Saliency-based characterization of group differences for magnetic resonance disease classification
Anatomical variability of patient's brains limits the statistical analyses about presence or absence of a pathology. In this paper, we present an approach for classification of brain Magnetic Resonance (MR) images from healthy and diseased subjects. The approach builds up a saliency map, which...
- Autores:
-
Rueda Olarte, Andrea del Pilar
González Osorio, Fabio Augusto
Romero Castro, Eduardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/39493
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/39493
http://bdigital.unal.edu.co/29590/
- Palabra clave:
- Subject classification
Magnetic Resonance Imaging
Visual Attention models
Saliency maps
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ee57acfd42aee5d5393e3ed934d4d2c0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/39493 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rueda Olarte, Andrea del Pilar1fe3211d-68d3-4d1e-aab0-bcf944d8a958300González Osorio, Fabio Augustocb310629-a242-42c5-8301-883fbab8e3ab300Romero Castro, Eduardo1cd0e643-6618-4a24-afd7-47d003c026693002019-06-28T03:57:42Z2019-06-28T03:57:42Z2013https://repositorio.unal.edu.co/handle/unal/39493http://bdigital.unal.edu.co/29590/Anatomical variability of patient's brains limits the statistical analyses about presence or absence of a pathology. In this paper, we present an approach for classification of brain Magnetic Resonance (MR) images from healthy and diseased subjects. The approach builds up a saliency map, which extract regions of relative change in three different dimensions: intensity, orientation and edges. The obtained regions of interest are used as suitable patterns for subject classification using support vector machines. The strategy’s performance was assessed on a set of 198 MR images extracted from the OASIS database and divided into four groups, reporting an average accuracy rate of 74.54% and an average Equal Error Rate of 0.725.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/28122Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 80, núm. 178 (2013); 21-28 DYNA; Vol. 80, núm. 178 (2013); 21-28 2346-2183 0012-7353Rueda Olarte, Andrea del Pilar and González Osorio, Fabio Augusto and Romero Castro, Eduardo (2013) Saliency-based characterization of group differences for magnetic resonance disease classification. Dyna; Vol. 80, núm. 178 (2013); 21-28 DYNA; Vol. 80, núm. 178 (2013); 21-28 2346-2183 0012-7353 .Saliency-based characterization of group differences for magnetic resonance disease classificationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSubject classificationMagnetic Resonance ImagingVisual Attention modelsSaliency mapsORIGINAL28122-197459-1-PB.htmltext/html36943https://repositorio.unal.edu.co/bitstream/unal/39493/1/28122-197459-1-PB.html19d767c8112cf57c97b9853ae5f69384MD5128122-167417-1-PB.pdfapplication/pdf906050https://repositorio.unal.edu.co/bitstream/unal/39493/2/28122-167417-1-PB.pdf3aaf5f910f728a2f7ea14dedf6fceff0MD52THUMBNAIL28122-167417-1-PB.pdf.jpg28122-167417-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9416https://repositorio.unal.edu.co/bitstream/unal/39493/3/28122-167417-1-PB.pdf.jpg7d5ce5ac65ed895866f18b3698c08e3bMD53unal/39493oai:repositorio.unal.edu.co:unal/394932023-01-24 23:03:27.208Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Saliency-based characterization of group differences for magnetic resonance disease classification |
title |
Saliency-based characterization of group differences for magnetic resonance disease classification |
spellingShingle |
Saliency-based characterization of group differences for magnetic resonance disease classification Subject classification Magnetic Resonance Imaging Visual Attention models Saliency maps |
title_short |
Saliency-based characterization of group differences for magnetic resonance disease classification |
title_full |
Saliency-based characterization of group differences for magnetic resonance disease classification |
title_fullStr |
Saliency-based characterization of group differences for magnetic resonance disease classification |
title_full_unstemmed |
Saliency-based characterization of group differences for magnetic resonance disease classification |
title_sort |
Saliency-based characterization of group differences for magnetic resonance disease classification |
dc.creator.fl_str_mv |
Rueda Olarte, Andrea del Pilar González Osorio, Fabio Augusto Romero Castro, Eduardo |
dc.contributor.author.spa.fl_str_mv |
Rueda Olarte, Andrea del Pilar González Osorio, Fabio Augusto Romero Castro, Eduardo |
dc.subject.proposal.spa.fl_str_mv |
Subject classification Magnetic Resonance Imaging Visual Attention models Saliency maps |
topic |
Subject classification Magnetic Resonance Imaging Visual Attention models Saliency maps |
description |
Anatomical variability of patient's brains limits the statistical analyses about presence or absence of a pathology. In this paper, we present an approach for classification of brain Magnetic Resonance (MR) images from healthy and diseased subjects. The approach builds up a saliency map, which extract regions of relative change in three different dimensions: intensity, orientation and edges. The obtained regions of interest are used as suitable patterns for subject classification using support vector machines. The strategy’s performance was assessed on a set of 198 MR images extracted from the OASIS database and divided into four groups, reporting an average accuracy rate of 74.54% and an average Equal Error Rate of 0.725. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T03:57:42Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T03:57:42Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/39493 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/29590/ |
url |
https://repositorio.unal.edu.co/handle/unal/39493 http://bdigital.unal.edu.co/29590/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/dyna/article/view/28122 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.ispartofseries.none.fl_str_mv |
Dyna; Vol. 80, núm. 178 (2013); 21-28 DYNA; Vol. 80, núm. 178 (2013); 21-28 2346-2183 0012-7353 |
dc.relation.references.spa.fl_str_mv |
Rueda Olarte, Andrea del Pilar and González Osorio, Fabio Augusto and Romero Castro, Eduardo (2013) Saliency-based characterization of group differences for magnetic resonance disease classification. Dyna; Vol. 80, núm. 178 (2013); 21-28 DYNA; Vol. 80, núm. 178 (2013); 21-28 2346-2183 0012-7353 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/39493/1/28122-197459-1-PB.html https://repositorio.unal.edu.co/bitstream/unal/39493/2/28122-167417-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/39493/3/28122-167417-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
19d767c8112cf57c97b9853ae5f69384 3aaf5f910f728a2f7ea14dedf6fceff0 7d5ce5ac65ed895866f18b3698c08e3b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089342262444032 |