Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama

ilustraciones, fotografía a color

Autores:
Llano León, Manuela
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83670
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83670
https://repositorio.unal.edu.co/
Palabra clave:
Neoplasias de la Mama
Acciones Terapéuticas
Microambiente inmune tumoral
Cáncer de mama
Inmunovigilancia
Quimioterapia neoadyuvante
Tumor immune microenvironment
Immunosurveillance
Neoadjuvant chemotherapy
Breast Cancer
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_edcbc46139a8d1058e493695a92c4063
oai_identifier_str oai:repositorio.unal.edu.co:unal/83670
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
dc.title.translated.eng.fl_str_mv Tumor immune infiltrate characterization in breast cancer patients
title Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
spellingShingle Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
Neoplasias de la Mama
Acciones Terapéuticas
Microambiente inmune tumoral
Cáncer de mama
Inmunovigilancia
Quimioterapia neoadyuvante
Tumor immune microenvironment
Immunosurveillance
Neoadjuvant chemotherapy
Breast Cancer
title_short Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
title_full Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
title_fullStr Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
title_full_unstemmed Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
title_sort Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama
dc.creator.fl_str_mv Llano León, Manuela
dc.contributor.advisor.none.fl_str_mv Parra López, Carlos Alberto
dc.contributor.author.none.fl_str_mv Llano León, Manuela
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio de Inmunología y Medicina Traslacional
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-6436-1556
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000126438
dc.subject.decs.spa.fl_str_mv Neoplasias de la Mama
Acciones Terapéuticas
topic Neoplasias de la Mama
Acciones Terapéuticas
Microambiente inmune tumoral
Cáncer de mama
Inmunovigilancia
Quimioterapia neoadyuvante
Tumor immune microenvironment
Immunosurveillance
Neoadjuvant chemotherapy
Breast Cancer
dc.subject.proposal.spa.fl_str_mv Microambiente inmune tumoral
Cáncer de mama
Inmunovigilancia
Quimioterapia neoadyuvante
dc.subject.proposal.eng.fl_str_mv Tumor immune microenvironment
Immunosurveillance
Neoadjuvant chemotherapy
Breast Cancer
description ilustraciones, fotografía a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-29T16:58:50Z
dc.date.available.none.fl_str_mv 2023-03-29T16:58:50Z
dc.date.issued.none.fl_str_mv 2023-03-27
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83670
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83670
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Laplane, L., et al., The Multiple Layers of the Tumor Environment. Trends in cancer, 2018. 4(12).
2. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome, in Nat Rev Cancer. 2012: England. p. 298-306.
3. Pages, F., et al., International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 2018. 391(10135): p. 2128-2139.
4. F, Pager., et al., The consensus Immunoscore in phase 3 clinical trials; potential impact on patient management decisions. Oncoimmunology, 2020. 9(1).
5. Ali., et al., Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast cancer research : BCR, 2016. 18(1).
6. Burugu, S., K. Asleh-Aburaya, and T.O. Nielsen, Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer, 2017. 24(1): p. 3-15.
7. Alexe., et al., High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer research, 2007. 67(22).
8. Teschendorff., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC cancer, 2010. 10.
10. Liu, W.M., et al., Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer, 2010. 102(1): p. 115-23.
11. Albert, M.L., B. Sauter, and N. Bhardwaj, Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998. 392(6671): p. 86-9.
12. Apetoh, L., et al., Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res, 2008. 68(11): p. 4026-30.
13. Casares, N., et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med, 2005. 202(12): p. 1691-701.
14. Zitvogel, L., O. Kepp, and G. Kroemer, Decoding cell death signals in inflammation and immunity. Cell, 2010. 140(6): p. 798-804.
15. Bernal.-E., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.
16. Sistigu, A., et al., Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med, 2014. 20(11): p. 1301-9.
17. Zhang, B., et al., Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med, 2007. 204(1): p. 49-55.
18. Reits, E.A., et al., Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med, 2006. 203(5): p. 1259-71.
19. Apetoh, L., et al., The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev, 2007. 220: p. 47-59.
20. Tesniere., et al., Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010. 29(4).
21. Bernal Estévez, D.A.P.L., Carlos Alberto., Evaluación de la capacidad inmuno-estimulante de la terapia neo-adyuvante con Doxorrubicina y Ciclofosfamida en pacientes con cáncer de mama. 2017.
22. Rodríguez Rodríguez, I.J.P.L., Carlos Alberto., Estudio celular de la inmunosenescencia en adultos mayores vacunados y en pacientes con cáncer de mama. 2021.
23. Remark, R., et al., In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol, 2016. 1(1): p. aaf6925.
24. Akturk., et al., Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS): Multiplexed Chromogenic IHC Assay for High-Dimensional Tissue Analysis. . 2020: Methods Mol Biol. . p. 497-519.
25. Steen, C., et al., Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. MIMB. Vol. 2117. 2020, Springer Link: Methods Mol Biol. 135-157.
26. Newman., et al., Robust enumeration of cell subsets from tissue expression profiles. Nature methods, 2015. 12(5).
27. INC. Estadísticas para Colombia 2020. International Agency for Cancer Research. 2020, G.. 2021; Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf.
28. (INC)., Anuario estadístico 2020. Vol. 18. 2021.
29. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8.
30. Zhu, S., et al., Differential regulation and function of tumor-infiltrating T cells in different stages of breast cancer patients. Tumour Biol, 2015. 36(10): p. 7907-13
31. Crespo, J., et al., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol, 2013. 25(2): p. 214-21.
32. Denkert, C., et al., Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol, 2018. 19(1): p. 40-50.
33. Ali, H.R., et al., Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol, 2014. 25(8): p. 1536-43.
34. Gu-Trantien, C., et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest, 2013. 123(7): p. 2873-92.
35. van Vloten, J.P., et al., Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. J Immunol, 2018. 200(2): p. 450-458.
36. Ghiringhelli, F., et al., Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother, 2007. 56(5): p. 641-8.
37. Hortobagyi, G.C., J. D´Orsi, S. Edge, E. Mittendorf H. Rugo, L. Solin, D. Weaver, D. Winchester, D. Giuliano A., Breast Cancer Staging System AJCC 8th Edition. 2017. p. 589-636.
38. Akram, M., et al., Awareness and current knowledge of breast cancer. Biol Res, 2017. 50(1): p. 33.
39. Burnet, M., Cancer; a biological approach. I. The processes of control. Br Med J, 1957. 1(5022): p. 779-86.
40. Shankaran, V., et al., IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 2001. 410(6832): p. 1107-11.
41. Vesely, M.D., et al., Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 2011. 29: p. 235-71.
42. Mittal, D., et al., New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol, 2014. 27: p. 16-25.
43. Halama, N., et al., Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res, 2011. 71(17): p. 5670-7.
44. Dieu-Nosjean, M.C., et al., Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol, 2008. 26(27): p. 4410-7.
45. García Martínez., et al., Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast cancer research : BCR, 2014. 16(6).
46. Abdelrahman, A.E., et al., Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol, 2021. 51: p. 151676.
47. Demir, L., et al., Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral FOXP3+ Tregs. Clinical & experimental metastasis, 2013. 30(8).
48. Kaewkangsadan, V., et al., Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. Journal of immunology research, 2016. 2016.
49. Ladoire, S., et al., In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol, 2011. 224(3): p. 389-400.
50. Lee, J., D. Kim, and A. Lee, Prognostic Role and Clinical Association of Tumor-Infiltrating Lymphocyte, Programmed Death Ligand-1 Expression with Neutrophil-Lymphocyte Ratio in Locally Advanced Triple-Negative Breast Cancer. Cancer research and treatment, 2019. 51(2).
51. Vanguri, R., et al., Tumor Immune Microenvironment and Response to Neoadjuvant Chemotherapy in Hormone Receptor/HER2+ Early Stage Breast Cancer. Clinical breast cancer, 2022. 22(6).
52. Oda, N., et al., Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast cancer research and treatment, 2012. 136(1).
53. Waks, A., et al., The Immune Microenvironment in Hormone Receptor-Positive Breast Cancer Before and After Preoperative Chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 2019. 25(15).
54. Zhang, L., et al., The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer. Annals of diagnostic pathology, 2019. 40.
55. García-Martínez, E., et al., Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast cancer research : BCR, 2014. 16(6).
56. Hornychova, H., et al., Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer investigation, 2008. 26(10).
57. Shou, J., et al., Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs : a systematic review and meta-analysis. BMC Cancer, 2016. 16: p. 687.
58. Mendes, F., et al., The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta, 2016. 1865(2): p. 168-75.
59. Jiang, Y., Y. Li, and B. Zhu, T-cell exhaustion in the tumor microenvironment. Cell Death Dis, 2015. 6: p. e1792.
60. Prado-Garcia, H., S. Romero-Garcia, and J.S. Lopez-Gonzalez, The role of exhaustion in tumor-induced T cell dysfunction in cancer, in Cancer Immunology. 2015, Springer. p. 61-75.
61. Okoye, I.S., et al., Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8(+) T Cell Responses to Chronic Viral Infections and Cancer. Front Immunol, 2017. 8: p. 1215.
62. Sun, S., et al., PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother, 2014. 63(4): p. 395-406.
63. Alcover, A. and B. Alarcon, Internalization and intracellular fate of TCR-CD3 complexes. Crit Rev Immunol, 2000. 20(4): p. 325-46.
64. Gonzalez-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.
65. Alexe, G., et al., High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res, 2007. 67(22): p. 10669-76.
66. Teschendorff, A.E., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer, 2010. 10: p. 604.
67. Mahmoud, S.M., et al., An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat, 2011. 127(1): p. 99-108.
68. Granados, D.P., et al., MHC I-associated peptides preferentially derive from transcripts bearing miRNA response elements. Blood, 2012. 119(26): p. e181-91.
69. Tongu, M., et al., Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunol Immunother, 2010. 59(5): p. 769-77.
70. Tesniere, A., et al., Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010. 29(4): p. 482-91.
71. Viaud, S., et al., Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res, 2010. 70(4): p. 1281-5.
72. Blachere, N.E., R.B. Darnell, and M.L. Albert, Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol, 2005. 3(6): p. e185.
73. Nowak, A.K., R.A. Lake, and B.W. Robinson, Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev, 2006. 58(8): p. 975-90.
74. Groenendyk, J., J. Lynch, and M. Michalak, Calreticulin, Ca2+, and calcineurin - signaling from the endoplasmic reticulum. Mol Cells, 2004. 17(3): p. 383-9.
75. Chaput, N., et al., Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med, 2007. 85(10): p. 1069-76.
76. Panaretakis, T., et al., The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ, 2008. 15(9): p. 1499-509.
77. Gardai, S.J., et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005. 123(2): p. 321-34.
78. Sebbag, G., et al., Colon carcinoma in the adolescent. Pediatr Surg Int, 1997. 12(5-6): p. 446-8.
79. Faget, J., et al., Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res, 2011. 71(19): p. 6143-52.
80. Senovilla, L., et al., An immunosurveillance mechanism controls cancer cell ploidy. Science, 2012. 337(6102): p. 1678-84.
81. Miyashita, M., et al., Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res, 2015. 17: p. 124.
82. DeNardo, D.G., et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov, 2011. 1(1): p. 54-67.
84. Loi, S., et al., Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol, 2013. 31(7): p. 860-7.
85. Saper, C.B., Neurobiological basis of fever. Ann N Y Acad Sci, 1998. 856: p. 90-4.
86. Ruffell, B., et al., Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences, 2012. 109(8): p. 2796-2801.
87. Stoll, G., et al., Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. Oncoimmunology, 2014. 3(1): p. e27884.
88. Disis, M.L., Immune regulation of cancer. J Clin Oncol, 2010. 28(29): p. 4531-8.
89. Pages, F., et al., Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 2010. 29(8): p. 1093-102.
90. Ali, H.R., et al., Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res, 2016. 18(1): p. 21.
91. Giesen, C., et al., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods, 2014. 11(4): p. 417-22.
92. Gobert, M., et al., Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res, 2009. 69(5): p. 2000-9.
93. Jung, Y.Y., et al., Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. J Breast Cancer, 2016. 19(3): p. 261-267.
95. JS, M., V.d.H. JA, and V.d.V. CJ, Neoadjuvant chemotherapy for operable breast cancer. The British journal of surgery, 2007. 94(10).
94. Takada. and M.-T. SL, Neoadjuvant treatment of breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology, 2012. 23 Suppl 10(Suppl 10).
95. Mieog, V.d.H. JA, and V.d.V. CJ, Neoadjuvant chemotherapy for operable breast cancer. The British journal of surgery, 2007. 94(10).
96. Huober., et al., Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast cancer research and treatment, 2010. 124(1).
97. Park, Y.H., et al., Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun, 2020. 11(1): p. 6175.
98. Ringnér, M., What is principal component analysis? Nature biotechnology, 2008. 26(3).
99. Eisenhauer, E.A., et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45(2): p. 228-47.
100. Thurstone, L.L., Multiple factor analysis: A development and expansion of vectors of the mind. 1947: University of Chicago Press, Chicago.
101. Tabachnick, B.F., L., Principal components and factor analysis. Using multivariate statistics,. 2001. p. 582-633.
102. Dako. EnVision Systems | Agilent. 2022; Available from: https://www.agilent.com/en/product/immunohistochemistry/visualization-systems/envision-flex-systems.
103. Abdel-Fatah, T.M., et al., HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer, 2014. 110(10): p. 2450-61.
104. Alhesa, A., et al., PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. International journal of immunopathology and pharmacology, 2022. 36.
105. Chan, M., et al., Correlation of tumor-infiltrative lymphocyte subtypes alteration with neoangiogenesis before and after neoadjuvant chemotherapy treatment in breast cancer patients. The International journal of biological markers, 2014. 29(3).
106. Dieci, M., et al., Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. European journal of cancer (Oxford, England : 1990), 2020. 136.
107. Graeser, M., et al., Immune cell composition and functional marker dynamics from multiplexed immunohistochemistry to predict response to neoadjuvant chemotherapy in the WSG-ADAPT-TN trial. Journal for immunotherapy of cancer, 2021. 9(5).
108. Hoffmann, L.G., et al., Evaluation of PD-L1 and tumor infiltrating lymphocytes in paired pretreatment biopsies and post neoadjuvant chemotherapy surgical specimens of breast carcinoma. Sci Rep, 2021. 11(1): p. 22478.
109. Kaewkangsadan, V., et al., The Differential Contribution of the Innate Immune System to a Good Pathological Response in the Breast and Axillary Lymph Nodes Induced by Neoadjuvant Chemotherapy in Women with Large and Locally Advanced Breast Cancers. Journal of immunology research, 2017. 2017.
110. Ladoire, S., et al., Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 2008. 14(8).
111. Li, X., et al., Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial. Journal for immunotherapy of cancer, 2019. 7(1).
112. Liang, H., et al., TMB and TCR Are Correlated Indicators Predictive of the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. Frontiers in oncology, 2021. 11.
113. Nadin, S., et al., Prognostic implication of HSPA (HSP70) in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Cell stress & chaperones, 2014. 19(4).
114. Pelekanou, V., et al., Tumor-Infiltrating Lymphocytes and PD-L1 Expression in Pre- and Posttreatment Breast Cancers in the SWOG S0800 Phase II Neoadjuvant Chemotherapy Trial. Molecular cancer therapeutics, 2018. 17(6).
115. Sarradin, V., et al., Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: the MIMOSA-1 study. Breast cancer research : BCR, 2021. 23(1).
116. Urueña, C., et al., The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Scientific reports, 2022. 12(1).
117. Varadan, V., et al., Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2016. 22(13).
118. Verma, C., et al., Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery. Journal of translational medicine, 2015. 13.
119. Wang, Y., et al., Lymphocyte-Activation Gene-3 Expression and Prognostic Value in Neoadjuvant-Treated Triple-Negative Breast Cancer. Journal of breast cancer, 2018. 21(2).
120. Wesolowski, R., et al., Exploratory analysis of immune checkpoint receptor expression by circulating T cells and tumor specimens in patients receiving neo-adjuvant chemotherapy for operable breast cancer. BMC Cancer, 2020. 20(1): p. 445.
121. Prado-Garcia, H.R.-G., Susana. Lopez-Gonzalez, Jose Sullivan, The Role of Exhaustion in Tumor-Induced T Cell Dysfunction in Cancer | SpringerLink. Cancer Immunology, 2014.
122. Matkowsk, i.R., et al., The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer research, 2009. 29(7).
123. Stovgaard, E.S., et al., Triple negative breast cancer - prognostic role of immune-related factors: a systematic review. Acta Oncol, 2018. 57(1): p. 74-82.
124. Laplane, L., et al., The Multiple Layers of the Tumor Environment. Trends in cancer, 2018. 4(12).
125. McAllister, S. and R. Weinberg, The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature cell biology, 2014. 16(8).
126. Nalio Ramos, R., et al., Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell, 2022. 185(7): p. 1189-1207 e25.
127. Laplane, L., et al., Beyond the tumour microenvironment. International journal of cancer, 2019. 145(10).
128. Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy, in BMC Cancer. 2018.
129. Bunt, S.K., et al., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res, 2007. 67(20): p. 10019-26.
130. Solito, S., et al., Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci, 2014. 1319: p. 47-65.
131. DG, D., et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer discovery, 2011. 1(1).
132. Ceprnja, T., et al., Prognostic Significance of Lymphocyte Infiltrate Localization in Triple-Negative Breast Cancer. J Pers Med, 2022. 12(6).
133. Gu-Trantien, C., et al., CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI insight, 2017. 2(11).
134. Buisseret, L., et al., Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology, 2017. 6(1): p. e1257452.
135. Salgado, R., et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Annals of oncology : official journal of the European Society for Medical Oncology, 2015. 26(2).
136. Shiroo, M., et al., CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. The EMBO journal, 1992. 11(13).
137. Liu, J., et al., New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int, 2021. 21(1): p. 389.
138. Hwang, I., et al., Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med, 2020. 18(1): p. 443.
139. Pan, Y., et al., Tumor-Associated Macrophages in Tumor Immunity. Frontiers in immunology, 2020. 11.
141. Li, Y.W., et al., Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol, 2011. 54(3): p. 497-505.
142. Sznurkowski, J.J., A. Zawrocki, and W. Biernat, Subtypes of cytotoxic lymphocytes and natural killer cells infiltrating cancer nests correlate with prognosis in patients with vulvar squamous cell carcinoma. Cancer Immunol Immunother, 2014. 63(3): p. 297-303.
143. Roberti, M.P., J. Mordoh, and E.M. Levy, Biological role of NK cells and immunotherapeutic approaches in breast cancer. Front Immunol, 2012. 3: p. 375.
144. Rajjoub, S., et al., Prognostic significance of tumor-infiltrating lymphocytes in oropharyngeal cancer. Ear Nose Throat J, 2007. 86(8): p. 506-11.
145. Ancuta, E., et al., Predictive value of cellular immune response in cervical cancer. Rom J Morphol Embryol, 2009. 50(4): p. 651-5.
146. Sinicrope, F.A., et al., Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology, 2009. 137(4): p. 1270-9.
147. Matsumoto, H., et al., Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat, 2016. 156(2): p. 237-47.
148. Sato, E., et al., Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18538-43.
149. Zeestraten, E.C., et al., FoxP3- and CD8-positive Infiltrating Immune Cells Together Determine Clinical Outcome in Colorectal Cancer. Cancer Microenviron, 2013. 6(1): p. 31-9.
150. Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC cancer, 2016. 16.
151. Bernal-Estévez, D., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.
152. Bernal-Estévez, D., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.
153. Kallies, A., D. Zehn, and D.T. Utzschneider, Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol, 2020. 20(2): p. 128-136.
154. Teft, W.A., M.G. Kirchhof, and J. Madrenas, A molecular perspective of CTLA-4 function. Annu Rev Immunol, 2006. 24: p. 65-97.
155. Ostrand.-R., H. LA, and H. ST, The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. Journal of immunology (Baltimore, Md. : 1950), 2014. 193(8).
156. Dong, H., et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002. 8(8): p. 793-800.
157. Flemming, A., Cancer: PD1 makes waves in anticancer immunotherapy. Nat Rev Drug Discov, 2012. 11(8): p. 601.
158. Woo, S.R., et al., Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res, 2012. 72(4): p. 917-27.
159. Foy, S.P., et al., Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS One, 2016. 11(2): p. e0150084.
160. Chan, J.D., et al., Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol, 2021. 21(12): p. 769-784.
161. Li, L., et al., Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol, 2020. 88: p. 106939.
162. King, J., H. Mir, and S. Singh, Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. Prog Mol Biol Transl Sci, 2017. 151: p. 113-136.
163. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017. 17(9): p. 559-572
164. Pillemer, B.B., et al., STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells. J Immunol, 2009. 183(1): p. 155-63.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 120 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83670/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83670/2/1098311523.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83670/3/1098311523.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
607361090be86fa401b81d50b5a88503
0efa230a1eb8b7621d007789cf1a2c3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089722849394688
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parra López, Carlos Alberto72ac583cfa47cd3a2fb760ecf10befccLlano León, Manuela84e4b041c15cc20c4b7520f7e498a914Laboratorio de Inmunología y Medicina Traslacionalhttps://orcid.org/0000-0002-6436-1556https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00001264382023-03-29T16:58:50Z2023-03-29T16:58:50Z2023-03-27https://repositorio.unal.edu.co/handle/unal/83670Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografía a colorEn Colombia, el cáncer de mama es el tipo de cáncer con mayor incidencia y prevalencia en la mujer, ocupando el tercer puesto en mortalidad a nivel nacional. La vigilancia del tumor en pacientes con cáncer de mama por las células del sistema inmune -inmunovigilancia- es importante para el control del desarrollo tumoral. Reportes en la literatura sugieren que el esquema de quimioterapia neoadyuvante con Doxorrubicina y Ciclofosfamida induce un tipo especial de muerte en las células tumorales conocida como muerte celular inmunogénica, activando las poblaciones inmunes intratumorales y favoreciendo la inmunovigilancia de este tumor, lo cual, probablemente contribuye a una mejor respuesta clínica al tratamiento antitumoral. Estudios demuestran que el microambiente tumoral es un factor determinante en el pronóstico de los pacientes con cáncer. Aunque en los tumores de cáncer de mama se ha descrito la importancia de analizar el infiltrado inmune para evaluar la presencia de poblaciones efectoras y de poblaciones reguladoras, este tipo de análisis para proponer marcadores pronósticos de evolución y de respuesta al tratamiento han sido limitados. En este trabajo estandarizamos una metodología de inmunohistoquímica secuencial sobre lámina única para la caracterización de poblaciones del sistema inmune innato y adaptativo como: i) Leucocitos totales CD45+ ii) Macrófagos CD68+ III). Linfocitos B CD20+ iv). Linfocitos T totales CD3+ y v). Linfocitos T Citotóxicos CD8+, con relación a las células tumorales evaluadas con el marcador Pankeratinas. Se demostró que esta técnica representa una alternativa costo-efectiva para mapear el microambiente tumoral, que permite monitorear la infiltración de estas poblaciones antes y después de la quimioterapia y que en este trabajo nos permitió evidenciar un aumento significativo de la infiltración de células CD45 positivas después del tratamiento neoadyuvante. Adicionalmente, utilizamos la herramienta CIBERSORTx para medir 22 subpoblaciones inmunes, con datos disponibles en el Genome European Archive por medio del análisis del transcriptoma tumoral. Se encontraron cambios significativos en diferentes poblaciones: primero, un aumento después de un ciclo de quimioterapia de las fracciones relativas de Linfocitos T CD8, Linfocitos T CD4 quiescentes y de Linfocitos T reguladores, las cuales disminuyeron al terminar el esquema de neoadyuvancia. Segundo, las fracciones relativas de Linfocitos B de memoria, Macrófagos M1, y Linfocitos T Foliculares disminuyeron después de un ciclo y al final del tratamiento. Por último, las Células Dendríticas activadas, los Macrófagos M2 y los Mastocitos aumentaron después de un ciclo, y al finalizar el tratamiento. Por otra parte, se realizó una revisión sistemática que nos permitió incluir 32 artículos para una síntesis cualitativa de la evidencia y 9 artículos, para una síntesis cuantitativa por medio de meta-análisis, en los cuales encontramos una disminución significativa de la infiltración de TILs (T Infiltrating Lymphocytes) evaluados morfológicamente en láminas de hematoxilina & eosina y del marcador FoxP3 medido por inmunohistoquímica tradicional, lo que sugiere una disminución de las poblaciones de linfocitos T reguladores en respuesta a la NAC (neoadyuvant chemotherapy). Las poblaciones de Linfocitos T totales CD3+, Linfocitos T colaboradores CD4+ y Linfocitos T citotóxicos CD8+ no cambiaron significativamente en respuesta al tratamiento. Por último, y con la intención de evaluar el impacto de los marcadores evaluados en la pCR (Pathological Clinical Response), se realizó un análisis PCA (Principal Component Analysis) con las variables correspondientes a la información clínica de las pacientes y los puntajes de las marcaciones de inmunohistoquímica de las cinco poblaciones inmunes evaluadas. En este análisis las variables fueron procesadas de forma directa y posteriormente optimizadas filtrando las variables de mayor peso. Sin embargo, ninguno de estos análisis nos permitió establecer correlaciones entre los marcadores evaluados y el pronóstico clínico de las pacientes. Sin embargo, realizando un análisis con dos variables seleccionadas: i) infiltrado de células CD45+ el cual aumentó significativamente pos-NAC; ii) infiltración de células CD68+ que mostró una tendencia al aumento, y las variables de tamaño y grado de reducción tumoral, fue posible evidenciar una segregación diferencial de las muestras pre y pos-NAC. (Texto tomado de la fuente)Breast cancer is the third deadliest cancer in Colombia, having the highest incidence and prevalence in women. Tumor surveillance in breast cancer patients by immune system cells -immunosurveillance- it’s a key factor to control tumor growth. A growing body of evidence suggest that a neoadjuvant chemotherapy scheme with Doxorubicin and Cyclophosphamide induces a special type of tumor cell death known as immunogenic cell death, which activates intratumoral immune populations and favours immunosurveillance of this tumor, probably contributing to a better clinical response to antitumor treatment. Studies show that the tumor microenvironment is a determining factor in the prognosis of cancer patients. Although in breast cancer tumors the importance of analyzing the immune infiltrate to evaluate the presence of effector and regulatory populations has been described, the discovery and validation of prognostic biomarkers in response to treatment is still limited. In this work we standardized a sequential immunohistochemistry methodology for the characterization of innate and adaptive immune system populations such as: i) Total CD45+ leukocytes ii) CD68+ macrophages iii). CD20+ B cells iv). CD3+ total T cells and v).CD8+ cytotoxic T cells, in relation to tumor cells evaluated with the Pankeratin marker. Our results showed that this technique represents a cost-effective alternative to map the tumor microenvironment, which allowed us to evaluate the infiltration of these populations before and after chemotherapy, finding a significant increase in the infiltration of CD45 positive cells after neoadjuvant treatment. Additionally, we used the CIBERSORTx tool to measure twenty-two immune subpopulations, with data available in the genome European archive, by analyzing the tumor transcriptome. Significant changes were found in different populations: first, an increase after one cycle of NAC of the relative fractions of: CD8 T cells, quiescent CD4 T cells and regulatory T lymphocytes; decreasing at the end of the treatment. Second, the relative fractions of memory B lymphocytes, M1 macrophages, and follicular T cells decreased after one cycle and at the end of treatment. Finally, activated Dendritic Cells, M2 Macrophages, and Mast Cells increased after one cycle, and also at the end of treatment. On the other hand, we performed a systematic review that allowed us to include 32 articles for a qualitative synthesis of the evidence, and 9 articles, for a quantitative synthesis by meta-analysis, in which we found a significant decrease in the infiltration of TILs, evaluated morphologically on hematoxylin and eosin slides, as well as the reduction FoxP3+ cells, measured by traditional immunohistochemistry, suggesting a decrease in the populations of regulatory T lymphocytes in response to NAC. Total CD3+ T lymphocyte, CD4+ helper T lymphocyte and CD8+ cytotoxic T lymphocyte populations did not change significantly in response to treatment. Finally with the intention of correlate the evaluated markers and pCR (Pathological Clinical Response), a PCA (Principal Component Analysis) analysis was performed with the variables corresponding to the clinical information of the patients and the scores of the immunohistochemical results of the five immune populations evaluated. In the first analysis, the variables were processed directly, and in the second the variables were optimized by filtering the ones with the greatest weight. However, none of these analyzes allowed us to establish correlations between the markers evaluated and the clinical prognosis of the patients. Lastly, analysis with two selected variables: i) CD45+ cell infiltrate which increased significantly post-NAC; ii) infiltration of CD68+ cells that showed an increasing trend, was performed, among with the variables of size and degree of tumor reduction, showing a differential segregation of the pre- and post-NAC samples.MaestríaMagister en Ciencias - Bioquímica120 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáCaracterización del infiltrado inmune tumoral en pacientes con cáncer de mamaTumor immune infiltrate characterization in breast cancer patientsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Laplane, L., et al., The Multiple Layers of the Tumor Environment. Trends in cancer, 2018. 4(12).2. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome, in Nat Rev Cancer. 2012: England. p. 298-306.3. Pages, F., et al., International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 2018. 391(10135): p. 2128-2139.4. F, Pager., et al., The consensus Immunoscore in phase 3 clinical trials; potential impact on patient management decisions. Oncoimmunology, 2020. 9(1).5. Ali., et al., Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast cancer research : BCR, 2016. 18(1).6. Burugu, S., K. Asleh-Aburaya, and T.O. Nielsen, Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer, 2017. 24(1): p. 3-15.7. Alexe., et al., High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer research, 2007. 67(22).8. Teschendorff., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC cancer, 2010. 10.10. Liu, W.M., et al., Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer, 2010. 102(1): p. 115-23.11. Albert, M.L., B. Sauter, and N. Bhardwaj, Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998. 392(6671): p. 86-9.12. Apetoh, L., et al., Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res, 2008. 68(11): p. 4026-30.13. Casares, N., et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med, 2005. 202(12): p. 1691-701.14. Zitvogel, L., O. Kepp, and G. Kroemer, Decoding cell death signals in inflammation and immunity. Cell, 2010. 140(6): p. 798-804.15. Bernal.-E., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.16. Sistigu, A., et al., Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med, 2014. 20(11): p. 1301-9.17. Zhang, B., et al., Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med, 2007. 204(1): p. 49-55.18. Reits, E.A., et al., Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med, 2006. 203(5): p. 1259-71.19. Apetoh, L., et al., The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev, 2007. 220: p. 47-59.20. Tesniere., et al., Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010. 29(4).21. Bernal Estévez, D.A.P.L., Carlos Alberto., Evaluación de la capacidad inmuno-estimulante de la terapia neo-adyuvante con Doxorrubicina y Ciclofosfamida en pacientes con cáncer de mama. 2017.22. Rodríguez Rodríguez, I.J.P.L., Carlos Alberto., Estudio celular de la inmunosenescencia en adultos mayores vacunados y en pacientes con cáncer de mama. 2021.23. Remark, R., et al., In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol, 2016. 1(1): p. aaf6925.24. Akturk., et al., Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS): Multiplexed Chromogenic IHC Assay for High-Dimensional Tissue Analysis. . 2020: Methods Mol Biol. . p. 497-519.25. Steen, C., et al., Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. MIMB. Vol. 2117. 2020, Springer Link: Methods Mol Biol. 135-157.26. Newman., et al., Robust enumeration of cell subsets from tissue expression profiles. Nature methods, 2015. 12(5).27. INC. Estadísticas para Colombia 2020. International Agency for Cancer Research. 2020, G.. 2021; Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf.28. (INC)., Anuario estadístico 2020. Vol. 18. 2021.29. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8.30. Zhu, S., et al., Differential regulation and function of tumor-infiltrating T cells in different stages of breast cancer patients. Tumour Biol, 2015. 36(10): p. 7907-1331. Crespo, J., et al., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol, 2013. 25(2): p. 214-21.32. Denkert, C., et al., Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol, 2018. 19(1): p. 40-50.33. Ali, H.R., et al., Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol, 2014. 25(8): p. 1536-43.34. Gu-Trantien, C., et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest, 2013. 123(7): p. 2873-92.35. van Vloten, J.P., et al., Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. J Immunol, 2018. 200(2): p. 450-458.36. Ghiringhelli, F., et al., Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother, 2007. 56(5): p. 641-8.37. Hortobagyi, G.C., J. D´Orsi, S. Edge, E. Mittendorf H. Rugo, L. Solin, D. Weaver, D. Winchester, D. Giuliano A., Breast Cancer Staging System AJCC 8th Edition. 2017. p. 589-636.38. Akram, M., et al., Awareness and current knowledge of breast cancer. Biol Res, 2017. 50(1): p. 33.39. Burnet, M., Cancer; a biological approach. I. The processes of control. Br Med J, 1957. 1(5022): p. 779-86.40. Shankaran, V., et al., IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 2001. 410(6832): p. 1107-11.41. Vesely, M.D., et al., Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 2011. 29: p. 235-71.42. Mittal, D., et al., New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol, 2014. 27: p. 16-25.43. Halama, N., et al., Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res, 2011. 71(17): p. 5670-7.44. Dieu-Nosjean, M.C., et al., Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol, 2008. 26(27): p. 4410-7.45. García Martínez., et al., Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast cancer research : BCR, 2014. 16(6).46. Abdelrahman, A.E., et al., Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol, 2021. 51: p. 151676.47. Demir, L., et al., Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral FOXP3+ Tregs. Clinical & experimental metastasis, 2013. 30(8).48. Kaewkangsadan, V., et al., Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. Journal of immunology research, 2016. 2016.49. Ladoire, S., et al., In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol, 2011. 224(3): p. 389-400.50. Lee, J., D. Kim, and A. Lee, Prognostic Role and Clinical Association of Tumor-Infiltrating Lymphocyte, Programmed Death Ligand-1 Expression with Neutrophil-Lymphocyte Ratio in Locally Advanced Triple-Negative Breast Cancer. Cancer research and treatment, 2019. 51(2).51. Vanguri, R., et al., Tumor Immune Microenvironment and Response to Neoadjuvant Chemotherapy in Hormone Receptor/HER2+ Early Stage Breast Cancer. Clinical breast cancer, 2022. 22(6).52. Oda, N., et al., Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast cancer research and treatment, 2012. 136(1).53. Waks, A., et al., The Immune Microenvironment in Hormone Receptor-Positive Breast Cancer Before and After Preoperative Chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 2019. 25(15).54. Zhang, L., et al., The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer. Annals of diagnostic pathology, 2019. 40.55. García-Martínez, E., et al., Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast cancer research : BCR, 2014. 16(6).56. Hornychova, H., et al., Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer investigation, 2008. 26(10).57. Shou, J., et al., Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs : a systematic review and meta-analysis. BMC Cancer, 2016. 16: p. 687.58. Mendes, F., et al., The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta, 2016. 1865(2): p. 168-75.59. Jiang, Y., Y. Li, and B. Zhu, T-cell exhaustion in the tumor microenvironment. Cell Death Dis, 2015. 6: p. e1792.60. Prado-Garcia, H., S. Romero-Garcia, and J.S. Lopez-Gonzalez, The role of exhaustion in tumor-induced T cell dysfunction in cancer, in Cancer Immunology. 2015, Springer. p. 61-75.61. Okoye, I.S., et al., Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8(+) T Cell Responses to Chronic Viral Infections and Cancer. Front Immunol, 2017. 8: p. 1215.62. Sun, S., et al., PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother, 2014. 63(4): p. 395-406.63. Alcover, A. and B. Alarcon, Internalization and intracellular fate of TCR-CD3 complexes. Crit Rev Immunol, 2000. 20(4): p. 325-46.64. Gonzalez-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.65. Alexe, G., et al., High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res, 2007. 67(22): p. 10669-76.66. Teschendorff, A.E., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer, 2010. 10: p. 604.67. Mahmoud, S.M., et al., An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat, 2011. 127(1): p. 99-108.68. Granados, D.P., et al., MHC I-associated peptides preferentially derive from transcripts bearing miRNA response elements. Blood, 2012. 119(26): p. e181-91.69. Tongu, M., et al., Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunol Immunother, 2010. 59(5): p. 769-77.70. Tesniere, A., et al., Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010. 29(4): p. 482-91.71. Viaud, S., et al., Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res, 2010. 70(4): p. 1281-5.72. Blachere, N.E., R.B. Darnell, and M.L. Albert, Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol, 2005. 3(6): p. e185.73. Nowak, A.K., R.A. Lake, and B.W. Robinson, Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev, 2006. 58(8): p. 975-90.74. Groenendyk, J., J. Lynch, and M. Michalak, Calreticulin, Ca2+, and calcineurin - signaling from the endoplasmic reticulum. Mol Cells, 2004. 17(3): p. 383-9.75. Chaput, N., et al., Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med, 2007. 85(10): p. 1069-76.76. Panaretakis, T., et al., The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ, 2008. 15(9): p. 1499-509.77. Gardai, S.J., et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005. 123(2): p. 321-34.78. Sebbag, G., et al., Colon carcinoma in the adolescent. Pediatr Surg Int, 1997. 12(5-6): p. 446-8.79. Faget, J., et al., Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res, 2011. 71(19): p. 6143-52.80. Senovilla, L., et al., An immunosurveillance mechanism controls cancer cell ploidy. Science, 2012. 337(6102): p. 1678-84.81. Miyashita, M., et al., Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res, 2015. 17: p. 124.82. DeNardo, D.G., et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov, 2011. 1(1): p. 54-67.84. Loi, S., et al., Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol, 2013. 31(7): p. 860-7.85. Saper, C.B., Neurobiological basis of fever. Ann N Y Acad Sci, 1998. 856: p. 90-4.86. Ruffell, B., et al., Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences, 2012. 109(8): p. 2796-2801.87. Stoll, G., et al., Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. Oncoimmunology, 2014. 3(1): p. e27884.88. Disis, M.L., Immune regulation of cancer. J Clin Oncol, 2010. 28(29): p. 4531-8.89. Pages, F., et al., Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 2010. 29(8): p. 1093-102.90. Ali, H.R., et al., Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res, 2016. 18(1): p. 21.91. Giesen, C., et al., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods, 2014. 11(4): p. 417-22.92. Gobert, M., et al., Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res, 2009. 69(5): p. 2000-9.93. Jung, Y.Y., et al., Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. J Breast Cancer, 2016. 19(3): p. 261-267.95. JS, M., V.d.H. JA, and V.d.V. CJ, Neoadjuvant chemotherapy for operable breast cancer. The British journal of surgery, 2007. 94(10).94. Takada. and M.-T. SL, Neoadjuvant treatment of breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology, 2012. 23 Suppl 10(Suppl 10).95. Mieog, V.d.H. JA, and V.d.V. CJ, Neoadjuvant chemotherapy for operable breast cancer. The British journal of surgery, 2007. 94(10).96. Huober., et al., Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast cancer research and treatment, 2010. 124(1).97. Park, Y.H., et al., Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun, 2020. 11(1): p. 6175.98. Ringnér, M., What is principal component analysis? Nature biotechnology, 2008. 26(3).99. Eisenhauer, E.A., et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45(2): p. 228-47.100. Thurstone, L.L., Multiple factor analysis: A development and expansion of vectors of the mind. 1947: University of Chicago Press, Chicago.101. Tabachnick, B.F., L., Principal components and factor analysis. Using multivariate statistics,. 2001. p. 582-633.102. Dako. EnVision Systems | Agilent. 2022; Available from: https://www.agilent.com/en/product/immunohistochemistry/visualization-systems/envision-flex-systems.103. Abdel-Fatah, T.M., et al., HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer, 2014. 110(10): p. 2450-61.104. Alhesa, A., et al., PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. International journal of immunopathology and pharmacology, 2022. 36.105. Chan, M., et al., Correlation of tumor-infiltrative lymphocyte subtypes alteration with neoangiogenesis before and after neoadjuvant chemotherapy treatment in breast cancer patients. The International journal of biological markers, 2014. 29(3).106. Dieci, M., et al., Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. European journal of cancer (Oxford, England : 1990), 2020. 136.107. Graeser, M., et al., Immune cell composition and functional marker dynamics from multiplexed immunohistochemistry to predict response to neoadjuvant chemotherapy in the WSG-ADAPT-TN trial. Journal for immunotherapy of cancer, 2021. 9(5).108. Hoffmann, L.G., et al., Evaluation of PD-L1 and tumor infiltrating lymphocytes in paired pretreatment biopsies and post neoadjuvant chemotherapy surgical specimens of breast carcinoma. Sci Rep, 2021. 11(1): p. 22478.109. Kaewkangsadan, V., et al., The Differential Contribution of the Innate Immune System to a Good Pathological Response in the Breast and Axillary Lymph Nodes Induced by Neoadjuvant Chemotherapy in Women with Large and Locally Advanced Breast Cancers. Journal of immunology research, 2017. 2017.110. Ladoire, S., et al., Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 2008. 14(8).111. Li, X., et al., Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial. Journal for immunotherapy of cancer, 2019. 7(1).112. Liang, H., et al., TMB and TCR Are Correlated Indicators Predictive of the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. Frontiers in oncology, 2021. 11.113. Nadin, S., et al., Prognostic implication of HSPA (HSP70) in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Cell stress & chaperones, 2014. 19(4).114. Pelekanou, V., et al., Tumor-Infiltrating Lymphocytes and PD-L1 Expression in Pre- and Posttreatment Breast Cancers in the SWOG S0800 Phase II Neoadjuvant Chemotherapy Trial. Molecular cancer therapeutics, 2018. 17(6).115. Sarradin, V., et al., Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: the MIMOSA-1 study. Breast cancer research : BCR, 2021. 23(1).116. Urueña, C., et al., The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Scientific reports, 2022. 12(1).117. Varadan, V., et al., Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2016. 22(13).118. Verma, C., et al., Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery. Journal of translational medicine, 2015. 13.119. Wang, Y., et al., Lymphocyte-Activation Gene-3 Expression and Prognostic Value in Neoadjuvant-Treated Triple-Negative Breast Cancer. Journal of breast cancer, 2018. 21(2).120. Wesolowski, R., et al., Exploratory analysis of immune checkpoint receptor expression by circulating T cells and tumor specimens in patients receiving neo-adjuvant chemotherapy for operable breast cancer. BMC Cancer, 2020. 20(1): p. 445.121. Prado-Garcia, H.R.-G., Susana. Lopez-Gonzalez, Jose Sullivan, The Role of Exhaustion in Tumor-Induced T Cell Dysfunction in Cancer | SpringerLink. Cancer Immunology, 2014.122. Matkowsk, i.R., et al., The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer research, 2009. 29(7).123. Stovgaard, E.S., et al., Triple negative breast cancer - prognostic role of immune-related factors: a systematic review. Acta Oncol, 2018. 57(1): p. 74-82.124. Laplane, L., et al., The Multiple Layers of the Tumor Environment. Trends in cancer, 2018. 4(12).125. McAllister, S. and R. Weinberg, The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature cell biology, 2014. 16(8).126. Nalio Ramos, R., et al., Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell, 2022. 185(7): p. 1189-1207 e25.127. Laplane, L., et al., Beyond the tumour microenvironment. International journal of cancer, 2019. 145(10).128. Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy, in BMC Cancer. 2018.129. Bunt, S.K., et al., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res, 2007. 67(20): p. 10019-26.130. Solito, S., et al., Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci, 2014. 1319: p. 47-65.131. DG, D., et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer discovery, 2011. 1(1).132. Ceprnja, T., et al., Prognostic Significance of Lymphocyte Infiltrate Localization in Triple-Negative Breast Cancer. J Pers Med, 2022. 12(6).133. Gu-Trantien, C., et al., CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI insight, 2017. 2(11).134. Buisseret, L., et al., Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology, 2017. 6(1): p. e1257452.135. Salgado, R., et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Annals of oncology : official journal of the European Society for Medical Oncology, 2015. 26(2).136. Shiroo, M., et al., CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. The EMBO journal, 1992. 11(13).137. Liu, J., et al., New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int, 2021. 21(1): p. 389.138. Hwang, I., et al., Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med, 2020. 18(1): p. 443.139. Pan, Y., et al., Tumor-Associated Macrophages in Tumor Immunity. Frontiers in immunology, 2020. 11.141. Li, Y.W., et al., Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol, 2011. 54(3): p. 497-505.142. Sznurkowski, J.J., A. Zawrocki, and W. Biernat, Subtypes of cytotoxic lymphocytes and natural killer cells infiltrating cancer nests correlate with prognosis in patients with vulvar squamous cell carcinoma. Cancer Immunol Immunother, 2014. 63(3): p. 297-303.143. Roberti, M.P., J. Mordoh, and E.M. Levy, Biological role of NK cells and immunotherapeutic approaches in breast cancer. Front Immunol, 2012. 3: p. 375.144. Rajjoub, S., et al., Prognostic significance of tumor-infiltrating lymphocytes in oropharyngeal cancer. Ear Nose Throat J, 2007. 86(8): p. 506-11.145. Ancuta, E., et al., Predictive value of cellular immune response in cervical cancer. Rom J Morphol Embryol, 2009. 50(4): p. 651-5.146. Sinicrope, F.A., et al., Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology, 2009. 137(4): p. 1270-9.147. Matsumoto, H., et al., Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat, 2016. 156(2): p. 237-47.148. Sato, E., et al., Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18538-43.149. Zeestraten, E.C., et al., FoxP3- and CD8-positive Infiltrating Immune Cells Together Determine Clinical Outcome in Colorectal Cancer. Cancer Microenviron, 2013. 6(1): p. 31-9.150. Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC cancer, 2016. 16.151. Bernal-Estévez, D., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.152. Bernal-Estévez, D., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.153. Kallies, A., D. Zehn, and D.T. Utzschneider, Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol, 2020. 20(2): p. 128-136.154. Teft, W.A., M.G. Kirchhof, and J. Madrenas, A molecular perspective of CTLA-4 function. Annu Rev Immunol, 2006. 24: p. 65-97.155. Ostrand.-R., H. LA, and H. ST, The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. Journal of immunology (Baltimore, Md. : 1950), 2014. 193(8).156. Dong, H., et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002. 8(8): p. 793-800.157. Flemming, A., Cancer: PD1 makes waves in anticancer immunotherapy. Nat Rev Drug Discov, 2012. 11(8): p. 601.158. Woo, S.R., et al., Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res, 2012. 72(4): p. 917-27.159. Foy, S.P., et al., Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS One, 2016. 11(2): p. e0150084.160. Chan, J.D., et al., Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol, 2021. 21(12): p. 769-784.161. Li, L., et al., Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol, 2020. 88: p. 106939.162. King, J., H. Mir, and S. Singh, Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. Prog Mol Biol Transl Sci, 2017. 151: p. 113-136.163. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017. 17(9): p. 559-572164. Pillemer, B.B., et al., STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells. J Immunol, 2009. 183(1): p. 155-63.Neoplasias de la MamaAcciones TerapéuticasMicroambiente inmune tumoralCáncer de mamaInmunovigilanciaQuimioterapia neoadyuvanteTumor immune microenvironmentImmunosurveillanceNeoadjuvant chemotherapyBreast CancerLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83670/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1098311523.2023.pdf1098311523.2023.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf4441160https://repositorio.unal.edu.co/bitstream/unal/83670/2/1098311523.2023.pdf607361090be86fa401b81d50b5a88503MD52THUMBNAIL1098311523.2023.pdf.jpg1098311523.2023.pdf.jpgGenerated Thumbnailimage/jpeg4166https://repositorio.unal.edu.co/bitstream/unal/83670/3/1098311523.2023.pdf.jpg0efa230a1eb8b7621d007789cf1a2c3fMD53unal/83670oai:repositorio.unal.edu.co:unal/836702024-07-31 23:12:50.275Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=