe. En este trabajo se investigan las perturbaciones en campos escalares y electromagnéticos sobre la geometría de un agujero negro AdS cargado eléctricamente en la gravedad de Einstein-Gauss-Bonnet 4D, mostrando la deducción de las ecuaciones de campo modificadas, los comportamientos de las principales propiedades de este agujero negro y su relación con sus casos limite particulares y con otras teorías de gravedad. Se derivan a las ecuaciones maestras y a los potenciales que describen a las perturbaciones y se discuten los métodos para encontrar las frecuencias de los modos cuasinormales, explorando principalmente al formalismo del método de la aproximación WKB, discutiendo sus fundamentos y algunas de sus restricciones y mejoras. Se calculan numéricamente, mediante el uso de los métodos semi-analíticos del potencial de Pöschl-Teller y de la aproximación WKB, a las frecuencias de los modos cuasinormales del campo escalar (con y sin masa) y del campo electromagnético alrededor de un agujero negro AdS con carga eléctrica y en la gravedad de Einstein-Gauss-Bonnet 4D y de sus casos limite particulares, encontrando destacados resultados, como el hecho de que este agujero negro es mejor oscilador que los agujeros negros de Schwarzschild, de Reissner–Nordström, de Einstein-Gauss-Bonnet 4D y de Einstein-Gauss-Bonnet 4D con carga eléctrica y por ende posee una sombra más pequeña. También se describen los efectos de los parámetros geométricos sobre las frecuencias calculadas, encontrando destacadas consistencias en los resultados obtenidos comparados entre si y con los ya publicados por otros autores. (Texto tomado de la fuente) |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-31 |
dc.date.accessioned.none.fl_str_mv |
2023-03-29T20:03:09Z |
dc.date.available.none.fl_str_mv |
2023-03-29T20:03:09Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83673 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83673 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
S. Norbert. General Relativyty, Second Edition. Springer, 2013. B. P. Abbott. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016 M. Maggiore. Gravitational Waves, Volume 2: Astrophysics and Cosmology. Oxford University Press, 2018. R. Kumar y S. G. Ghosh. Rotating black holes in 4d einstein-gauss-bonnet gravity and its shadow. Journal of Cosmology and Astroparticle Physics, 2020(07):053–053, jul 2020. C. Bambi. Black Holes: A Laboratory for Testing Strong Gravity. Springer, 2017. P. G. S. Fernandes. Charged black holes in ads spaces in 4d einstein gauss-bonnet gravity. Physics Letters B, 805:135468, Jun 2020. B. Eslam Panah, Kh. Jafarzade y S. H. Hendi. Charged 4d einstein-gauss-bonnet- ads black holes: Shadow, energy emission, deflection angle and heat engine. Nu- clear Physics B, 961:115269, 2020. M. Bousder y M. Bennai. Charged 4d einstein-gauss-bonnet-ads black hole in iso- baric process: Thermal conduction, compressibility and bose einstein distribution. Nuclear Physics B, 969:115476, 2021. M. Bousder, K. El Bourakadi y M. Bennai. Charged 4d einstein-gauss-bonnet black hole: Vacuum solutions, cauchy horizon, thermodynamics. Physics of the Dark Uni- verse, 32:100839, May 2021. M. S. Churilova. Quasinormal modes of the test fields in the consistent 4d einstein–gauss-bonnet–(anti)de sitter gravity. Annals of Physics, 427:168425, 2021. S. Devi, R. Roy y S. Chakrabarti. Quasinormal modes and greybody factors of the novel four dimensional gauss–bonnet black holes in asymptotically de sitter spa- ce time: scalar, electromagnetic and dirac perturbations. The European Physical Journal C, 80(8):760, Aug 2020. M. S. Churilova. Quasinormal modes of the test fields in the novel 4d einstein- gauss-bonnet-de sitter gravity, 2020. R. A. Konoplya y A. F. Zinhailo. Quasinormal modes, stability and shadows of a black hole in the 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(11), Nov 2020. E. W. Leaver. Quasinormal modes of reissner-nordstr ̈om black holes. Phys. Rev. D, 41:2986–2997, May 1990. D. Yoshida y J. Soda. Quasinormal modes of black holes in lovelock gravity. Physical Review D, 93(4), Feb 2016. B. Wang, C.-Y. Lin y E. Abdalla. Quasinormal modes of reissner-nordstr ̈om anti-de sitter black holes. Physics Letters B, 481(1):79–88, 2000. Y. Hatsuda. Quasinormal modes of black holes and borel summation. Phys. Rev. D, 101:024008, Jan 2020. H. Onozawa. Detailed study of quasinormal frequencies of the kerr black hole. Physical Review D, 55(6):3593–3602, Mar 1997. H. Onozawa. et al. Quasinormal modes of maximally charged black holes. Phys. Rev. D, 53:7033–7040, Jun 1996. R. Aros. et al. Quasinormal modes for massless topological black holes. Phys. Rev. D, 67:044014, Feb 2003. J. Matyjasek y M. Opala. Quasinormal modes of black holes: The improved semi- analytic approach. Phys. Rev. D, 96:024011, Jul 2017. R. A. Konoplya y A. Zhidenko. Quasinormal modes of black holes: From astrophy- sics to string theory. Rev. Mod. Phys., 83:793–836, Jul 2011. E. Berti, V. Cardoso y A. O. Starinets. Quasinormal modes of black holes and black branes. Classical and Quantum Gravity, 26(16):163001, jul 2009. E. Berti. Black hole perturbation theory, 2016. R. A. Konoplya. Quasinormal behavior of the d-dimensional schwarzschild black hole and the higher order wkb approach. Phys. Rev. D, 68:024018, Jul 2003. E. Berti y K. D. Kokkotas. Asymptotic quasinormal modes of reissner-nordstr ̈om and kerr black holes. Phys. Rev. D, 68:044027, Aug 2003. E. Berti y K. D. Kokkotas. Quasinormal modes of reissner–nordstr ̈om–anti-de sitter black holes: Scalar, electromagnetic, and gravitational perturbations. Phys. Rev. D, 67:064020, Mar 2003. P. Kanjanaphomchom y S. Musiri. Quasinormal modes of the electric potential in the 4 dimensional anti de sitter reissner-norst ̈om black hole spacetime with scalar hair. Journal of Physics: Conference Series, 1719(1):012039, jan 2021. L. A. Oliveira, L. C. B. Crispino y A. Higuchi. Scalar radiation from a radially infalling source into a schwarzschild black hole in the framework of quantum field theory. The European Physical Journal C, 78(2):133, Feb 2018. J. Matyjasek y M. Telecka. Quasinormal modes of black holes. ii. pad ́e summation of the higher-order wkb terms. Phys. Rev. D, 100:124006, Dec 2019. V. Cardoso, R. Konoplya y J. P. S. Lemos. Quasinormal frequencies of schwarzs- child black holes in anti–de sitter spacetimes: A complete study of the overtone asymptotic behavior. Phys. Rev. D, 68:044024, Aug 2003. S. Hod. Quasinormal spectrum and quantization of charged black holes. Classical and Quantum Gravity, 23(4):L23–L27, feb 2006. E. N. Dorband. et al. Numerical study of the quasinormal mode excitation of kerr black holes. Phys. Rev. D, 74:084028, Oct 2006. M. Giammatteo y I. G. Moss. Gravitational quasinormal modes for kerr anti-de sitter black holes. Classical and Quantum Gravity, 22(9):1803–1824, apr 2005. E. Berti y K. D. Kokkotas. Quasinormal modes of kerr-newman black holes: Coupling of electromagnetic and gravitational perturbations. Phys. Rev. D, 71:124008, Jun 2005. M. S. Churilova. Analytical quasinormal modes of spherically symmetric black holes in the eikonal regime. The European Physical Journal C, 79(7):629, Jul 2019. A. S. Miranda, J. Morgan y V. T. Zanchin. Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence. Journal of High Energy Physics, 2008(11):030–030, nov 2008. M. Ghasemi-Nodehi. et al. Shadow, quasinormal modes, and quasiperiodic oscilla- tions of rotating kaluza-klein black holes. Phys. Rev. D, 102:104032, Nov 2020. A. Rincón y G. Panotopoulos. Quasinormal modes of an improved schwarzschild black hole. Physics of the Dark Universe, 30:100639, 2020. C. Molina. Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant. Phys. Rev. D, 68:064007, Sep 2003. H.-P. Nollert y B. G. Schmidt. Quasinormal modes of schwarzschild black holes: Defined and calculated via laplace transformation. Phys. Rev. D, 45:2617–2627, Apr 1992. V. Ferrari y B. Mashhoon. New approach to the quasinormal modes of a black hole. Phys. Rev. D, 30:295–304, Jul 1984. S. Chakrabarti. Quasinormal modes for tensor and vector type perturbation of gauss bonnet black hole using third order wkb approach. General Relativity and Gravita- tion, 39:567–582, 05 2007. S. Iyer. Black-hole normal modes: A wkb approach. ii. schwarzschild black holes. Phys. Rev. D, 35:3632–3636, Jun 1987. S. Iyer y W. M. Clifford. Black-hole normal modes: A wkb approach. i. foundations and application of a higher-order wkb analysis of potential-barrier scattering. Phys. Rev. D, 35:3621–3631, Jun 1987. H.-P. Nollert. Quasinormal modes of schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D, 47:5253– 5258, Jun 1993. R. A. Konoplya. Decay of a charged scalar field around a black hole: Quasinormal modes of rn, rnads, and dilaton black holes. Phys. Rev. D, 66:084007, Oct 2002. Y. S. Myung y D.-C. Zou. Quasinormal modes of scalarized black holes in the eins- tein–maxwell–scalar theory. Physics Letters B, 790:400–407, 2019. A. Aragón. et al. Quasinormal modes and their anomalous behavior for black holes in f(r) gravity. The European Physical Journal C, 81(5), May 2021. K. Glampedakis y H. O. Silva. Eikonal quasinormal modes of black holes beyond general relativity. Phys. Rev. D, 100:044040, Aug 2019. R. A. Konoplya y R. D. B. Fontana. Quasinormal modes of black holes immersed in a strong magnetic field. Physics Letters B, 659(1):375–379, 2008. K. Lin, J. Li y S. Yang. Quasinormal modes of hayward regular black hole. Interna- tional Journal of Theoretical Physics, 52(10):3771–3778, Oct 2013. B. Toshmatov. et al. Quasinormal modes of test fields around regular black holes. Physical Review D, 91(8), Apr 2015. R. A. Konoplya, A. F. Zinhailo y Z. Stuchlik. Quasinormal modes and hawking radia- tion of black holes in cubic gravity. Phys. Rev. D, 102:044023, Aug 2020. M. Richartz. Quasinormal modes of extremal black holes. Phys. Rev. D, 93:064062, Mar 2016. R. A. Konoplya y A. V. Zhidenko. Stability and quasinormal modes of the massive scalar field around kerr black holes. Phys. Rev. D, 73:124040, Jun 2006. J. L. Blázquez-Salcedo, F. S. Khoo y J. Kunz. Quasinormal modes of einstein- gauss-bonnet-dilaton black holes. Phys. Rev. D, 96:064008, Sep 2017. M. Momennia, S. H. Hendi y F. Soltani-Bidgoli. Stability and quasinormal modes of black holes in conformal weyl gravity. Physics Letters B, 813:136028, 2021. A. Aragón. et al. Perturbative and nonperturbative quasinormal modes of 4d einstein-gauss-bonnet black holes, 2020. T.-T. Liu. et al. Double shadow of a 4d einstein–gauss–bonnet black hole and the connection between them with quasinormal modes. Modern Physics Letters A, 37(24):2250154, 2022. C.-Y. Zhang. et al. Superradiance and stability of the regularized 4d charged einstein-gauss-bonnet black hole. Journal of High Energy Physics, 2020(8):105, Aug 2020. D. Chen. et al. The correspondence between shadow and test field in a four- dimensional charged Einstein–Gauss–Bonnet black hole. Eur. Phys. J. C, 81(8):700, 2021. A. K. Mishra. Quasinormal modes and strong cosmic censorship in the regularised 4d einstein–gauss–bonnet gravity. General Relativity and Gravitation, 52(11), Nov 2020. C. Glavan, D. y Lin. Einstein-gauss-bonnet gravity in four-dimensional spacetime. Physical Review Letters, 124(8), Feb 2020. M. Gurses, T. C. Sisman, B. Tekin. Is there a novel einstein–gauss–bonnet theory in four dimensions? The European Physical Journal C, 80(7), jul 2020. M. Gurses, T. C. Sisman, B. Tekin. Comment on “einstein- gauss-bonnet gravity in four-dimensional spacetime”. Phys. Rev. Lett., 125:149001, Sep 2020. J. Arrechea, A. Delhom, and A. Jiménez-Cano. Comment on “einstein- gauss-bonnet gravity in four-dimensional spacetime”. Phys. Rev. Lett., 125:149002, Sep 2020. P. G S Fernandes, Pedro Carrilho, Timothy Clifton, and David J Mulryne. The 4d einstein–gauss–bonnet theory of gravity: a review. Classical and Quantum Gravity, 39(6):063001, feb 2022. Rong-Gen Cai, Li-Ming Cao, and Nobuyoshi Ohta. Black holes in gravity with con- formal anomaly and logarithmic term in black hole entropy. Journal of High Energy Physics, 2010(4), apr 2010. Rong-Gen Cai. Thermodynamics of conformal anomaly corrected black holes in AdS space. Physics Letters B, 733:183–189, jun 2014. H. L ̈u and Yi Pang. Horndeski gravity as d → 4 limit of gauss-bonnet. Physics Letters B, 809:135717, oct 2020. Robie A. Hennigar, David Kubiz ˇn ́ak, Robert B. Mann, and Christopher Pollack. On taking the d → 4 limit of gauss-bonnet gravity: theory and solutions. Journal of High Energy Physics, 2020(7), jul 2020. Pedro G. S. Fernandes, Pedro Carrilho, Timothy Clifton, and David J. Mulryne. De- rivation of regularized field equations for the einstein-gauss-bonnet theory in four dimensions. Physical Review D, 102(2), jul 2020. A. Katsuki, M. A. Gorji y S. Mukohyama. A consistent theory of d → 4 einstein- gauss-bonnet gravity. Physics Letters B, 810:135843, nov 2020. S. G. Ghosh. et al. Phase transition of ads black holes in 4d egb gravity coupled to nonlinear electrodynamics. Annals of Physics, 424:168347, 2021. K. Yang. et al. Born–infeld black holes in 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(7):662, Jul 2020. D. G. Boulware y S. Deser. String-generated gravity models. Phys. Rev. Lett., 55:2656–2660, Dec 1985. R. A. Konoplya y A. Zhidenko. (in)stability of black holes in the 4d eins- tein–gauss–bonnet and einstein–lovelock gravities. Physics of the Dark Universe, 30:100697, Dec 2020. S. G. Ghosh y R. Kumar. Generating black holes in 4d einstein–gauss–bonnet gravity. Classical and Quantum Gravity, 37(24):245008, nov 2020. R. A. Konoplya y A. Zhidenko. Black holes in the four-dimensional einstein-lovelock gravity. Phys. Rev. D, 101:084038, Apr 2020. A. Kumar, D. Baboolal y S. G. Ghosh. Nonsingular black holes in 4d eins- tein–gauss–bonnet gravity. Universe, 8(4):244, apr 2022. R. Kumar, S. U. Islam y S. G. Ghosh. Gravitational lensing by charged black hole in regularized 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(12), Dec 2020. K. Jusufi. Nonlinear magnetically charged black holes in 4d einstein–gauss–bonnet gravity. Annals of Physics, 421:168285, 2020. Y. Tomozawa. Quantum corrections to gravity, 2011. G. Cognola. et al. Einstein gravity with gauss-bonnet entropic corrections. Physical Review D, 88(2), jul 2013. A. Kumar, R. Kumar y S. G. Ghosh. Bardeen black holes in the regularized 4d einstein–gauss–bonnet gravity. Universe, 8(4):232, apr 2022. R.-G. Cai. Gauss-bonnet black holes in ads spaces. Phys. Rev. D, 65:084014, Mar 2002. T. Liko y I. Booth. Isolated horizons in higher dimensional einstein–gauss–bonnet gravity. Classical and Quantum Gravity, 24(14):3769–3782, jul 2007. D. V. Singh y S. Siwach. Thermodynamics and p-v criticality of bardeen-ads black hole in 4d einstein-gauss-bonnet gravity. Physics Letters B, 808:135658, 2020. B. F. Schutz y M. W. Clifford. Black hole normal modes - a semianalytic approach. The Astrophysical Journal, 291, 1985. S. Carroll. Spacetime and geometry: an introduction to general relativity; Internatio- nal ed. Pearson Education, Essex, Aug 2013. K. Schwarzschild. ̈Uber das Gravitationsfeld eines Massenpunktes nach der Eins- teinschen Theorie. Sitzungsberichte der K ̈oniglich Preußischen Akademie der Wis- senschaften (Berlin, pages 189–196, January 1916. H. Reissner. ̈Uber die Eigengravitation des elektrischen Feldes nach der Einsteins- chen Theorie. Annalen der Physik, 355(9):106–120, January 1916. G. Nordstr ̈om. On the Energy of the Gravitation field in Einstein’s Theory. Konin- klijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 20:1238–1245, January 1918. S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York, NY, 1972. S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time. Cam- bridge Monographs on Mathematical Physics. Cambridge University Press, 1973. W. de Sitter. Einstein’s theory of gravitation and its astronomical consequences. Third paper. mnras, 78:3–28, November 1917. D. Kubiz ˇn ́ak y F. Simovic. Thermodynamics of horizons: de sitter black holes and reentrant phase transitions. Classical and Quantum Gravity, 33(24):245001, nov 2016. J. Maldacena. The large-n limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4):1113–1133, Apr 1999. J. Sorce. Holographic entanglement entropy is cutoff-covariant. Journal of High Energy Physics, 2019(10), oct 2019. M. Rangamani y T. Takayanagi. Holographic Entanglement Entropy. Springer Inter- national Publishing, 2017. D. Lovelock. The einstein tensor and its generalizations. Journal of Mathematical Physics, 12(3):498–501, 1971. B. Zwiebach. Curvature squared terms and string theories. Physics Letters B, 156(5):315–317, 1985. T. Padmanabhan. Gravitation: Foundations and Frontiers. Cambridge University Press, 2010. A. Mukhopadhyay y T. Padmanabhan. Holography of gravitational action functionals. Phys. Rev. D, 74:124023, Dec 2006. S. Kolekar y T. Padmanabhan. Holography in action. Phys. Rev. D, 82:024036, Jul 2010. E. Howard. Geometric aspects of extremal kerr black hole entropy. Journal of Modern Physics, 04(03):357–363, 2013. J. Percival. Classical and quantum bosonic fields on the spacetimes of black holes and stars. PhD thesis, University of Sheffield, January 2022. S. W. Hawking. Black hole explosions? Nature, 248(5443):30–31, Mar 1974. S. W. Hawking. Particle creation by black holes. Communications in Mathematical Physics, 43(3):199–220, Aug 1975. R. A. Breuer. et al. Geodesic synchrotron radiation. Phys. Rev. D, 8:4309–4319, Dec 1973. G. E. Harmsen. Quasi-normal modes for spin-3/2 fields. Journal of Physics: Confe- rence Series, 645(1):012003, sep 2015. W. H. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. apjl, 170:L105, December 1971. C. Bender y S. Orszag. Advanced Mathematical Methods for Scientists and Engi- neers: Asymptotic Methods and Perturbation Theory, volume 1. Springer, 01 1999. R. A. Konoplya, A. Zhidenko y A. F. Zinhailo. Higher order WKB formula for quasi- normal modes and grey-body factors: recipes for quick and accurate calculations. Classical and Quantum Gravity, 36(15):155002, jul 2019. A. Jansen. Overdamped modes in schwarzschild-de sitter and a mathematica pac- kage for the numerical computation of quasinormal modes, 2017. A. ̈Ovg ̈un, I. Sakallı y H. Mutuk. Quasinormal modes of ds and ads black holes: Feedforward neural network method. International Journal of Geometric Methods in Modern Physics, 18(10):2150154, 2021. L. E. Simone y C. M. Will. Massive scalar quasi-normal modes of schwarzschild and kerr black holes. Classical and Quantum Gravity, 9(4):963, apr 1992. A. Ohashi y M.-A. Sakagami. Massive quasi-normal mode. Classical and Quantum Gravity, 21(16):3973, aug 2004. S. Fernando y J. Correa. Quasinormal modes of the bardeen black hole: Scalar perturbations. Phys. Rev. D, 86:064039, Sep 2012. E. Berti. Ringdown. https://pages.jh.edu/eberti2/ringdown/, 2022. G. Panotopoulos y A. Rinc ́on. Quasinormal modes of black holes in einstein-power- maxwell theory. International Journal of Modern Physics D, 27(03):1850034, feb 2018. P. Boonserm, T. Ngampitipan y P. Wongjun. Greybody factor for black holes in drgt massive gravity. The European Physical Journal C, 78(6):492, Jun 2018. C. D. Haroldo. et al. 4d einstein-gauss-bonnet gravity: Massless particles and ab- sorption of planar spin-0 waves. Physics Letters B, 811:135921, 2020. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
138 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Astronomía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83673/3/1033793194.2023.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/83673/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83673/2/1033793194.2023.pdf |
bitstream.checksum.fl_str_mv |
d9e207a31490687d0027bffac98a7d8d eb34b1cf90b7e1103fc9dfd26be24b4a e646090dcf8fdde5310c44011d612f45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089778936676352 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Larrañaga Rubio, Eduard Alexis8e45a8824f54165b1370cf35954c2417Ladino Mendez, Jose Miguel20e5014b84836728a4c1de244141ae65Astronomía, Astrofísica y Cosmologiahttps://orcid.org/0000-0001-9812-4949https://www.researchgate.net/profile/Jose-Ladinohttps://scholar.google.com/citations?hl=en&user=ETGdXGgAAAAJ&view_op=list_works&gmla=AJsN-F7THeorVOkAORGgF1eSwTsqDx29mm7znFeRLG0KU3nqtHSZr9BjrnlB-LAd_OXQC7w_OvzZwBvEiFopnl1KFS2rf5LtOw2023-03-29T20:03:09Z2023-03-29T20:03:09Z2022-10-31https://repositorio.unal.edu.co/handle/unal/83673Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Las ondas de las perturbaciones de los agujeros negros dependen de los parámetros geométricos del espacio-tiempo que los describe. En este trabajo se investigan las perturbaciones en campos escalares y electromagnéticos sobre la geometría de un agujero negro AdS cargado eléctricamente en la gravedad de Einstein-Gauss-Bonnet 4D, mostrando la deducción de las ecuaciones de campo modificadas, los comportamientos de las principales propiedades de este agujero negro y su relación con sus casos limite particulares y con otras teorías de gravedad. Se derivan a las ecuaciones maestras y a los potenciales que describen a las perturbaciones y se discuten los métodos para encontrar las frecuencias de los modos cuasinormales, explorando principalmente al formalismo del método de la aproximación WKB, discutiendo sus fundamentos y algunas de sus restricciones y mejoras. Se calculan numéricamente, mediante el uso de los métodos semi-analíticos del potencial de Pöschl-Teller y de la aproximación WKB, a las frecuencias de los modos cuasinormales del campo escalar (con y sin masa) y del campo electromagnético alrededor de un agujero negro AdS con carga eléctrica y en la gravedad de Einstein-Gauss-Bonnet 4D y de sus casos limite particulares, encontrando destacados resultados, como el hecho de que este agujero negro es mejor oscilador que los agujeros negros de Schwarzschild, de Reissner–Nordström, de Einstein-Gauss-Bonnet 4D y de Einstein-Gauss-Bonnet 4D con carga eléctrica y por ende posee una sombra más pequeña. También se describen los efectos de los parámetros geométricos sobre las frecuencias calculadas, encontrando destacadas consistencias en los resultados obtenidos comparados entre si y con los ya publicados por otros autores. (Texto tomado de la fuente)The waves of black hole perturbations depend on the geometric parameters of space-time that describe them. In this work we investigate the perturbations in scalar and electromagnetic fields on the geometry of an electrically charged AdS black hole in Einstein-Gauss-Bonnet 4D gravity, showing the deduction of the modified field equations, the behavior of the main properties of this black hole and its relationship with its particular limit cases and with other gravity theories. The master equations and potentials describing the perturbations are derived and methods for finding the frequencies of Quasinormal Modes are discussed, mainly exploring the formalism of the WKB approximation method, discussing its fundamentals and some of its restrictions and enhancements. They are calculated numerically, using the semi-analytic methods of the Pöschl-Teller potential and the WKB approximation, the frequencies of the Quasinormal Modes of the scalar field (with and without mass) and the electromagnetic field around an electrically charged AdS black hole in the Einstein-Gauss-Bonnet 4D gravity and its particular limit cases, finding outstanding results, such as the fact that this black hole is a better oscillator than the Schwarzschild, Reissner–Nordström, Einstein-Gauss-Bonnet 4D and Einstein-Gauss-Bonnet 4D black holes with electric charge and therefore it has a smaller shadow. The effects of the geometric parameters on the calculated frequencies are also described, finding outstanding consistency in the results obtained compared with each other and with those already published by other authors.MaestríaRelatividad General y Agujeros Negros138 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - AstronomíaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáModos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4DQuasinormal modes of an electrically charged AdS black hole in 4D Einstein-Gauss-Bonnet gravityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. Norbert. General Relativyty, Second Edition. Springer, 2013.B. P. Abbott. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016M. Maggiore. Gravitational Waves, Volume 2: Astrophysics and Cosmology. Oxford University Press, 2018.R. Kumar y S. G. Ghosh. Rotating black holes in 4d einstein-gauss-bonnet gravity and its shadow. Journal of Cosmology and Astroparticle Physics, 2020(07):053–053, jul 2020.C. Bambi. Black Holes: A Laboratory for Testing Strong Gravity. Springer, 2017.P. G. S. Fernandes. Charged black holes in ads spaces in 4d einstein gauss-bonnet gravity. Physics Letters B, 805:135468, Jun 2020.B. Eslam Panah, Kh. Jafarzade y S. H. Hendi. Charged 4d einstein-gauss-bonnet- ads black holes: Shadow, energy emission, deflection angle and heat engine. Nu- clear Physics B, 961:115269, 2020.M. Bousder y M. Bennai. Charged 4d einstein-gauss-bonnet-ads black hole in iso- baric process: Thermal conduction, compressibility and bose einstein distribution. Nuclear Physics B, 969:115476, 2021.M. Bousder, K. El Bourakadi y M. Bennai. Charged 4d einstein-gauss-bonnet black hole: Vacuum solutions, cauchy horizon, thermodynamics. Physics of the Dark Uni- verse, 32:100839, May 2021.M. S. Churilova. Quasinormal modes of the test fields in the consistent 4d einstein–gauss-bonnet–(anti)de sitter gravity. Annals of Physics, 427:168425, 2021.S. Devi, R. Roy y S. Chakrabarti. Quasinormal modes and greybody factors of the novel four dimensional gauss–bonnet black holes in asymptotically de sitter spa- ce time: scalar, electromagnetic and dirac perturbations. The European Physical Journal C, 80(8):760, Aug 2020.M. S. Churilova. Quasinormal modes of the test fields in the novel 4d einstein- gauss-bonnet-de sitter gravity, 2020.R. A. Konoplya y A. F. Zinhailo. Quasinormal modes, stability and shadows of a black hole in the 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(11), Nov 2020.E. W. Leaver. Quasinormal modes of reissner-nordstr ̈om black holes. Phys. Rev. D, 41:2986–2997, May 1990.D. Yoshida y J. Soda. Quasinormal modes of black holes in lovelock gravity. Physical Review D, 93(4), Feb 2016.B. Wang, C.-Y. Lin y E. Abdalla. Quasinormal modes of reissner-nordstr ̈om anti-de sitter black holes. Physics Letters B, 481(1):79–88, 2000.Y. Hatsuda. Quasinormal modes of black holes and borel summation. Phys. Rev. D, 101:024008, Jan 2020.H. Onozawa. Detailed study of quasinormal frequencies of the kerr black hole. Physical Review D, 55(6):3593–3602, Mar 1997.H. Onozawa. et al. Quasinormal modes of maximally charged black holes. Phys. Rev. D, 53:7033–7040, Jun 1996.R. Aros. et al. Quasinormal modes for massless topological black holes. Phys. Rev. D, 67:044014, Feb 2003.J. Matyjasek y M. Opala. Quasinormal modes of black holes: The improved semi- analytic approach. Phys. Rev. D, 96:024011, Jul 2017.R. A. Konoplya y A. Zhidenko. Quasinormal modes of black holes: From astrophy- sics to string theory. Rev. Mod. Phys., 83:793–836, Jul 2011.E. Berti, V. Cardoso y A. O. Starinets. Quasinormal modes of black holes and black branes. Classical and Quantum Gravity, 26(16):163001, jul 2009.E. Berti. Black hole perturbation theory, 2016.R. A. Konoplya. Quasinormal behavior of the d-dimensional schwarzschild black hole and the higher order wkb approach. Phys. Rev. D, 68:024018, Jul 2003.E. Berti y K. D. Kokkotas. Asymptotic quasinormal modes of reissner-nordstr ̈om and kerr black holes. Phys. Rev. D, 68:044027, Aug 2003.E. Berti y K. D. Kokkotas. Quasinormal modes of reissner–nordstr ̈om–anti-de sitter black holes: Scalar, electromagnetic, and gravitational perturbations. Phys. Rev. D, 67:064020, Mar 2003.P. Kanjanaphomchom y S. Musiri. Quasinormal modes of the electric potential in the 4 dimensional anti de sitter reissner-norst ̈om black hole spacetime with scalar hair. Journal of Physics: Conference Series, 1719(1):012039, jan 2021.L. A. Oliveira, L. C. B. Crispino y A. Higuchi. Scalar radiation from a radially infalling source into a schwarzschild black hole in the framework of quantum field theory. The European Physical Journal C, 78(2):133, Feb 2018.J. Matyjasek y M. Telecka. Quasinormal modes of black holes. ii. pad ́e summation of the higher-order wkb terms. Phys. Rev. D, 100:124006, Dec 2019.V. Cardoso, R. Konoplya y J. P. S. Lemos. Quasinormal frequencies of schwarzs- child black holes in anti–de sitter spacetimes: A complete study of the overtone asymptotic behavior. Phys. Rev. D, 68:044024, Aug 2003.S. Hod. Quasinormal spectrum and quantization of charged black holes. Classical and Quantum Gravity, 23(4):L23–L27, feb 2006.E. N. Dorband. et al. Numerical study of the quasinormal mode excitation of kerr black holes. Phys. Rev. D, 74:084028, Oct 2006.M. Giammatteo y I. G. Moss. Gravitational quasinormal modes for kerr anti-de sitter black holes. Classical and Quantum Gravity, 22(9):1803–1824, apr 2005.E. Berti y K. D. Kokkotas. Quasinormal modes of kerr-newman black holes: Coupling of electromagnetic and gravitational perturbations. Phys. Rev. D, 71:124008, Jun 2005.M. S. Churilova. Analytical quasinormal modes of spherically symmetric black holes in the eikonal regime. The European Physical Journal C, 79(7):629, Jul 2019.A. S. Miranda, J. Morgan y V. T. Zanchin. Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence. Journal of High Energy Physics, 2008(11):030–030, nov 2008.M. Ghasemi-Nodehi. et al. Shadow, quasinormal modes, and quasiperiodic oscilla- tions of rotating kaluza-klein black holes. Phys. Rev. D, 102:104032, Nov 2020.A. Rincón y G. Panotopoulos. Quasinormal modes of an improved schwarzschild black hole. Physics of the Dark Universe, 30:100639, 2020.C. Molina. Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant. Phys. Rev. D, 68:064007, Sep 2003.H.-P. Nollert y B. G. Schmidt. Quasinormal modes of schwarzschild black holes: Defined and calculated via laplace transformation. Phys. Rev. D, 45:2617–2627, Apr 1992.V. Ferrari y B. Mashhoon. New approach to the quasinormal modes of a black hole. Phys. Rev. D, 30:295–304, Jul 1984.S. Chakrabarti. Quasinormal modes for tensor and vector type perturbation of gauss bonnet black hole using third order wkb approach. General Relativity and Gravita- tion, 39:567–582, 05 2007.S. Iyer. Black-hole normal modes: A wkb approach. ii. schwarzschild black holes. Phys. Rev. D, 35:3632–3636, Jun 1987.S. Iyer y W. M. Clifford. Black-hole normal modes: A wkb approach. i. foundations and application of a higher-order wkb analysis of potential-barrier scattering. Phys. Rev. D, 35:3621–3631, Jun 1987.H.-P. Nollert. Quasinormal modes of schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D, 47:5253– 5258, Jun 1993.R. A. Konoplya. Decay of a charged scalar field around a black hole: Quasinormal modes of rn, rnads, and dilaton black holes. Phys. Rev. D, 66:084007, Oct 2002.Y. S. Myung y D.-C. Zou. Quasinormal modes of scalarized black holes in the eins- tein–maxwell–scalar theory. Physics Letters B, 790:400–407, 2019.A. Aragón. et al. Quasinormal modes and their anomalous behavior for black holes in f(r) gravity. The European Physical Journal C, 81(5), May 2021.K. Glampedakis y H. O. Silva. Eikonal quasinormal modes of black holes beyond general relativity. Phys. Rev. D, 100:044040, Aug 2019.R. A. Konoplya y R. D. B. Fontana. Quasinormal modes of black holes immersed in a strong magnetic field. Physics Letters B, 659(1):375–379, 2008.K. Lin, J. Li y S. Yang. Quasinormal modes of hayward regular black hole. Interna- tional Journal of Theoretical Physics, 52(10):3771–3778, Oct 2013.B. Toshmatov. et al. Quasinormal modes of test fields around regular black holes. Physical Review D, 91(8), Apr 2015.R. A. Konoplya, A. F. Zinhailo y Z. Stuchlik. Quasinormal modes and hawking radia- tion of black holes in cubic gravity. Phys. Rev. D, 102:044023, Aug 2020.M. Richartz. Quasinormal modes of extremal black holes. Phys. Rev. D, 93:064062, Mar 2016.R. A. Konoplya y A. V. Zhidenko. Stability and quasinormal modes of the massive scalar field around kerr black holes. Phys. Rev. D, 73:124040, Jun 2006.J. L. Blázquez-Salcedo, F. S. Khoo y J. Kunz. Quasinormal modes of einstein- gauss-bonnet-dilaton black holes. Phys. Rev. D, 96:064008, Sep 2017.M. Momennia, S. H. Hendi y F. Soltani-Bidgoli. Stability and quasinormal modes of black holes in conformal weyl gravity. Physics Letters B, 813:136028, 2021.A. Aragón. et al. Perturbative and nonperturbative quasinormal modes of 4d einstein-gauss-bonnet black holes, 2020.T.-T. Liu. et al. Double shadow of a 4d einstein–gauss–bonnet black hole and the connection between them with quasinormal modes. Modern Physics Letters A, 37(24):2250154, 2022.C.-Y. Zhang. et al. Superradiance and stability of the regularized 4d charged einstein-gauss-bonnet black hole. Journal of High Energy Physics, 2020(8):105, Aug 2020.D. Chen. et al. The correspondence between shadow and test field in a four- dimensional charged Einstein–Gauss–Bonnet black hole. Eur. Phys. J. C, 81(8):700, 2021.A. K. Mishra. Quasinormal modes and strong cosmic censorship in the regularised 4d einstein–gauss–bonnet gravity. General Relativity and Gravitation, 52(11), Nov 2020.C. Glavan, D. y Lin. Einstein-gauss-bonnet gravity in four-dimensional spacetime. Physical Review Letters, 124(8), Feb 2020.M. Gurses, T. C. Sisman, B. Tekin. Is there a novel einstein–gauss–bonnet theory in four dimensions? The European Physical Journal C, 80(7), jul 2020.M. Gurses, T. C. Sisman, B. Tekin. Comment on “einstein- gauss-bonnet gravity in four-dimensional spacetime”. Phys. Rev. Lett., 125:149001, Sep 2020.J. Arrechea, A. Delhom, and A. Jiménez-Cano. Comment on “einstein- gauss-bonnet gravity in four-dimensional spacetime”. Phys. Rev. Lett., 125:149002, Sep 2020.P. G S Fernandes, Pedro Carrilho, Timothy Clifton, and David J Mulryne. The 4d einstein–gauss–bonnet theory of gravity: a review. Classical and Quantum Gravity, 39(6):063001, feb 2022.Rong-Gen Cai, Li-Ming Cao, and Nobuyoshi Ohta. Black holes in gravity with con- formal anomaly and logarithmic term in black hole entropy. Journal of High Energy Physics, 2010(4), apr 2010.Rong-Gen Cai. Thermodynamics of conformal anomaly corrected black holes in AdS space. Physics Letters B, 733:183–189, jun 2014.H. L ̈u and Yi Pang. Horndeski gravity as d → 4 limit of gauss-bonnet. Physics Letters B, 809:135717, oct 2020.Robie A. Hennigar, David Kubiz ˇn ́ak, Robert B. Mann, and Christopher Pollack. On taking the d → 4 limit of gauss-bonnet gravity: theory and solutions. Journal of High Energy Physics, 2020(7), jul 2020.Pedro G. S. Fernandes, Pedro Carrilho, Timothy Clifton, and David J. Mulryne. De- rivation of regularized field equations for the einstein-gauss-bonnet theory in four dimensions. Physical Review D, 102(2), jul 2020.A. Katsuki, M. A. Gorji y S. Mukohyama. A consistent theory of d → 4 einstein- gauss-bonnet gravity. Physics Letters B, 810:135843, nov 2020.S. G. Ghosh. et al. Phase transition of ads black holes in 4d egb gravity coupled to nonlinear electrodynamics. Annals of Physics, 424:168347, 2021.K. Yang. et al. Born–infeld black holes in 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(7):662, Jul 2020.D. G. Boulware y S. Deser. String-generated gravity models. Phys. Rev. Lett., 55:2656–2660, Dec 1985.R. A. Konoplya y A. Zhidenko. (in)stability of black holes in the 4d eins- tein–gauss–bonnet and einstein–lovelock gravities. Physics of the Dark Universe, 30:100697, Dec 2020.S. G. Ghosh y R. Kumar. Generating black holes in 4d einstein–gauss–bonnet gravity. Classical and Quantum Gravity, 37(24):245008, nov 2020.R. A. Konoplya y A. Zhidenko. Black holes in the four-dimensional einstein-lovelock gravity. Phys. Rev. D, 101:084038, Apr 2020.A. Kumar, D. Baboolal y S. G. Ghosh. Nonsingular black holes in 4d eins- tein–gauss–bonnet gravity. Universe, 8(4):244, apr 2022.R. Kumar, S. U. Islam y S. G. Ghosh. Gravitational lensing by charged black hole in regularized 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(12), Dec 2020.K. Jusufi. Nonlinear magnetically charged black holes in 4d einstein–gauss–bonnet gravity. Annals of Physics, 421:168285, 2020.Y. Tomozawa. Quantum corrections to gravity, 2011.G. Cognola. et al. Einstein gravity with gauss-bonnet entropic corrections. Physical Review D, 88(2), jul 2013.A. Kumar, R. Kumar y S. G. Ghosh. Bardeen black holes in the regularized 4d einstein–gauss–bonnet gravity. Universe, 8(4):232, apr 2022.R.-G. Cai. Gauss-bonnet black holes in ads spaces. Phys. Rev. D, 65:084014, Mar 2002.T. Liko y I. Booth. Isolated horizons in higher dimensional einstein–gauss–bonnet gravity. Classical and Quantum Gravity, 24(14):3769–3782, jul 2007.D. V. Singh y S. Siwach. Thermodynamics and p-v criticality of bardeen-ads black hole in 4d einstein-gauss-bonnet gravity. Physics Letters B, 808:135658, 2020.B. F. Schutz y M. W. Clifford. Black hole normal modes - a semianalytic approach. The Astrophysical Journal, 291, 1985.S. Carroll. Spacetime and geometry: an introduction to general relativity; Internatio- nal ed. Pearson Education, Essex, Aug 2013.K. Schwarzschild. ̈Uber das Gravitationsfeld eines Massenpunktes nach der Eins- teinschen Theorie. Sitzungsberichte der K ̈oniglich Preußischen Akademie der Wis- senschaften (Berlin, pages 189–196, January 1916.H. Reissner. ̈Uber die Eigengravitation des elektrischen Feldes nach der Einsteins- chen Theorie. Annalen der Physik, 355(9):106–120, January 1916.G. Nordstr ̈om. On the Energy of the Gravitation field in Einstein’s Theory. Konin- klijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 20:1238–1245, January 1918.S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York, NY, 1972.S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time. Cam- bridge Monographs on Mathematical Physics. Cambridge University Press, 1973.W. de Sitter. Einstein’s theory of gravitation and its astronomical consequences. Third paper. mnras, 78:3–28, November 1917.D. Kubiz ˇn ́ak y F. Simovic. Thermodynamics of horizons: de sitter black holes and reentrant phase transitions. Classical and Quantum Gravity, 33(24):245001, nov 2016.J. Maldacena. The large-n limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4):1113–1133, Apr 1999.J. Sorce. Holographic entanglement entropy is cutoff-covariant. Journal of High Energy Physics, 2019(10), oct 2019.M. Rangamani y T. Takayanagi. Holographic Entanglement Entropy. Springer Inter- national Publishing, 2017.D. Lovelock. The einstein tensor and its generalizations. Journal of Mathematical Physics, 12(3):498–501, 1971.B. Zwiebach. Curvature squared terms and string theories. Physics Letters B, 156(5):315–317, 1985.T. Padmanabhan. Gravitation: Foundations and Frontiers. Cambridge University Press, 2010.A. Mukhopadhyay y T. Padmanabhan. Holography of gravitational action functionals. Phys. Rev. D, 74:124023, Dec 2006.S. Kolekar y T. Padmanabhan. Holography in action. Phys. Rev. D, 82:024036, Jul 2010.E. Howard. Geometric aspects of extremal kerr black hole entropy. Journal of Modern Physics, 04(03):357–363, 2013.J. Percival. Classical and quantum bosonic fields on the spacetimes of black holes and stars. PhD thesis, University of Sheffield, January 2022.S. W. Hawking. Black hole explosions? Nature, 248(5443):30–31, Mar 1974.S. W. Hawking. Particle creation by black holes. Communications in Mathematical Physics, 43(3):199–220, Aug 1975.R. A. Breuer. et al. Geodesic synchrotron radiation. Phys. Rev. D, 8:4309–4319, Dec 1973.G. E. Harmsen. Quasi-normal modes for spin-3/2 fields. Journal of Physics: Confe- rence Series, 645(1):012003, sep 2015.W. H. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. apjl, 170:L105, December 1971.C. Bender y S. Orszag. Advanced Mathematical Methods for Scientists and Engi- neers: Asymptotic Methods and Perturbation Theory, volume 1. Springer, 01 1999.R. A. Konoplya, A. Zhidenko y A. F. Zinhailo. Higher order WKB formula for quasi- normal modes and grey-body factors: recipes for quick and accurate calculations. Classical and Quantum Gravity, 36(15):155002, jul 2019.A. Jansen. Overdamped modes in schwarzschild-de sitter and a mathematica pac- kage for the numerical computation of quasinormal modes, 2017.A. ̈Ovg ̈un, I. Sakallı y H. Mutuk. Quasinormal modes of ds and ads black holes: Feedforward neural network method. International Journal of Geometric Methods in Modern Physics, 18(10):2150154, 2021.L. E. Simone y C. M. Will. Massive scalar quasi-normal modes of schwarzschild and kerr black holes. Classical and Quantum Gravity, 9(4):963, apr 1992.A. Ohashi y M.-A. Sakagami. Massive quasi-normal mode. Classical and Quantum Gravity, 21(16):3973, aug 2004.S. Fernando y J. Correa. Quasinormal modes of the bardeen black hole: Scalar perturbations. Phys. Rev. D, 86:064039, Sep 2012.E. Berti. Ringdown. https://pages.jh.edu/eberti2/ringdown/, 2022.G. Panotopoulos y A. Rinc ́on. Quasinormal modes of black holes in einstein-power- maxwell theory. International Journal of Modern Physics D, 27(03):1850034, feb 2018.P. Boonserm, T. Ngampitipan y P. Wongjun. Greybody factor for black holes in drgt massive gravity. The European Physical Journal C, 78(6):492, Jun 2018.C. D. Haroldo. et al. 4d einstein-gauss-bonnet gravity: Massless particles and ab- sorption of planar spin-0 waves. Physics Letters B, 811:135921, 2020.AstrofísicaFísica cósmicaAstrophysicsCosmic physicsRelatividad GeneralAgujeros NegrosGravedad ModificadaModos CuasinormalesGeneral RelativityBlack HolesModified GravityQuasinormal ModesEstudiantesInvestigadoresMaestrosPúblico generalTHUMBNAIL1033793194.2023.pdf.jpg1033793194.2023.pdf.jpgGenerated Thumbnailimage/jpeg4829https://repositorio.unal.edu.co/bitstream/unal/83673/3/1033793194.2023.pdf.jpgd9e207a31490687d0027bffac98a7d8dMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83673/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1033793194.2023.pdf1033793194.2023.pdfTesis de Maestría en Ciencias - Astronomíaapplication/pdf2508932https://repositorio.unal.edu.co/bitstream/unal/83673/2/1033793194.2023.pdfe646090dcf8fdde5310c44011d612f45MD52unal/83673oai:repositorio.unal.edu.co:unal/836732023-07-28 23:03:52.19Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |