Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae

ilustraciones, gráficas, tablas

Autores:
Talero Osorio, Diego Camilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81811
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81811
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
PipeLine
Klebsiella pneumoniae
Plásmidos
Secuenciación de Nueva Generación
Algoritmo de Clasificación
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ed9df3d029db92e349d3bf92d7cfc5e6
oai_identifier_str oai:repositorio.unal.edu.co:unal/81811
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
dc.title.translated.eng.fl_str_mv Identification of plasmid-associated contigs obtained from whole genome sequencing of Klebsiella pneumoniae isolates
title Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
spellingShingle Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
PipeLine
Klebsiella pneumoniae
Plásmidos
Secuenciación de Nueva Generación
Algoritmo de Clasificación
title_short Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
title_full Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
title_fullStr Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
title_full_unstemmed Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
title_sort Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
dc.creator.fl_str_mv Talero Osorio, Diego Camilo
dc.contributor.advisor.none.fl_str_mv Barreto Hernández, Emiliano
dc.contributor.author.none.fl_str_mv Talero Osorio, Diego Camilo
dc.contributor.referee.none.fl_str_mv Pinzón Velasco, Andrés Mauricio
dc.contributor.researchgroup.spa.fl_str_mv Centro de Bioinformática del Instituto de Biotecnología (CBIB)
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
PipeLine
Klebsiella pneumoniae
Plásmidos
Secuenciación de Nueva Generación
Algoritmo de Clasificación
dc.subject.proposal.spa.fl_str_mv PipeLine
Klebsiella pneumoniae
Plásmidos
Secuenciación de Nueva Generación
dc.subject.proposal.eng.fl_str_mv Algoritmo de Clasificación
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-08T19:50:57Z
dc.date.available.none.fl_str_mv 2022-08-08T19:50:57Z
dc.date.issued.none.fl_str_mv 2022-08-08
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81811
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81811
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y Ensamble de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125–132.
Alimolaei, M., & Golchin, M. (2017). A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei. Biologicals, 45, 47–51. https://doi.org/10.1016/j.biologicals.2016.10.001
Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016a). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016b). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
Antipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2016). HybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics, 32(7), 1009–1015. https://doi.org/10.1093/bioinformatics/btv688
Argemi, X., Martin, V., Loux, V., Dahyot, S., Lebeurre, J., Guffroy, A., … Prevost, G. (2017). Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biology and Evolution, 9(5), 1183–1189. https://doi.org/10.1093/gbe/evx077
Benchmarking of de novo assembly tools: SPAdes 3.9 vs Velvet 1.2. (n.d.). Retrieved from https://cge.cbs.dtu.dk/services/cge/
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
Bootsma, H. J., & Schouls, L. M. (2015, March 1). Next-generation sequencing of carbapenem-resistant Gram-negative microorganisms: A key tool for surveillance and infection control. Future Microbiology, 10(3), 299–302.
Bousquet, A., Henquet, S., Compain, F., Genel, N., Arlet, G., & Decré, D. (2015). SC. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2015.01.019
Bryson, K., Loux, V., Bossy, R., Nicolas, P., Chaillou, S., Guchte, M. Van De, … Lactique, F. (2006). AGMIAL : implementing an annotation strategy for prokaryote genomes as a distributed system. 34(12), 3533–3545. https://doi.org/10.1093/nar/gkl471
C., L., N., G., S., L., C., G., & G., M. M. (2017). Multi-clasificador para predecir interacción de proteínas usando optimización basada en colonia de hormigas. Revista Cubana de Ciencias Informáticas, 11, 195–210. Retrieved from https://www.redalyc.org/articulo.oa?id=378349711014
Cabrera-Hernández, L., Morales-Hernández, A., & Casas-Cardoso, G. M. (2016). Medidas de diversidad para la construcción de sistemas multi-clasificadores usando algoritmos genéticos. Computacion y Sistemas, 20(4), 729–747. https://doi.org/10.13053/CyS-20-4-2513
Carattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., … Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14
Chaisson, M., Pevzner, P., & Tang, H. (2004). Fragment assembly with short reads. Bioinformatics, 20(13), 2067–2074. https://doi.org/10.1093/bioinformatics/bth205
Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. https://doi.org/10.1093/bioinformatics/btt310
Durai, D. A., & Schulz, M. H. (2016). Informed kmer selection for de novo transcriptome assembly. Bioinformatics, 32(11), 1670–1677. https://doi.org/10.1093/bioinformatics/btw217
Fang, Z. C., Tan, J., Wu, S. F., Li, M., Xu, C. M., Xie, Z. J., & Zhu, H. Q. (2019). PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience, 8(6). https://doi.org/10.1093/gigascience/giz066
Founou, R. C., Founou, L. L., & Essack, S. Y. (2018). Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrobial Resistance and Infection Control, 7. https://doi.org/10.1186/s13756-018-0423-0
Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729. https://doi.org/10.1101/gr.210641.116
Kotsianti, S. B., & Kanellopoulos, D. (2007). Combining Bagging, Boosting and Dagging for Classification Problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4693 LNAI(PART 2), 493–500. https://doi.org/10.1007/978-3-540-74827-4_62
Krawczyk, P S, Lipinski, L., & Dziembowski, A. (2018a). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321
Krawczyk, P S, Lipinski, L., & Dziembowski, A. (2018b). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321
Krawczyk, Pawel S, Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35–e35. https://doi.org/10.1093/nar/gkx1321
Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., … Deslandes, L. (2015). A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell, 161(5), 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025
Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033
Li, X. Z., Plesiat, P., & Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/cmr.00117-14
Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., … Shen, J. Z. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7
Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 25(5), 955–964. https://doi.org/10.1093/nar/25.5.955
Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011
Martinez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399
Nishida, H. (2012). Comparative Analyses of Base Compositions, DNA Sizes, and Dinucleotide Frequency Profiles in Archaeal and Bacterial Chromosomes and Plasmids. International Journal of Evolutionary Biology, 2012, 1–5. https://doi.org/10.1155/2012/342482
Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877–886. https://doi.org/10.1007/s10096-015-2323-z
Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1), 227–232. https://doi.org/10.4067/S0717-95022017000100037
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 5(1), 69. https://doi.org/10.1186/s40168-017-0283-5
Ross, D. L., & Schultz, R. K. (1996). Effect of inhalation flow rate on the dosing characteristics of dry powder inhaler (DPI) and metered dose inhaler (MDI) products. Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, 9(2), 215–226. https://doi.org/10.1089/jam.1996.9.215
Royer, G., Decousser, J. W., Branger, C., Dubois, M., Médigue, C., Denamur, E., & Vallenet, D. (2018). PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microbial Genomics, 4(9), 1–8. https://doi.org/10.1099/mgen.0.000211
Rubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/javeriana.umed61-2.sngs
Schroeder, M., Brooks, B. D., & Brooks, A. E. (2017, January 18). The complex relationship between virulence and antibiotic resistance. Genes, Vol. 8. https://doi.org/10.3390/genes8010039
Torres Manno, M. A., Pizarro, M. D., Prunello, M., Magni, C., Daurelio, L. D., & Espariz, M. (2019). GeM-Pro: a tool for genome functional mining and microbial profiling. Applied Microbiology and Biotechnology, 103(7), 3123–3134. https://doi.org/10.1007/s00253-019-09648-8
Van Horn, C., Wu, F. N., Zheng, Z., Dai, Z. H., & Chen, J. C. (2019). Detection of a Single-Copy Plasmid, pXFSL21, in Xylella fastidiosa Strain Stag’s Leap with Two Toxin-Antitoxin Systems Using Next-Generation Sequencing. Phytopathology, 109(2), 240–247. https://doi.org/10.1094/phyto-07-18-0249-fi
WHO. (2017). Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics. Who, 7. Retrieved from https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
Wootton, J. C. (1994). Non-globular domains in protein sequences: Automated segmentation using complexity measures. Computers and Chemistry, 18(3), 269–285. https://doi.org/10.1016/0097-8485(94)85023-2
Xavier, B. B., Sabirova, J., Pieter, M., Hernalsteens, J. P., De Greve, H., Goossens, H., & Malhotra-Kumar, S. (2014). Employing whole genome mapping for optimal de novo assembly of bacterial genomes. BMC Research Notes, 7(1), 1–4. https://doi.org/10.1186/1756-0500-7-484
Zhou, F., & Xu, Y. (2010). cBar: A computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics, 26(16), 2051–2052. https://doi.org/10.1093/bioinformatics/btq299
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 83 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81811/1/1019105900.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81811/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81811/3/1019105900.2022.pdf.jpg
bitstream.checksum.fl_str_mv 92022ac2e85b4ec5d2241e99b26a6574
8153f7789df02f0a4c9e079953658ab2
c4ef82ea017ebc0eb5655b607652aa30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090016971816960
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto Hernández, Emilianob7a2cae2c08b5d6a549e173576c6c82dTalero Osorio, Diego Camilo905fff084a30ac2adb99a15891ec625aPinzón Velasco, Andrés MauricioCentro de Bioinformática del Instituto de Biotecnología (CBIB)2022-08-08T19:50:57Z2022-08-08T19:50:57Z2022-08-08https://repositorio.unal.edu.co/handle/unal/81811Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasUno de los problemas frecuentes en salud pública son las Infecciones Asociadas a la Atención en Salud (IAAS), La Organización Mundial de la Salud (WHO) ha publicado una lista de microorganismos de prioridad clínica (WHO, 2017), entre los cuales a nivel crítico están todas las Enterobacterias que presentan resistencia a antibióticos carbapenémicos como Klebsiella pneumoniae que suele contar con múltiples mecanismos de resistencia frente a dichos antibióticos (Schroeder, Brooks, & Brooks, 2017). El desarrollo de tecnologías de secuenciación de nueva generación (NGS) ha permitido el estudio del “comportamiento” y /o “composición” de los genomas de microorganismos de interés clínico; así mismo también se han diseñado y desarrollado algoritmos y flujos de trabajo bioinformáticos para el almacenamiento, anotación y análisis de estos datos, que han facilitado identificar y caracterizar, un gran número de elementos genómicos involucrados en los mecanismos de resistencia. En este trabajo se propone una herramienta de clasificación de contigs pertenecientes a plásmidos, obtenidos por secuenciación de genoma completo (WGS), que implementa varias de las herramientas, que a través de un método experimental iterativo fueron configuradas para obtener un rendimiento maximizado para las cepas de trabajo de K. pneumoniae. (Texto tomado de la fuente)One of the frequent problems in public health is the Infections Associated with Health Care (IAAS). The World Health Organization (WHO) published a list of microorganisms of clinical priority (WHO, 2017), among which at the critical level are all Entero-bacteria with resistance to carbapenems like Klebsiella pneumoniae, which usually has several mechanisms of resistance (González Rocha et al., 2017), frequently associated with the genetic information (Schroeder et al., 2017). The development of New Generation Sequencing technologies (NGS) allows the study of the "behavior" and/or "composition" of the microorganism genomes of clinical interest. Likewise, algorithms and bioinformatics workflows have been designed and developed for the storage, annotation, and analysis of these data, to the point of identifying and characterizing a large number of genomic elements involved in resistance mechanisms. This work shows the implementation of a contig classification pipeline designed to choose which of them are part of a plasmid. It uses contigs obtained by NGS technologies and implements several programs to carry out this task, which, thanks to an iterative experimental method, were configured to obtain a maximized yield for the working strains of K. pneumoniae. (text taken of the source)colcienciasMaestríaMagister en BioinformáticaDiagnóstico molecularEl diseño de la herramienta esta basado en la teoria de Multiclasificador, implementando metodos de inteligencia artificial.xx, 83 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación570 - Biología::576 - Genética y evolución610 - Medicina y salud::616 - Enfermedades000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónPipeLineKlebsiella pneumoniaePlásmidosSecuenciación de Nueva GeneraciónAlgoritmo de ClasificaciónIdentificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniaeIdentification of plasmid-associated contigs obtained from whole genome sequencing of Klebsiella pneumoniae isolatesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y Ensamble de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125–132.Alimolaei, M., & Golchin, M. (2017). A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei. Biologicals, 45, 47–51. https://doi.org/10.1016/j.biologicals.2016.10.001Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016a). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016b). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493Antipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2016). HybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics, 32(7), 1009–1015. https://doi.org/10.1093/bioinformatics/btv688Argemi, X., Martin, V., Loux, V., Dahyot, S., Lebeurre, J., Guffroy, A., … Prevost, G. (2017). Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biology and Evolution, 9(5), 1183–1189. https://doi.org/10.1093/gbe/evx077Benchmarking of de novo assembly tools: SPAdes 3.9 vs Velvet 1.2. (n.d.). Retrieved from https://cge.cbs.dtu.dk/services/cge/Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380Bootsma, H. J., & Schouls, L. M. (2015, March 1). Next-generation sequencing of carbapenem-resistant Gram-negative microorganisms: A key tool for surveillance and infection control. Future Microbiology, 10(3), 299–302.Bousquet, A., Henquet, S., Compain, F., Genel, N., Arlet, G., & Decré, D. (2015). SC. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2015.01.019Bryson, K., Loux, V., Bossy, R., Nicolas, P., Chaillou, S., Guchte, M. Van De, … Lactique, F. (2006). AGMIAL : implementing an annotation strategy for prokaryote genomes as a distributed system. 34(12), 3533–3545. https://doi.org/10.1093/nar/gkl471C., L., N., G., S., L., C., G., & G., M. M. (2017). Multi-clasificador para predecir interacción de proteínas usando optimización basada en colonia de hormigas. Revista Cubana de Ciencias Informáticas, 11, 195–210. Retrieved from https://www.redalyc.org/articulo.oa?id=378349711014Cabrera-Hernández, L., Morales-Hernández, A., & Casas-Cardoso, G. M. (2016). Medidas de diversidad para la construcción de sistemas multi-clasificadores usando algoritmos genéticos. Computacion y Sistemas, 20(4), 729–747. https://doi.org/10.13053/CyS-20-4-2513Carattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., … Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14Chaisson, M., Pevzner, P., & Tang, H. (2004). Fragment assembly with short reads. Bioinformatics, 20(13), 2067–2074. https://doi.org/10.1093/bioinformatics/bth205Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. https://doi.org/10.1093/bioinformatics/btt310Durai, D. A., & Schulz, M. H. (2016). Informed kmer selection for de novo transcriptome assembly. Bioinformatics, 32(11), 1670–1677. https://doi.org/10.1093/bioinformatics/btw217Fang, Z. C., Tan, J., Wu, S. F., Li, M., Xu, C. M., Xie, Z. J., & Zhu, H. Q. (2019). PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience, 8(6). https://doi.org/10.1093/gigascience/giz066Founou, R. C., Founou, L. L., & Essack, S. Y. (2018). Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrobial Resistance and Infection Control, 7. https://doi.org/10.1186/s13756-018-0423-0Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729. https://doi.org/10.1101/gr.210641.116Kotsianti, S. B., & Kanellopoulos, D. (2007). Combining Bagging, Boosting and Dagging for Classification Problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4693 LNAI(PART 2), 493–500. https://doi.org/10.1007/978-3-540-74827-4_62Krawczyk, P S, Lipinski, L., & Dziembowski, A. (2018a). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321Krawczyk, P S, Lipinski, L., & Dziembowski, A. (2018b). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321Krawczyk, Pawel S, Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35–e35. https://doi.org/10.1093/nar/gkx1321Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., … Deslandes, L. (2015). A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell, 161(5), 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033Li, X. Z., Plesiat, P., & Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/cmr.00117-14Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., … Shen, J. Z. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 25(5), 955–964. https://doi.org/10.1093/nar/25.5.955Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011Martinez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399Nishida, H. (2012). Comparative Analyses of Base Compositions, DNA Sizes, and Dinucleotide Frequency Profiles in Archaeal and Bacterial Chromosomes and Plasmids. International Journal of Evolutionary Biology, 2012, 1–5. https://doi.org/10.1155/2012/342482Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877–886. https://doi.org/10.1007/s10096-015-2323-zOtzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1), 227–232. https://doi.org/10.4067/S0717-95022017000100037Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 5(1), 69. https://doi.org/10.1186/s40168-017-0283-5Ross, D. L., & Schultz, R. K. (1996). Effect of inhalation flow rate on the dosing characteristics of dry powder inhaler (DPI) and metered dose inhaler (MDI) products. Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, 9(2), 215–226. https://doi.org/10.1089/jam.1996.9.215Royer, G., Decousser, J. W., Branger, C., Dubois, M., Médigue, C., Denamur, E., & Vallenet, D. (2018). PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microbial Genomics, 4(9), 1–8. https://doi.org/10.1099/mgen.0.000211Rubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/javeriana.umed61-2.sngsSchroeder, M., Brooks, B. D., & Brooks, A. E. (2017, January 18). The complex relationship between virulence and antibiotic resistance. Genes, Vol. 8. https://doi.org/10.3390/genes8010039Torres Manno, M. A., Pizarro, M. D., Prunello, M., Magni, C., Daurelio, L. D., & Espariz, M. (2019). GeM-Pro: a tool for genome functional mining and microbial profiling. Applied Microbiology and Biotechnology, 103(7), 3123–3134. https://doi.org/10.1007/s00253-019-09648-8Van Horn, C., Wu, F. N., Zheng, Z., Dai, Z. H., & Chen, J. C. (2019). Detection of a Single-Copy Plasmid, pXFSL21, in Xylella fastidiosa Strain Stag’s Leap with Two Toxin-Antitoxin Systems Using Next-Generation Sequencing. Phytopathology, 109(2), 240–247. https://doi.org/10.1094/phyto-07-18-0249-fiWHO. (2017). Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics. Who, 7. Retrieved from https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededWootton, J. C. (1994). Non-globular domains in protein sequences: Automated segmentation using complexity measures. Computers and Chemistry, 18(3), 269–285. https://doi.org/10.1016/0097-8485(94)85023-2Xavier, B. B., Sabirova, J., Pieter, M., Hernalsteens, J. P., De Greve, H., Goossens, H., & Malhotra-Kumar, S. (2014). Employing whole genome mapping for optimal de novo assembly of bacterial genomes. BMC Research Notes, 7(1), 1–4. https://doi.org/10.1186/1756-0500-7-484Zhou, F., & Xu, Y. (2010). cBar: A computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics, 26(16), 2051–2052. https://doi.org/10.1093/bioinformatics/btq299“Diagnóstico molecular de resistencia y virulencia, y seguimiento epidemiológico de bacterias Gram negativas multirresistentes causantes de IAAS, basado en secuenciación de genoma completo (WGS) y datos sociodemográficos y clínicoscolcienciasInvestigadoresORIGINAL1019105900.2022.pdf1019105900.2022.pdfTesis de Maestría en Bioinformáticaapplication/pdf2467681https://repositorio.unal.edu.co/bitstream/unal/81811/1/1019105900.2022.pdf92022ac2e85b4ec5d2241e99b26a6574MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81811/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1019105900.2022.pdf.jpg1019105900.2022.pdf.jpgGenerated Thumbnailimage/jpeg5323https://repositorio.unal.edu.co/bitstream/unal/81811/3/1019105900.2022.pdf.jpgc4ef82ea017ebc0eb5655b607652aa30MD53unal/81811oai:repositorio.unal.edu.co:unal/818112024-08-07 23:10:17.981Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK