Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos

ilustraciones, diagramas

Autores:
Rincon Torres, Andrey Duvan
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85334
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85334
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Control de calidad
Datos funcionales
Datos funcionales multivariados híbridos
Carta de control
Componentes principales
Componentes principales sensibles
Procedimiento no paramétrico
Nonparametric procedure
Quality control
Functional data
Hybrid multivariate functional data
Control chart
Principal components
Sensitive principal components
Análisis estadístico
Análisis multivariado
Control de calidad
Statistical analysis
Multivariate analysis
Quality control
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_eea8b88c75cf81e6470420f3b6822b6c
oai_identifier_str oai:repositorio.unal.edu.co:unal/85334
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
dc.title.translated.eng.fl_str_mv Distribution-free multivariate control chart for hybrid functional and vector data
title Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
spellingShingle Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Control de calidad
Datos funcionales
Datos funcionales multivariados híbridos
Carta de control
Componentes principales
Componentes principales sensibles
Procedimiento no paramétrico
Nonparametric procedure
Quality control
Functional data
Hybrid multivariate functional data
Control chart
Principal components
Sensitive principal components
Análisis estadístico
Análisis multivariado
Control de calidad
Statistical analysis
Multivariate analysis
Quality control
title_short Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
title_full Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
title_fullStr Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
title_full_unstemmed Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
title_sort Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos
dc.creator.fl_str_mv Rincon Torres, Andrey Duvan
dc.contributor.advisor.spa.fl_str_mv Guevara González, Rubèn Darío
dc.contributor.author.spa.fl_str_mv Rincon Torres, Andrey Duvan
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Control de calidad
Datos funcionales
Datos funcionales multivariados híbridos
Carta de control
Componentes principales
Componentes principales sensibles
Procedimiento no paramétrico
Nonparametric procedure
Quality control
Functional data
Hybrid multivariate functional data
Control chart
Principal components
Sensitive principal components
Análisis estadístico
Análisis multivariado
Control de calidad
Statistical analysis
Multivariate analysis
Quality control
dc.subject.proposal.spa.fl_str_mv Control de calidad
Datos funcionales
Datos funcionales multivariados híbridos
Carta de control
Componentes principales
Componentes principales sensibles
Procedimiento no paramétrico
Nonparametric procedure
dc.subject.proposal.eng.fl_str_mv Quality control
Functional data
Hybrid multivariate functional data
Control chart
Principal components
Sensitive principal components
dc.subject.unesco.spa.fl_str_mv Análisis estadístico
Análisis multivariado
Control de calidad
dc.subject.unesco.eng.fl_str_mv Statistical analysis
Multivariate analysis
Quality control
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-15
dc.date.accessioned.none.fl_str_mv 2024-01-16T18:56:13Z
dc.date.available.none.fl_str_mv 2024-01-16T18:56:13Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85334
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85334
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahsan, Muhammad ; Mashuri, Muhammad ; Kuswanto, Heri ; Prastyo, Dedy D. [u. a.]: Intrusion detection system using multivariate control chart Hotelling’s T2 based on PCA. En: Int. J. Adv. Sci. Eng. Inf. Technol 8 (2018), Nr. 5, p. 1905–1911
Casella, G ; Berger, RL. Statistical inference. vol. 2 Duxbury Pacific Grove. 2002
Chen, Nan ; Zi, Xuemin ; Zou, Changliang: A distribution-free multivariate control chart. En: Technometrics 58 (2016), Nr. 4, p. 448–459
Chen, Q. ; Kruger, U. ; Meronk, M. ; Leung, A.Y.T.: Synthesis of T2 and Q statistics for process monitoring. En: Control Engineering Practice 12 (2004), Nr. 6, p. 745–755
Fan, Shu-Kai S. ; Jen, Chih-Hung ; Lee, Tzu-Yi: Modeling and monitoring the nonlinear profile of heat treatment process data by using an approach based on a hyperbolic tangent function. En: Quality Engineering 29 (2017), Nr. 2, p. 226–243
Ferraty, Frédéric ; Vieu, Philippe: Nonparametric functional data analysis: theory and practice. Vol. 76. Springer, 2006
Ghashghaei, Reza ; Amiri, Amirhossein ; Khosravi, Peyman: New control charts for simultaneous monitoring of the mean vector and covariance matrix of multivariate multiple linear profiles. En: Communications in Statistics-Simulation and Computation 48 (2019), Nr. 5, p. 1382–1405
Gramacki, Artur: Nonparametric kernel density estimation and its computational aspects. Vol. 37. Springer, 2018
Happ, Clara ; Greven, Sonja: Multivariate functional principal component analysis for data observed on different (dimensional) domains. En: Journal of the American Statistical Association 113 (2018), Nr. 522, p. 649–659
Happ-Kurz, Clara: Object-Oriented Software for Functional Data. En: Journal of Statistical Software 93 (2020), Nr. 5, p. 1–38
Harezlak, Jaroslaw ; Ruppert, David ; Wand, Matt P.: Semiparametric regression with R. Vol. 109. Springer, 2018
Horváth, Lajos ; Kokoszka, Piotr: Inference for functional data with applications. Vol. 200. Springer Science & Business Media, 2012
Huang, Wei-Heng ; Sun, Jing ; Yeh, Arthur B.: Monitoring and diagnostics of correlated quality variables of different types. En: Journal of Quality Technology 55 (2023), Nr. 2, p. 220–252
Hung, Ying-Chao ; Tsai,Wen-Chi ; Yang, Su-Fen ; Chuang, Shih-Chung ; Tseng, Yi-Kuan: Nonparametric profile monitoring in multi-dimensional data spaces. En: Journal of Process Control 22 (2012), Nr. 2, p. 397–403
Jang, Jeong H.: Principal component analysis of hybrid functional and vector data. En: Statistics in medicine 40 (2021), Nr. 24, p. 5152–5173
Jensen, Willis A. ; Birch, Jeffrey B. ; Woodall, William H.: Monitoring correlation within linear profiles using mixed models. En: Journal of Quality Technology 40 (2008), Nr. 2, p. 167–183
Jiang, Qingchao ; Yan, Xuefeng ; Zhao, Weixiang: Fault detection and diagnosis in chemical processes using sensitive principal component analysis. En: Industrial & Engineering Chemistry Research 52 (2013), Nr. 4, p. 1635–1644
Lei, Yong ; Zhang, Zhisheng ; Jin, Jionghua: Automatic tonnage monitoring for missing part detection in multi-operation forging processes. En: Journal of manufacturing science and engineering 132 (2010), Nr. 5
Maleki, Mohammad R. ; Amiri, Amirhossein ; Castagliola, Philippe: An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme. En: Computers & Industrial Engineering 126 (2018), p. 705–728
Montgomery, Douglas C.: Introduction to statistical quality control. John Wiley & Sons, 2020
Niaki, Seyed Taghi A. ; Abbasi, Babak: Fault diagnosis in multivariate control charts using artificial neural networks. En: Quality and reliability engineering international 21 (2005), Nr. 8, p. 825–840
Noorossana, Rassoul ; Eyvazian, M ; Vaghefi, A: Phase II monitoring of multivariate simple linear profiles. En: Computers & Industrial Engineering 58 (2010), Nr. 4, p. 563–570
Pan, Jeh-Nan ; Li, Chung-I ; Lu, Meng Z.: Detecting the process changes for multivariate nonlinear profile data. En: Quality and Reliability Engineering International 35 (2019), Nr. 6, p. 1890–1910
Paynabar, Kamran ; Jin, Jionghua ; Agapiou, John ; Deeds, Paula: Robust leak tests for transmission systems using nonlinear mixed-effect models. En: Journal of quality technology 44 (2012), Nr. 3, p. 265–278
Paynabar, Kamran ; Jin, Jionghua ; Pacella, Massimo: Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis. En: Iie transactions 45 (2013), Nr. 11, p. 1235–1247
Paynabar, Kamran ; Zou, Changliang ; Qiu, Peihua: A change-point approach for phase-I analysis in multivariate profile monitoring and diagnosis. En: Technometrics 58 (2016), Nr. 2, p. 191–204
Qi, Dequan ;Wang, Zhaojun ; Zi, Xuemin ; Li, Zhonghua: Phase II monitoring of generalized linear profiles using weighted likelihood ratio charts. En: Computers & Industrial Engineering 94 (2016), p. 178–187
Qiu, Peihua: Introduction to statistical process control. CRC press, 2013
Ren, Haojie ; Chen, Nan ; Wang, Zhaojun: Phase-II monitoring in multichannel profile observations. En: Journal of Quality Technology 51 (2019), Nr. 4, p. 338 352
Research, Eigenvector: NIR of Corn Samples for Standardization Benchmarking. (2005)
Rizzo, Caterina ; Chin, Swee-Teng ; van den Heuvel, Edwin ; Di Bucchianico, Alessandro: Performance measures of discrete and continuous time-between-events control charts. En: Quality and Reliability Engineering International 36 (2020), Nr. 8, p. 2754–2768
Ryan, Thomas P.: Statistical methods for quality improvement. John Wiley & Sons, 2011
Shams, MA B. ; Budman, HM ; Duever, TA: Fault detection, identification and diagnosis using CUSUM based PCA. En: Chemical Engineering Science 66 (2011), Nr. 20, p. 4488–4498
Soleimani, Paria ; Noorossana, Rassoul ; Niaki, STA: Monitoring autocorrelated multivariate simple linear profiles. En: The International Journal of Advanced Manufacturing Technology 67 (2013), Nr. 5, p. 1857–1865
Williams, James D. ; Woodall, William H. ; Birch, Jeffrey B.: Statistical monitoring of nonlinear product and process quality profiles. En: Quality and Reliability Engineering International 23 (2007), Nr. 8, p. 925–941
Wold, Svante ; Esbensen, Kim ; Geladi, Paul: Principal component analysis. En: Chemometrics and intelligent laboratory systems 2 (1987), Nr. 1-3, p. 37–52
Yang, Zhongfu ; Nie, Gang ; Pan, Ling ; Zhang, Yan ; Huang, Linkai ; Ma, Xiao ; Zhang, Xinquan: Development and validation of near-infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. En: PeerJ 5 (2017), p. e3867
Zhang, Jiajia ; Ren, Haojie ; Yao, Rui ; Zou, Changliang ; Wang, Zhaojun: Phase I analysis of multivariate profiles based on regression adjustment. En: Computers & Industrial Engineering 85 (2015), p. 132–144
Zhou, Qin ; Zou, Changliang ; Wang, Zhaojun ; Jiang, Wei: Likelihood-based EWMA charts for monitoring Poisson count data with time-varying sample sizes. En: Journal of the American Statistical Association 107 (2012), Nr. 499, p. 1049–1062
Zou, Changliang ; Tsung, Fugee ; Wang, Zhaojun: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. En: Technometrics 49 (2007), Nr. 4, p. 395–408
Zou, Changliang ; Tsung, Fugee ; Wang, Zhaojun: Monitoring profiles based on nonparametric regression methods. En: Technometrics 50 (2008), Nr. 4, p. 512–526
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 66 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85334/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85334/2/1116553091.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85334/3/1116553091.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
dfce42dcad3cc28c8a0d0e839525b510
523bc45f144575eace7545366925348c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090135278452736
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guevara González, Rubèn Darío2db6446b3a559b33e7b356835d8a92f2600Rincon Torres, Andrey Duvan564e42634151c3f1ce6c5c8246e3cfbf2024-01-16T18:56:13Z2024-01-16T18:56:13Z2023-11-15https://repositorio.unal.edu.co/handle/unal/85334Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEsta tesis propone una metodología de monitoreo en Fase II para procesos funcionales multivariados híbridos, que combinan una parte funcional y una parte vectorial multivariada. La Metodología emplea una carta de control que tiene en cuenta la correlación entre funciones y vectores, y se fundamenta en el análisis de componentes principales, híbridos y componentes sensibles. Mediante simulaciones, se evidencia la efectividad de la metodología para detectar cambios de distintas magnitudes en diferentes escenarios, tales como distribuciones, tamaños de muestra y configuraciones de media fuera de control. Además, se muestra que la metodología es más eficiente que el seguimiento por separado de las partes funcional y vectorial. Finalmente, se ilustra la aplicación de la metodología a casos reales de producción de maíz y ray-grass italiano, demostrando su utilidad para el control de calidad en la producción agrícola. (Texto tomado de la fuente).This thesis proposes a Phase II monitoring methodology for hybrid multivariate functional processes that combine a functional component and a multivariate vector component. The methodology employs a control chart that takes into account the correlation between functions and vectors, and it is grounded in the analysis of hybrid principal components and sensitive components. Through simulations, the effectiveness of the methodology in detecting changes of various magnitudes in different scenarios, such as distributions, sample sizes, and out-of-control mean configurations, is demonstrated. Furthermore, it is shown that the methodology is more efficient than separately monitoring the functional and vectorial components. Finally, the application of the methodology to real cases of corn and Italian ryegrass production is illustrated, demonstrating its utility for quality control in agricultural production.MaestríaMagíster en Ciencias - EstadísticaControl estadístico de calidad, análisis de datos funcionalesxii, 66 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasControl de calidadDatos funcionalesDatos funcionales multivariados híbridosCarta de controlComponentes principalesComponentes principales sensiblesProcedimiento no paramétricoNonparametric procedureQuality controlFunctional dataHybrid multivariate functional dataControl chartPrincipal componentsSensitive principal componentsAnálisis estadísticoAnálisis multivariadoControl de calidadStatistical analysisMultivariate analysisQuality controlCarta de control multivariada sin distribución para datos funcionales y vectoriales híbridosDistribution-free multivariate control chart for hybrid functional and vector dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhsan, Muhammad ; Mashuri, Muhammad ; Kuswanto, Heri ; Prastyo, Dedy D. [u. a.]: Intrusion detection system using multivariate control chart Hotelling’s T2 based on PCA. En: Int. J. Adv. Sci. Eng. Inf. Technol 8 (2018), Nr. 5, p. 1905–1911Casella, G ; Berger, RL. Statistical inference. vol. 2 Duxbury Pacific Grove. 2002Chen, Nan ; Zi, Xuemin ; Zou, Changliang: A distribution-free multivariate control chart. En: Technometrics 58 (2016), Nr. 4, p. 448–459Chen, Q. ; Kruger, U. ; Meronk, M. ; Leung, A.Y.T.: Synthesis of T2 and Q statistics for process monitoring. En: Control Engineering Practice 12 (2004), Nr. 6, p. 745–755Fan, Shu-Kai S. ; Jen, Chih-Hung ; Lee, Tzu-Yi: Modeling and monitoring the nonlinear profile of heat treatment process data by using an approach based on a hyperbolic tangent function. En: Quality Engineering 29 (2017), Nr. 2, p. 226–243Ferraty, Frédéric ; Vieu, Philippe: Nonparametric functional data analysis: theory and practice. Vol. 76. Springer, 2006Ghashghaei, Reza ; Amiri, Amirhossein ; Khosravi, Peyman: New control charts for simultaneous monitoring of the mean vector and covariance matrix of multivariate multiple linear profiles. En: Communications in Statistics-Simulation and Computation 48 (2019), Nr. 5, p. 1382–1405Gramacki, Artur: Nonparametric kernel density estimation and its computational aspects. Vol. 37. Springer, 2018Happ, Clara ; Greven, Sonja: Multivariate functional principal component analysis for data observed on different (dimensional) domains. En: Journal of the American Statistical Association 113 (2018), Nr. 522, p. 649–659Happ-Kurz, Clara: Object-Oriented Software for Functional Data. En: Journal of Statistical Software 93 (2020), Nr. 5, p. 1–38Harezlak, Jaroslaw ; Ruppert, David ; Wand, Matt P.: Semiparametric regression with R. Vol. 109. Springer, 2018Horváth, Lajos ; Kokoszka, Piotr: Inference for functional data with applications. Vol. 200. Springer Science & Business Media, 2012Huang, Wei-Heng ; Sun, Jing ; Yeh, Arthur B.: Monitoring and diagnostics of correlated quality variables of different types. En: Journal of Quality Technology 55 (2023), Nr. 2, p. 220–252Hung, Ying-Chao ; Tsai,Wen-Chi ; Yang, Su-Fen ; Chuang, Shih-Chung ; Tseng, Yi-Kuan: Nonparametric profile monitoring in multi-dimensional data spaces. En: Journal of Process Control 22 (2012), Nr. 2, p. 397–403Jang, Jeong H.: Principal component analysis of hybrid functional and vector data. En: Statistics in medicine 40 (2021), Nr. 24, p. 5152–5173Jensen, Willis A. ; Birch, Jeffrey B. ; Woodall, William H.: Monitoring correlation within linear profiles using mixed models. En: Journal of Quality Technology 40 (2008), Nr. 2, p. 167–183Jiang, Qingchao ; Yan, Xuefeng ; Zhao, Weixiang: Fault detection and diagnosis in chemical processes using sensitive principal component analysis. En: Industrial & Engineering Chemistry Research 52 (2013), Nr. 4, p. 1635–1644Lei, Yong ; Zhang, Zhisheng ; Jin, Jionghua: Automatic tonnage monitoring for missing part detection in multi-operation forging processes. En: Journal of manufacturing science and engineering 132 (2010), Nr. 5Maleki, Mohammad R. ; Amiri, Amirhossein ; Castagliola, Philippe: An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme. En: Computers & Industrial Engineering 126 (2018), p. 705–728Montgomery, Douglas C.: Introduction to statistical quality control. John Wiley & Sons, 2020Niaki, Seyed Taghi A. ; Abbasi, Babak: Fault diagnosis in multivariate control charts using artificial neural networks. En: Quality and reliability engineering international 21 (2005), Nr. 8, p. 825–840Noorossana, Rassoul ; Eyvazian, M ; Vaghefi, A: Phase II monitoring of multivariate simple linear profiles. En: Computers & Industrial Engineering 58 (2010), Nr. 4, p. 563–570Pan, Jeh-Nan ; Li, Chung-I ; Lu, Meng Z.: Detecting the process changes for multivariate nonlinear profile data. En: Quality and Reliability Engineering International 35 (2019), Nr. 6, p. 1890–1910Paynabar, Kamran ; Jin, Jionghua ; Agapiou, John ; Deeds, Paula: Robust leak tests for transmission systems using nonlinear mixed-effect models. En: Journal of quality technology 44 (2012), Nr. 3, p. 265–278Paynabar, Kamran ; Jin, Jionghua ; Pacella, Massimo: Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis. En: Iie transactions 45 (2013), Nr. 11, p. 1235–1247Paynabar, Kamran ; Zou, Changliang ; Qiu, Peihua: A change-point approach for phase-I analysis in multivariate profile monitoring and diagnosis. En: Technometrics 58 (2016), Nr. 2, p. 191–204Qi, Dequan ;Wang, Zhaojun ; Zi, Xuemin ; Li, Zhonghua: Phase II monitoring of generalized linear profiles using weighted likelihood ratio charts. En: Computers & Industrial Engineering 94 (2016), p. 178–187Qiu, Peihua: Introduction to statistical process control. CRC press, 2013Ren, Haojie ; Chen, Nan ; Wang, Zhaojun: Phase-II monitoring in multichannel profile observations. En: Journal of Quality Technology 51 (2019), Nr. 4, p. 338 352Research, Eigenvector: NIR of Corn Samples for Standardization Benchmarking. (2005)Rizzo, Caterina ; Chin, Swee-Teng ; van den Heuvel, Edwin ; Di Bucchianico, Alessandro: Performance measures of discrete and continuous time-between-events control charts. En: Quality and Reliability Engineering International 36 (2020), Nr. 8, p. 2754–2768Ryan, Thomas P.: Statistical methods for quality improvement. John Wiley & Sons, 2011Shams, MA B. ; Budman, HM ; Duever, TA: Fault detection, identification and diagnosis using CUSUM based PCA. En: Chemical Engineering Science 66 (2011), Nr. 20, p. 4488–4498Soleimani, Paria ; Noorossana, Rassoul ; Niaki, STA: Monitoring autocorrelated multivariate simple linear profiles. En: The International Journal of Advanced Manufacturing Technology 67 (2013), Nr. 5, p. 1857–1865Williams, James D. ; Woodall, William H. ; Birch, Jeffrey B.: Statistical monitoring of nonlinear product and process quality profiles. En: Quality and Reliability Engineering International 23 (2007), Nr. 8, p. 925–941Wold, Svante ; Esbensen, Kim ; Geladi, Paul: Principal component analysis. En: Chemometrics and intelligent laboratory systems 2 (1987), Nr. 1-3, p. 37–52Yang, Zhongfu ; Nie, Gang ; Pan, Ling ; Zhang, Yan ; Huang, Linkai ; Ma, Xiao ; Zhang, Xinquan: Development and validation of near-infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. En: PeerJ 5 (2017), p. e3867Zhang, Jiajia ; Ren, Haojie ; Yao, Rui ; Zou, Changliang ; Wang, Zhaojun: Phase I analysis of multivariate profiles based on regression adjustment. En: Computers & Industrial Engineering 85 (2015), p. 132–144Zhou, Qin ; Zou, Changliang ; Wang, Zhaojun ; Jiang, Wei: Likelihood-based EWMA charts for monitoring Poisson count data with time-varying sample sizes. En: Journal of the American Statistical Association 107 (2012), Nr. 499, p. 1049–1062Zou, Changliang ; Tsung, Fugee ; Wang, Zhaojun: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. En: Technometrics 49 (2007), Nr. 4, p. 395–408Zou, Changliang ; Tsung, Fugee ; Wang, Zhaojun: Monitoring profiles based on nonparametric regression methods. En: Technometrics 50 (2008), Nr. 4, p. 512–526EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85334/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1116553091.2023.pdf1116553091.2023.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf6581162https://repositorio.unal.edu.co/bitstream/unal/85334/2/1116553091.2023.pdfdfce42dcad3cc28c8a0d0e839525b510MD52THUMBNAIL1116553091.2023.pdf.jpg1116553091.2023.pdf.jpgGenerated Thumbnailimage/jpeg4358https://repositorio.unal.edu.co/bitstream/unal/85334/3/1116553091.2023.pdf.jpg523bc45f144575eace7545366925348cMD53unal/85334oai:repositorio.unal.edu.co:unal/853342024-01-16 23:03:38.549Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=