Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon
ilustraciones., diagramas
- Autores:
-
Roldán Pérez, Samantha
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82661
- Palabra clave:
- 570 - Biología
610 - Medicina y salud
570 - Biología::572 - Bioquímica
Bacterias
Bacteria
Bacterias probióticas
Bacterias Ácido Lácticas
Epitelio intestinal
Capa paracristalina
Adhesinas
Lactic Acid Bacteria
Intestinal epithelium
S-layer
Adhesins
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ed9c359d68e4927181f2b235aa7021ec |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82661 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
dc.title.translated.eng.fl_str_mv |
Evaluation of adhesion capacity of bacterial strains with probiotic properties in human tumoral colonic cell lines |
title |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
spellingShingle |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon 570 - Biología 610 - Medicina y salud 570 - Biología::572 - Bioquímica Bacterias Bacteria Bacterias probióticas Bacterias Ácido Lácticas Epitelio intestinal Capa paracristalina Adhesinas Lactic Acid Bacteria Intestinal epithelium S-layer Adhesins |
title_short |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
title_full |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
title_fullStr |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
title_full_unstemmed |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
title_sort |
Evaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon |
dc.creator.fl_str_mv |
Roldán Pérez, Samantha |
dc.contributor.advisor.none.fl_str_mv |
Márquez Fernández, María Elena Montoya Campuzano, Olga Inés |
dc.contributor.author.none.fl_str_mv |
Roldán Pérez, Samantha |
dc.contributor.researchgroup.spa.fl_str_mv |
Probióticos: Prospección Funcional y Metabolitos Grupo de Investigación en Biotecnología Animal (Giba) |
dc.contributor.orcid.spa.fl_str_mv |
Márquez Fernández, María Elena [0000-0001-5760-9907] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología 610 - Medicina y salud 570 - Biología::572 - Bioquímica |
topic |
570 - Biología 610 - Medicina y salud 570 - Biología::572 - Bioquímica Bacterias Bacteria Bacterias probióticas Bacterias Ácido Lácticas Epitelio intestinal Capa paracristalina Adhesinas Lactic Acid Bacteria Intestinal epithelium S-layer Adhesins |
dc.subject.mesh.spa.fl_str_mv |
Bacterias |
dc.subject.mesh.eng.fl_str_mv |
Bacteria |
dc.subject.other.spa.fl_str_mv |
Bacterias probióticas |
dc.subject.proposal.spa.fl_str_mv |
Bacterias Ácido Lácticas Epitelio intestinal Capa paracristalina Adhesinas |
dc.subject.proposal.eng.fl_str_mv |
Lactic Acid Bacteria Intestinal epithelium S-layer Adhesins |
description |
ilustraciones., diagramas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-08T16:26:56Z |
dc.date.available.none.fl_str_mv |
2022-11-08T16:26:56Z |
dc.date.issued.none.fl_str_mv |
2022-11 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82661 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82661 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abraham, B. P., & Quigley, E. M. M. (2017). Probiotics in Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 46(4), 769–782. https://doi.org/10.1016/j.gtc.2017.08.003 Abriouel, H., Lerma, L. L., Casado Muñoz, M. del C., Montoro, B. P., Kabisch, J., Pichner, R., Cho, G. S., Neve, H., Fusco, V., Franz, C. M. A. P., Gálvez, A., & Benomar, N. (2015). The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology, 6(OCT). https://doi.org/10.3389/fmicb.2015.01197 Adesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2021). Diversity and technological characterization of Pediococcus pentosaceus strains isolated from Nigerian traditional fermented foods. LWT, 140(110697). https://doi.org/10.1016/j.lwt.2020.110697 Adu, K. T., Wilson, R., Baker, A. L., Bowman, J., & Britz, M. L. (2020). Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J. Proteome Res, 19, 47. https://doi.org/10.1021/acs.jproteome.0c00107 Akpınar Kankaya, D., & Tuncer, Y. (2020). Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. Journal of Food Processing and Preservation, 44(6), 1–14. https://doi.org/10.1111/jfpp.14468 Allied Market Research. (2021). Probiotics Market Size & Share Analysis Report, 2021-2028. https://www.grandviewresearch.com/industry-analysis/probiotics-market/methodology Alp, D., & Kuleaşan, H. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35(10), 1–9. https://doi.org/10.1007/s11274-019-2730-x Aman, F., & Masood, S. (2020). How Nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36(COVID19-S4). https://doi.org/10.12669/PJMS.36.COVID19-S4.2776 Ángela Castro, L., Act, B., & R Ovetto, C. DE. (2006). Probióticos: utilidad clínica (Vol. 37). Octubre-Diciembre. Angelis, M. De, & Gobbetti, M. (2016). Lactobacillus SPP.: General Characteristics☆. In Reference Module in Food Science (pp. 1–12). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.00851-9 Armas, F., Camperio, C., & Marianelli, C. (2017). In Vitro Assessment of the probiotic potential of Lactococcus lactis LMG 7930 against ruminant mastitis-causing pathogens. PLOS ONE, 12(1), e0169543. https://doi.org/10.1371/journal.pone.0169543 Arshad, F., Mehmood, R., Hussain, S., Khan, M. A., & Khan, M. S. (2018). Lactobacilli as Probiotics and their Isolation from Different Sources. Br J Res, 5(3), 43. https://doi.org/10.21767/2394-3718.100043 Aryal Sagal. (2018, June 12). Capsule Staining- Principle, Reagents, Procedure and Result. Microbiologyinfo.Com. https://microbiologyinfo.com/capsule-staining-principle-reagents-procedure-and-result/ Assamoi, A. A., Krabi, E. R., Ehon, A. F., N’guessan, G. A., Niamké, L. S., & Thonart, P. (2016). Isolation and screening of Weissella strains for their potential use as starter during attiéké production. BASE, 20(3), 355–362. https://doi.org/10.25518/1780-4507.13117 Astó, E., Huedo, P., Altadill, T., Aguiló García, M., Sticco, M., Perez, M., & Espadaler-Mazo, J. (2022). Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741391 ATCC. (2020). SW480 [SW-480] ATCC ® CCL-228TM. ATCC.Org. https://www.atcc.org/Products/All/CCL-228.aspx#characteristics Ayeni, F. A., Sánchez, B., Adeniyi, B. A., de los Reyes-Gavilán, C. G., Margolles, A., & Ruas-Madiedo, P. (2011). Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow’s intestine. International Journal of Food Microbiology, 147(2), 97–104. https://doi.org/10.1016/j.ijfoodmicro.2011.03.014 Bakar, F., Karakay, Songül, Bostanlık, D., Gül, F., & Kılıç, C. S. (2016). Anticancer Effect of Ferulago Mughlea Peşmen (Apiaceae) on Cancer Cell Proliferation. Iranian Journal of Pharmaceutical Research : IJPR, 15(3), 501. https://doi.org/10.22037/ijpr.2016.1882 Balakrishna, A. (2013). In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (poecilia reticulata). Brazilian Archives of Biology and Technology, 56(5), 793–800. https://doi.org/10.1590/S1516-89132013000500010 Baliga, S., Muglikar, S., & Kale, R. (2013). Salivary pH: A diagnostic biomarker. Journal of Indian Society of Periodontology, 17(4), 461. https://doi.org/10.4103/0972-124X.118317 Balthazar, C. F., Silva, H. L. A., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A. V., Azevedo, L., Camps, I., K.D Abud, Y., Sant’Anna, C., Franco, R. M., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Escher, G. B., Granato, D., Senaka Ranadheera, C., Nazarro, F., & Cruz, A. G. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246(August 2017), 464–472. https://doi.org/10.1016/j.foodchem.2017.12.002 Baranov, V., & Hammarström, S. (2004). Carcinoembryonic antigen [CEA] and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochemistry and Cell Biology, 121(2), 83–89. https://doi.org/10.1007/s00418-003-0613-5 Barzegar, H., Alizadeh Behbahani, B., & Falah, F. (2021). Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Science & Nutrition, 9(8). https://doi.org/10.1002/FSN3.2365 Beldarrain-Iznaga, T., Villalobos-Carvajal, R., Sevillano-Armesto, E., & Leiva-Vega, J. (2021). Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Research International, 141(January), 110136. https://doi.org/10.1016/j.foodres.2021.110136 Beltrán de Heredia, M. R. (2017). Microbiota autóctona. Farmacia Profesional, 31(2), 17–21. https://www.elsevier.es/es-revista-farmacia-profesional-3-pdf-X0213932417608739 Bergey, D. H. (2009). Vol 3: The Firmicutes. In Bergey’s manual of systematic bacteriology. https://doi.org/10.1007/b92997 Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079 Betancur, C., Martínez, Y., Tellez‐isaias, G., Avellaneda, M. C., & Velázquez‐martí, B. (2020). In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals, 10(7), 1–11. https://doi.org/10.3390/ani10071204 Bharat, T. A. M., von Kügelgen, A., & Alva, V. (2021). Molecular Logic of Prokaryotic Surface Layer Structures. Trends in Microbiology, 29(5), 405. https://doi.org/10.1016/J.TIM.2020.09.009 Bhukya, K. K., & Bhukya, B. (2021). Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status. PLoS ONE, 16(11 November), 1–20. https://doi.org/10.1371/journal.pone.0259702 Biazik, J. M., Jahn, K. A., Su, Y., Wu, Y. N., & Braet, F. (2010). Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World Journal of Gastroenterology, 16(22), 2743–2753. https://doi.org/10.3748/wjg.v16.i22.2743 Björkroth, J., Dicks, L. M. T., Endo, A., & H.Holzapfel, W. (2014). The genus Leuconostoc. In Lactic Acid Bacteria (pp. 391–404). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118655252.ch23 Blottière, H. M., de Vos, W. M., Ehrlich, S. D., & Doré, J. (2013). Human intestinal metagenomics: State of the art and future. Current Opinion in Microbiology, 16(3), 232–239. https://doi.org/10.1016/j.mib.2013.06.006 Bolen, B. (2019). Types and Functions of Digestive Enzymes. Verywellhealth. https://www.verywellhealth.com/what-are-digestive-enzymes-1945036 Bolívar Parra, L., Giraldo Hincapié, P. A., & Montoya Campuzano, O. I. (2020). Antimicrobial activity of a synthetic bacteriocin found in the genome of lactobacillus casei on the microbiota of antioquian soft cheese (Quesito antioqueÑo). Vitae, 27(1), 1–9. https://doi.org/10.17533/udea.vitae.v27n1a02 Bron, P. A., Kleerebezem, M., Brummer, R.-J., Cani, P. D., Mercenier, A., MacDonald, T. T., Garcia-Ródenas, C. L., & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, 117(1), 93–107. https://doi.org/10.1017/S0007114516004037 Brunser T, O. (2013). El desarrollo de la microbiota intestinal humana, el concepto de probiótico y su relación con la salud humana. Revista Chilena de Nutrición, 40(3), 283–289. https://doi.org/10.4067/S0717-75182013000300011 Byakika, S., Mukisa, I. M., Byaruhanga, Y. B., & Muyanja, C. (2019). A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms. Food Reviews International, 35(5), 427–466. https://doi.org/10.1080/87559129.2019.1584815 Cadirci, B., & Sumru, C. (2005). A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition, 4. https://doi.org/10.3923/pjn.2005.237.241 Cámara de Industria y Comercio Colombo-Alemana, Cámara de Comercio de Medellín para Antioquia, Institución Universitaria Esumer, & Observatorio de Tendencias Futuras 360°. (2021). Contexto, tendencias y oportunidades del mercado de los derivados lácteos en Antioquia, 2021. In Derivados lácteos (Vol. 1). https://www.camaramedellin.com.co/Portals/0/Documentos/2021/ESTUDIO DE TENDENCIAS DERIVADOS LACTEOS 2021 abril 12.pdf?ver=2021-04-13-140402-407 Camilleri, M. (2021). Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clinical and Translational Gastroenterology, 12(1), e00308. https://doi.org/10.14309/ctg.0000000000000308 Cao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2 Casalta, E., & Montel, M. (2008). Safety assessment of dairy microorganisms: The Lactococcus genus☆. International Journal of Food Microbiology, 126(3), 271–273. https://doi.org/10.1016/j.ijfoodmicro.2007.08.013 Casarotti, S. N., Carneiro, B. M., Svetoslav, &, Todorov, D., Nero, L. A., Rahal, P., Lúcia, A., Penna, B., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67(4), 289–301. https://doi.org/10.1007/s13213-017-1258-2 Castilho, N. P. A., Colombo, M., Oliveira, L. L. De, Todorov, S. D., & Nero, L. A. (2019). Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/S12866-019-1436-4/FIGURES/4 Cázares-Vásquez, M. L., Rodríguez-Herrera, R., Aguilar-González, C. N., Sáenz-Galindo, A., Solanilla-Duque, J. F., Contreras-Esquivel, J. C., & Flores-Gallegos, A. C. (2021). Microbial exopolysaccharides in traditional mexican fermented beverages. Fermentation, 7(4). https://doi.org/10.3390/FERMENTATION7040249 Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50, 103. https://doi.org/10.1038/s12276-018-0126-x Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789 Choeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertlé, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. Food Science and Technology, 40(3), 571–579. https://doi.org/10.1590/fst.13219 Chondrou, P., Karapetsas, A., Kiousi, D. E., Tsela, D., Tiptiri-Kourpeti, A., Anestopoulos, I., Kotsianidis, I., Bezirtzoglou, E., Pappa, A., & Galanis, A. (2018). Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Beneficial Microbes, 9(6), 975–983. https://doi.org/10.3920/BM2017.0183 CLSI. (2015). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Tenth Edition. CLSI document M07-A10. In Clinical and Laboratory Standars Institute. Darmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion properties of lactobacillus plantarum dad-13 and lactobacillus plantarum mut-7 on sprague dawley rat intestine. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112336 Das, D., & Goyal, A. (2012). Lactic Acid Bacteria in Food Industry. In Microorganisms in Sustainable Agriculture and Biotechnology (pp. 757–772). Springer Netherlands. https://doi.org/10.1007/978-94-007-2214-9_33 Davis, K. (2014). Impact of Carbohydrates on the Aggregation of Probiotic Bacteria. 1(1), 1–9. https://pdfs.semanticscholar.org/59f5/27493fe786cac425391cf21af1cc6b01a1a3.pdf de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003 Dell’anno, M., Giromini, C., Reggi, S., Cavalleri, M., Moscatelli, A., Onelli, E., Rebucci, R., Sundaram, T. S., Coranelli, S., Spalletta, A., Baldi, A., & Rossi, L. (2021). Evaluation of adhesive characteristics of l. Plantarum and l. reuteri isolated from weaned piglets. Microorganisms, 9(8), 1–12. https://doi.org/10.3390/microorganisms9081587 Deng, Z., Dai, T., Zhang, W., Zhu, J., Luo, X. M., Fu, D., Liu, J., & Wang, H. (2020). Glyceraldehyde-3-phosphate dehydrogenase increases the adhesion of Lactobacillus reuteri to host mucin to enhance probiotic effects. International Journal of Molecular Sciences, 21(24), 1–16. https://doi.org/10.3390/ijms21249756 Divyashree, S., Anjali, P. G., Somashekaraiah, R., & Sreenivasa, M. Y. (2021). Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, e00672. https://doi.org/10.1016/j.btre.2021.e00672 do Carmo, F. L. R., Rabah, H., de Oliveira Carvalho, R. D., Gaucher, F., Cordeiro, B. F., da Silva, S. H., Loir, Y. Le, Azevedo, V., & Jan, G. (2018). Extractable Bacterial Surface Proteins in Probiotic–Host Interaction. Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/FMICB.2018.00645 do Carmo, M. S., Santos, C. I. Dos, Araújo, M. C., Girón, J. A., Fernandes, E. S., & Monteiro-Neto, V. (2018). Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food & Function, 9(10), 5074–5095. https://doi.org/10.1039/c8fo00376a Douillard, F. P., Ribbera, A., Järvinen, H. M., Kant, R., Pietilä, T. E., Randazzo, C., Paulin, L., Laine, P. K., Caggia, C., von Ossowski, I., Reunanen, J., Satokari, R., Salminen, S., Palva, A., & de Vosa, W. M. (2013). Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and Environmental Microbiology, 79(6), 1923–1933. https://doi.org/10.1128/AEM.03467-12 Doyle, R. J., & Ofek, I. (1994). Bacterial Adhesion to Cells and Tissues (1st ed.). Chapman & Hall, Inc. Dubey, V., Mishra, A. K., & Ghosh, A. R. (2020). Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp). Journal of Proteomics, 226(December 2019), 103894. https://doi.org/10.1016/j.jprot.2020.103894 EFSA. (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6). https://doi.org/10.2903/j.efsa.2012.2740 Erdoǧmuş, S. F., Erişmiş, U. C., & Uǧuz, C. (2021). Isolation and identification of lactic acid bacteria from fermented meat products and evaluation of their antimicrobial effect. Czech Journal of Food Sciences, 39(4), 289–296. https://doi.org/10.17221/222/2020-CJFS Escobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1), 311. https://doi.org/10.1186/s12866-014-0311-6 Espinoza-Monje, M., Campos, J., Alvarez Villamil, E., Jerez, A., Dentice Maidana, S., Elean, M., Salva, S., Kitazawa, H., Villena, J., & García-Cancino, A. (2021). Characterization of weissella viridescens uco-smc3 as a potential probiotic for the skin: Its beneficial role in the pathogenesis of acne vulgaris. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071486 FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. In Joint FAO/WHO Working Group Report. FAO/WHO. (2006). Probiotics in food Health and nutritional properties and guidelines for evaluation. In Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. http://www.fao.org/3/a-a0512e.pdf Farkye, N. Y. (2014). CHEESE | Microbiology of Cheesemaking and Maturation. Encyclopedia of Food Microbiology: Second Edition, 395–401. https://doi.org/10.1016/B978-0-12-384730-0.00059-8 Fernándes, M. L., Perin, L. M., Todorov, S. D., Nero, L. A., De Alencar, E. R., & De Aguiar Ferreira, M. (2018). In vitro evaluation of the safety and probiotic and technological potential of pediococcus pentosaceus isolated from sheep milk. Semina:Ciencias Agrarias, 39(1), 113–132. https://doi.org/10.5433/1679-0359.2018v39n1p113 Fessard, A., & Remize, F. (2017). Why Are Weissella spp. Not Used as Commercial Starter Cultures for Food Fermentation? Fermentation, 3(38), 17–18. https://doi.org/10.3390/fermentation3030038ï Fhoula, I., Rehaiem, A., Najjari, A., Usai, D., Boudabous, A., Sechi, L. A., & Hadda-Imene, O. (2018). Functional Probiotic Assessment and in Vivo Cholesterol-Lowering Efficacy of Weissella sp. Associated with Arid Lands Living-Hosts. BioMed Research International, 2018. https://doi.org/10.1155/2018/1654151 Fijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. In V. Rao & L. Rao (Eds.), Probiotics and Prebiotics in Human Nutrition and Health (pp. 191–221). InTech. https://doi.org/10.5772/63141 Fina Martin, J., Palomino, M. M., Cutine, A. M., Modenutti, C. P., Fernández Do Porto, D. A., Allievi, M. C., Zanini, S. H., Mariño, K. V, Barquero, A. A., & Ruzal, S. M. (2019). Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Applied Microbiology and Biotechnology, 103(12), 4839–4857. https://doi.org/10.1007/s00253-019-09795-y Foley, M. H., O’Flaherty, S., Allen, G., Rivera, A. J., Stewart, A. K., Barrangou, R., & Theriot, C. M. (2021). Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America, 118(6). https://doi.org/10.1073/pnas.2017709118 Francisco Guarner., A. G. K. (2017). Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. In World Gastroenterology Organisation. Franz, C. M. A. P., Endo, A., Abriouel, H., Van Reenen, C. A., Gálvez, A., & Dicks, L. M. T. (2014). The genus Pediococcus. Lactic Acid Bacteria: Biodiversity and Taxonomy, 9781444333(2009), 359–376. https://doi.org/10.1002/9781118655252.ch21 García-hernández, Y., Pérez-sánchez, T., García-curbelo, Y., Sosa-cossio, D., & Nicoli, J. R. (2017). Growth ability , microbial activity and susceptibility to antimicrobials of two strains of Pediococcus pentosaceus , candidates to probiotic Capacidad de crecimiento , actividad antimicrobiana y susceptibilidad a antimicrobianos de dos cepas de Pediococcu. Cuban Journal of Agricultural Science, 51(4), 433–442. García Torres, L. (2015). Análisis proteómico de células de colon humano antes y después de la interacción con Lactobacillus casei Shirota [INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.]. https://repositorio.ipicyt.edu.mx/handle/11627/3906 Gerbino, E., Carasi, P., Mobili, P., Serradell, M. A., & Gómez-Zavaglia, A. (2015). Role of S-layer proteins in bacteria. World Journal of Microbiology and Biotechnology, 31(12), 1877–1887. https://doi.org/10.1007/s11274-015-1952-9 Gil-Sánchez, I., Bartolomé Suáldea, B., & Victoria Moreno-Arribas, M. (2019). Malolactic Fermentation. In Red Wine Technology (pp. 85–98). Elsevier. https://doi.org/10.1016/B978-0-12-814399-5.00006-2 Gogineni, V. K., Morrow, L. E., Gregory, P. J., & Malesker, M. A. (2013). Probiotics: History and Evolution. Journal of Infectious Diseases and Preventive Medicine, 1(2), 1–7. https://doi.org/10.4172/2329-8731.1000107 Grilli, D. J., Mansilla, M. E., Giménez, M. C., Sohaefer, N., Ruiz, M. S., Terebiznik, M. R., Sosa, M., & Arenas, G. N. (2019). Pseudobutyrivibrio xylanivorans adhesion to epithelial cells. Anaerobe, 56, 1–7. https://doi.org/10.1016/J.ANAEROBE.2019.01.001 Guan, C., Chen, X., Jiang, X., Zhao, R., Yuan, Y., Chen, D., Zhang, C., Lu, M., Lu, Z., & Gu, R. (2020). In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances, 10(41), 24234–24240. https://doi.org/10.1039/d0ra03517c Guan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. https://doi.org/10.1007/s00253-019-10226-1 Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., & Garisch, J. (2017). Guías Mundiales de la Organización Mundial de Gastroenterología Enfermedad celíaca. In Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2017.pdf Guidoli, M. G., Mendoza, J. A., Falcón, S. L., Boehringer, S. I., Sánchez, S., & Macías, M. E. F. N. (2018). Autochthonous probiotic mixture improves biometrical parameters of larvae of piaractus mesopotamicus (Caracidae, characiforme, teleostei). Ciencia Rural, 48(7). https://doi.org/10.1590/0103-8478cr20170764 Hakeem Said, I. (2018). Interaction between Plant Phenolics and Bacteria-Structure, Identification, Bioactivity and Uptake. Jacobs University. Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in Microbiology, 9, 1791. https://doi.org/10.3389/fmicb.2018.01791 Harvey, A., Yen, T.-Y., Aizman, I., Tate, C., & Case, C. (2013). Proteomic Analysis of the Extracellular Matrix Produced by Mesenchymal Stromal Cells: Implications for Cell Therapy Mechanism. PLoS ONE, 8(11), 79283. https://doi.org/10.1371/journal.pone.0079283 Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 0(SEP), 2107. https://doi.org/10.3389/FMICB.2018.02107 Horáčková, Š., Plocková, M., & Demnerová, K. (2018). Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnology Advances, 36(3), 682–690. https://doi.org/10.1016/j.biotechadv.2017.12.005 Howe, B., Umrigar, A., & Tsien, F. (2014). Chromosome preparation from cultured cells. Journal of Visualized Experiments, 83(e50203). https://doi.org/10.3791/50203 Husain, K., Zhang, A., Shivers, S., Davis-Yadley, A., Coppola, D., Yang, C. S., & Malafa, M. P. (2019). Chemoprevention of azoxymethane-induced colon carcinogenesis by delta-tocotrienol. Cancer Prevention Research, 12(6), 357–366. https://doi.org/10.1158/1940-6207.CAPR-18-0290/36512/AM/CHEMOPREVENTION-OF-AZOXYMETHANE-INDUCED-COLON Hynönen, U., & Palva, A. (2013). Lactobacillus surface layer proteins: structure, function and applications. Applied Microbiology and Biotechnology 2013 97:12, 97(12), 5225–5243. https://doi.org/10.1007/S00253-013-4962-2 Isaacson, B., Hadad, T., Bachrach, G., & Mandelboim, O. (2018). Quantification of Bacterial Attachment to Tissue Sections. Bio-Protocol, 8(5). https://doi.org/10.21769/BIOPROTOC.2741 Jaafar, R. S., Al-Knany, F. N., Mahdi, B. A., & Al-Taee, A. M. R. (2019). Study the probiotic properties of pediococcus pentosaceus isolated from fish ponds in basra city, south of Iraq. Journal of Pure and Applied Microbiology, 13(4), 2343–2351. https://doi.org/10.22207/JPAM.13.4.50 Jang, Y. J., Gwon, H. M., Jeong, W. S., Yeo, S. H., & Kim, S. Y. (2021). Safety evaluation of weissella cibaria jw15 by phenotypic and genotypic property analysis. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122450 Jatmiko, Y. D., Howarth, G. S., & Barton, M. D. (2017). Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk. AIP Conference Proceedings, 1908(1), 50008. https://doi.org/10.1063/1.5012732 Jessie Lau, L. Y., & Chye, F. Y. (2018). Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Control. https://doi.org/10.1016/j.foodcont.2018.04.001 Jia, K., Tong, X., Wang, R., & Song, X. (2018). The clinical effects of probiotics for inflammatory bowel disease: A meta-analysis. Medicine, 97(51), e13792. https://doi.org/10.1097/MD.0000000000013792 Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. 20(1), 1–14. https://doi.org/10.1186/S12934-021-01537-Y Jung, S. H., Hong, D. K., Bang, S. J., Heo, K., Sim, J. J., & Lee, J. L. (2021). The functional properties of lactobacillus casei hy2782 are affected by the fermentation time. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062481 Kang, M. S., Na, H. S., & Oh, J. S. (2005). Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiology Letters, 253(2), 323–329. https://doi.org/10.1016/j.femsle.2005.10.002 Kang, M. S., Piao, M., Shin, B. A., Lee, H. C., & Oh, J. S. (2006). Adhesion of Weissella cibaria to the epithelial cells and factors affecting its adhesion. Journal of Bacteriology and Virology, 36(3), 151–157. https://doi.org/10.4167/JBV.2006.36.3.151 Karki, G. (2017). Genus Streptococcus: habitat, morphology, culture and biochemical characteristics - Online Biology Notes. Onlinebiologynotes. https://www.onlinebiologynotes.com/genus-streptococcus-habitat-morphology-culture-biochemical-characteristics/ Katsikogianni, M., Missirlis, Y. F., Harris, L., & Douglas, J. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials, 8, 37–57. https://doi.org/10.22203/eCM.v008a05 Kaur, G., & Dufour, J. M. (2012). Cell lines. Spermatogenesis, 2(1), 1–5. https://doi.org/10.4161/spmg.19885 Kavitake, D., Devi, P. B., & Shetty, P. H. (2020). Overview of exopolysaccharides produced by Weissella genus – A review. International Journal of Biological Macromolecules, 164, 2964–2973. https://doi.org/10.1016/j.ijbiomac.2020.08.185 Kayode Titus, A. (2018). Prolonged heat stress of Lactobacillus casei GCRL163 and the impact on the cell physiology and probiotic functionality using proteomics. Universidad de Tasmania. Keyhani, G., Hosseini, H. M., & Salimi, A. (2022). Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iranian Journal of Microbiology, 14(1), 90. https://doi.org/10.18502/IJM.V14I1.8809 Khalil, E. S., Manap, M. Y., Mustafa, S., Amid, M., Alhelli, A. M., & Aljoubori, A. (2018). Probiotic characteristics of exopolysaccharides-producing Lactobacillus isolated from some traditional Malaysian fermented foods. Journal of Foods, 16(1), 287–298. https://doi.org/10.1080/19476337.2017.1401007 Kim, E., Yang, S. M., Kim, D., & Kim, H. Y. (2022). Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Frontiers in Microbiology, 12, 4135. https://doi.org/10.3389/fmicb.2021.794315 Klotz, C., Goh, Y. J., O’Flaherty, S., & Barrangou, R. (2020). S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-01908-2 Knobloch, D., Ostermann, K., & Rödel, G. (2012). Production, Secretion, and Cell Surface Display of Recombinant Sporosarcina ureae S-Layer Fusion Proteins in Bacillus megaterium. Applied and Environmental Microbiology, 78(2), 560. https://doi.org/10.1128/AEM.06127-11 Knutsen, T., Padilla-Nash, H. M., Wangsa, D., Barenboim-Stapleton, L., Camps, J., McNeil, N., Difilippantonio, M. J., & Ried, T. (2010). Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes Chromosomes and Cancer, 49(3), 204–223. https://doi.org/10.1002/gcc.20730 Koirala, S., & Anal, A. K. (2021). Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods, 3, 100013. https://doi.org/10.1016/J.FUFO.2021.100013 Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation, 5(4). https://doi.org/10.3390/fermentation5040100 Kumar, R., Bansal, P., Singh, J., Dhanda, S., & Bhardwaj, J. K. (2020). Aggregation, adhesion and efficacy studies of probiotic candidate Pediococcus acidilactici NCDC 252: a strain of dairy origin. World Journal of Microbiology and Biotechnology, 36(1), 1–15. https://doi.org/10.1007/s11274-019-2785-8 La Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11–21. https://doi.org/10.1007/s12602-017-9322-6 Ladha, G., & Jeevaratnam, K. (2018). Probiotic Potential of Pediococcus pentosaceus LJR1, a Bacteriocinogenic Strain Isolated from Rumen Liquor of Goat (Capra aegagrus hircus). Food Biotechnology, 32(1), 60–77. https://doi.org/10.1080/08905436.2017.1414700 Lakra, A. K., Domdi, L., Hanjon, G., Tilwani, Y. M., & Arul, V. (2020). Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. Lwt, 125(October 2019), 109261. https://doi.org/10.1016/j.lwt.2020.109261 Langdon, S. P. (2003). Cancer Cell Culture. In Cancer Cell Culture. Humana Press. https://doi.org/10.1385/1592594069 Lee, H. K., Choi, S. H., Lee, C. R., Lee, S. H., Park, M. R., Kim, Y., Lee, M. K., & Kim, G. B. (2015). Screening and characterization of lactic acid bacteria strains with anti-inflammatory activities through in vitro and caenorhabditis elegans model testing. Korean Journal for Food Science of Animal Resources, 35(1), 91–100. https://doi.org/10.5851/kosfa.2015.35.1.91 Lee, Y. (2005). Characterization of Weissella kimchii PL9023 as a potential probiotic for women. FEMS Microbiology Letters, 250(1), 157–162. https://doi.org/10.1016/J.FEMSLE.2005.07.009 Li, N., Huang, Y., Liu, Z., You, C., & Guo, B. (2015). Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering. Letters in Applied Microbiology, 61(6), 555–561. https://doi.org/10.1111/LAM.12492 Li, Y., Zhang, T., Guo, C., Geng, M., Gai, S., Qi, W., Li, Z., Song, Y., Luo, X., Zhang, T., & Wang, N. (2020). Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathogens and Disease, 78(2). https://doi.org/10.1093/FEMSPD/FTAA016 Liu, C., Han, F., Cong, L., Sun, T., Menghe, B., & Liu, W. (2022). Evaluation of tolerance to artificial gastroenteric juice and fermentation characteristics of Lactobacillus strains isolated from human. Food Science & Nutrition, 10(1), 227–238. https://doi.org/10.1002/FSN3.2662 Liu, M., Ding, J., Zhang, H., Shen, J., Hao, Y., Zhang, X., Qi, W., Luo, X., Zhang, T., & Wang, N. (2020). Lactobacillus casei LH23 modulates the immune response and ameliorates DSS-induced colitis via suppressing JNK/p-38 signal pathways and enhancing histone H3K9 acetylation. Food and Function, 11(6), 5473–5485. https://doi.org/10.1039/d0fo00546k Liu, Q., Yu, Z., Tian, F., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories, 19(1), 1–11. https://doi.org/10.1186/s12934-020-1289-4 Llamas-Arriba, M. G., Hernández-Alcántara, A. M., Mohedano, M. L., Chiva, R., Celador-Lera, L., Velázquez, E., Prieto, A., Dueñas, M. T., Tamame, M., & López, P. (2021). Lactic acid bacteria isolated from fermented doughs in Spain produce dextrans and riboflavin. Foods, 10(9), 1–20. https://doi.org/10.3390/foods10092004 Londoño-Zapata, A. F., Durango-Zuleta, M. M., Sepúlveda-Valencia, J. U., & Moreno Herrera, C. X. (2017). Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT - Food Science and Technology, 82, 39–48. https://doi.org/10.1016/J.LWT.2017.03.058 Lonvaud-Funel, A. (2014). Leuconostocaceae Family. In C. A. Batt & M. Lou Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition) (Second Edi, pp. 455–465). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384730-0.00185-3 Lorenzo, J. M., Munekata, P. E., Dominguez, R., Pateiro, M., Saraiva, J. A., & Franco, D. (2018). Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms, 53–107. https://doi.org/10.1016/B978-0-12-811031-7.00003-0 Luan, C., Jiang, N., Zhou, X., Zhang, C., Zhao, Y., Li, Z., & Li, C. (2022). Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microbial Pathogenesis, 164, 105446. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105446 Luis, P., Arroyo, C., Augusto, C., Hurtado, B., & Pardo Pérez, E. (2018). CHARACTERIZATION OF MICROORGANISMS WITH PROBIOTIC POTENTIAL ISOLATED FROM BRAHMAN CALF MANURE IN SUCRE, COLOMBIA. Rev Inv Vet Perú, 29(2), 438–448. https://doi.org/10.15381/rivep.v29i2.14482 Lv, L. X., Li, Y. D., Hu, X. J., Shi, H. Y., & Li, L. J. (2014). Whole genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains. Gut Pathogens, 6(1), 36. https://doi.org/10.1186/s13099-014-0036-y Ma, J., Yu, W., Hou, J., Han, X., Shao, H., & Liu, Y. (2020). Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties, 23(1), 677–692. https://doi.org/10.1080/10942912.2020.1751656 Maamer-Azzabi, A., Ndozangue-Touriguine, O., & Bréard, J. (2013). Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737. Cell Death & Disease, 4(9), e801. https://doi.org/10.1038/CDDIS.2013.328 Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Roux, Y. Le, Hassouna, M., Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Soligot-hognon, C., Mahmoudi, I., Moussa, O. Ben, Khaldi, T. E., & Kebouchi, M. (2022). Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk To cite this version : HAL Id : hal-03611850 Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk. Mantzourani, I., Chondrou, P., Bontsidis, C., Karolidou, K., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Galanis, A., & Plessas, S. (2019). Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: evaluation of adhesion and antiproliferative properties in in vitro experimental systems. Annals of Microbiology, 69(7), 751–763. https://doi.org/10.1007/s13213-019-01467-6 Marchwińska, K., & Gwiazdowska, D. (2022). Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. 204, 61. https://doi.org/10.1007/s00203-021-02700-0 Marques, J. de L., Funck, G. D., Dannenberg, G. da S., Ames, C. W., Vitola, H. R. S., Borchardt, J. L., Cruxen, C. E. dos S., Leite, F. P. L., Fiorentini, Â. M., & da Silva, W. P. (2022). Evaluation of probiotic potential of Pediococcus pentosaceus isolates and application in Minas Frescal cheese. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16166 McAuliffe, O. (2017). Genetics of Lactic Acid Bacteria. In Cheese (pp. 227–247). Elsevier. https://doi.org/10.1016/B978-0-12-417012-4.00009-0 Milanovic, V., Osimani, A., Garofalo, C., Belleggia, L., Maoloni, A., Cardinali, F., Mozzon, M., Foligni, R., Aquilanti, L., & Clementi, F. (2020). Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. Plos One, 15(7 July), 1–21. https://doi.org/10.1371/journal.pone.0236190 Mohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis, 126, 212–217. https://doi.org/10.1016/j.micpath.2018.11.014 Mokhtar, N. M., Wong, K., Affendi Raja Ali, R., Jian, T. W., Mokhtar, N. M., Raja Ali, R. A., Ken, W. K., Wong, K., & Affendi Raja Ali, R. (2018). Manipulation of Gut Microbiota in Vitro Model of Colorectal Cancer: Strong Adherence Ability of Lactobacillus Rhamnosus. Gut, 67(Suppl 1), A23--A23. https://doi.org/10.1136/gutjnl-2018-IDDFabstracts.130 Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-019-09978-7 Morovic, W., & Budinoff, C. R. (2021). Epigenetics: A New Frontier in Probiotic Research. Trends in Microbiology, 29(2), 117–126. https://doi.org/10.1016/J.TIM.2020.04.008 Muñoz-Provencio, D., Pérez-Martínez, G., & Monedero, V. (2010). Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. Journal of Applied Microbiology, 108(3), 1050–1059. https://doi.org/10.1111/j.1365-2672.2009.04508.x Nghe, D., & Nguyen, T. (2014). Characterization of Antimicrobial Activities of Pediococcus pentosaceus Vtcc-B-601 ARTICLE INFO ABSTRACT. Journal of Applied Pharmaceutical Science, 4(05), 61–064. https://doi.org/10.7324/JAPS.2014.40511 Nonaka, T., & Wong, D. T. W. (2017). Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva (pp. 125–151). Novoa, C. F., & Lopéz, N. (2008). Evaluación de la vida útil sensorial del queso doble crema con dos niveles de grasa. Rev. Med. Vet. Zoot., 55, 91–99. Nwoko, E. S. Q. A., & Okeke, I. N. (2021). Bacteria autoaggregation: How and why bacteria stick together. Biochemical Society Transactions, 49(3), 1147–1157. https://doi.org/10.1042/BST20200718 O’bryan, C. A., Koo, O. K., Sostrin, M. L., Ricke, S. C., Crandall, P. G., & Johnson, M. G. (2018). Chapter 15 - Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. https://doi.org/10.1016/B978-0-12-811835-1.00015-4 Oh, Y. J., & Jung, D. S. (2015). Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented milletalcoholic beverage in Korea. Lwt, 63(1), 437–444. https://doi.org/10.1016/j.lwt.2015.03.005 Ohkusa, T., Yoshida, T., Sato, N., Watanabe, S., Tajiri, H., & Okayasu, I. (2009). Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. Journal of Medical Microbiology, 58(Pt 5), 535–545. https://doi.org/10.1099/JMM.0.005801-0 Okonkwo, C. C. (2017). Process development and metabolic engineering to enhance 2 , 3- butanediol production by Paenibacillus polymyxa DSM 365. Ohio State University. Ortiz Balderas, M. (2006). Identificación bioquímica de Bacterias Ácido Lácticas aisladas a partir de productos lácteos en el estado de Hidalgo [Universidad Autónoma del Estado de Hidalgo]. https://repository.uaeh.edu.mx/bitstream/bitstream/handle/123456789/10741/Identificacion bioquimica.pdf?sequence=1&isAllowed=y Osorio, D. P., Novoa, C. F., & Gutiérrez, L. F. (2012). Determinación de la viabilidad de la nariz electrónica en la predicción de la vida útil del queso doble crema. Alimentos Hoy, 21(26), 26–42. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/120/114 Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Https://Doi.Org/10.3109/07853890.2016.1161232, 48(4), 246–255. https://doi.org/10.3109/07853890.2016.1161232 Ouwehand, A. C., & Salminen, S. (2003). In vitro Adhesion Assays for Probiotics and their in vivo Relevance: A Review. Microbial Ecology in Health and Disease, 15(4), 175–184. https://doi.org/10.1080/08910600310019886 Ozen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial Microbes, 6(2), 159–165. https://doi.org/10.3920/BM2014.0103 Park, S. H., Kim, Y. A., Chung, M. J., Kang, B. Y., & Ha, N. J. (2007). Inhibition of Proliferation by Anti-microbial Peptide Isolated from Pediococcus pentosaceus and Lactobacillus spp. in Colon Cancer Cell Line (HT-29, SW 480 and Caco-2). Parma Augusto Castilho, N. DE. (2018). BACTERIOCINOGENIC POTENTIAL OF LACTIC ACID BACTERIA ISOLATES FROM ARTISANAL FERMENTED MEAT PRODUCTS. Universidade Federal de Viçosa. Patrone, V., Al-Surrayai, T., Romaniello, F., Fontana, A., Milani, G., Sagheddu, V., Puglisi, E., Callegari, M. L., Al-Mansour, H., Kishk, M. W., & Morelli, L. (2021). Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics and Antimicrobial Proteins, 13(3), 809–823. https://doi.org/10.1007/S12602-020-09715-X/TABLES/4 Pavkov-Keller, T., Howorka, S., & Keller, W. (2011). The structure of bacterial S-layer proteins. Progress in Molecular Biology and Translational Science, 103, 73–130. https://doi.org/10.1016/B978-0-12-415906-8.00004-2 Pellegrino, M. S., Frola, I. D., Natanael, B., Gobelli, D., Nader-Macias, M. E. F., & Bogni, C. I. (2019). In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis. Probiotics and Antimicrobial Proteins, 11(1), 74–84. https://doi.org/10.1007/s12602-017-9383-6 Pérez-Ramos, A., Mohedano, M. L., Puertas, A., Lamontanara, A., Orru, L., Spano, G., Capozzi, V., Teresa Dueñas, M., & López, P. (2016). Draft genome sequence of Pediococcus parvulus 2.6, a probiotic β-glucan producer strain. Genome Announcements, 4(6). https://doi.org/10.1128/GENOMEA.01381-16 Pino, A., Bartolo, E., Caggia, C., Cianci, A., & Randazzo, C. L. (2019). Detection of vaginal lactobacilli as probiotic candidates. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-40304-3 Pisano, M. B., Rosa, A., Putzu, D., Cesare Marincola, F., Mossa, V., Viale, S., Fadda, M. E., & Cosentino, S. (2020). Influence of Autochthonous Putative Probiotic Cultures on Microbiota, Lipid Components and Metabolome of Caciotta Cheese. Frontiers in Microbiology, 11, 2620. https://doi.org/10.3389/FMICB.2020.583745/BIBTEX Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10(suppl_1), S49–S66. https://doi.org/10.1093/advances/nmy063 Rahman, M., Kim, W.-S., Kumura, H., & Shimazaki, K. (2008). Autoaggregation and surface hydrophobicity of bifidobacteria. World Journal of Microbiology and Biotechnology, 24, 1593–1598. https://doi.org/10.1007/s11274-007-9650-x Ramírez Ramírez, C., Rosas Ulloa, P., Velázquez González, M. Y., Ulloa, J. A., & Arce Romero, F. (2011). Bacterias lácticas: Importancia en alimentos y sus efectos en la salud. Revista Fuente, 2(7), 1–16. http://fuente.uan.edu.mx/publicaciones/03-07/1.pdf Ravi, J., & Fioravanti, A. (2021). S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Frontiers in Microbiology, 12, 685. https://doi.org/10.3389/FMICB.2021.663468/BIBTEX Reale, A., Di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. Lwt, 60(2), 721–728. https://doi.org/10.1016/j.lwt.2014.10.022 Rehaiem, A., Belgacem, Z. Ben, Edalatian, M. R., Martínez, B., Rodríguez, A., Manai, M., & Guerra, N. P. (2014). Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control, 37, 343–350. https://doi.org/10.1016/j.foodcont.2013.09.044 Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. https://doi.org/10.3168/JDS.2019-17092 Ringot-Destrez, B., Kalach, N., Mihalache, A., Gosset, P., Michalski, J. C., Léonard, R., & Robbe-Masselot, C. (2017). How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochemical Society Transactions, 45(2), 389–399. https://doi.org/10.1042/BST20160167 Rohith, H. S., & Halami, P. M. (2021). In vitro validation studies for adhesion factor and adhesion efficiency of probiotic Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 on HT-29 cell lines. Archives of Microbiology, 203(6), 2989–2998. https://doi.org/10.1007/S00203-021-02257-Y Rubio, A. P. D., Martínez, J. H., Casillas, D. C. M., Leskow, F. C., Piuri, M., & Pérez, O. E. (2017). Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in Microbiology, 8(SEP), 1–12. https://doi.org/10.3389/fmicb.2017.01783 Ruiz, A. G., González De Llano, D., Fernández, A. E., Rolanía, T. R., Sualdea, B. B., & Moreno Arribas, M. V. (2014). Evaluación de las propiedades probióticas de bacterias lácticas de origen enológico. Alimentación, Nutrición y Salud, 21(2), 28–34. Ruiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396. https://doi.org/10.3389/fmicb.2013.00396 Safika, S., Wardinal, W., Ismail, Y. S., Nisa, K., & Sari, W. N. (2019). Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans (Pongo abelii). Veterinary World, 12(7), 1060–1065. https://doi.org/10.14202/vetworld.2019.1060-1065 Sánchez, B., Salazar Garzo, N., & Margolles, A. (2018). La microbiota intestinal. Sánchez, J. F. (2019). Caracterización molecular de bacterias ácido lácticas aisladas de frutos procedentes de la Región Loreto. 124. https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/10767/Sanchez_dj.pdf?sequence=1&isAllowed=y Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. https://doi.org/10.4161/gmic.1.3.12127 Segers, M. E., & Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microbial Cell Factories, 13 Suppl 1, S7. https://doi.org/10.1186/1475-2859-13-S1-S7 Serna-Cock, L., Pabón-Rodríguez, O. V., & Giraldo-Gómez, G. I. (2019). Adhesion Capacity of Weissella cibaria to Bovine Mammary Tissue and the Effect of Bio-Sealant Topical Application on Physicochemical Properties of Milk. Probiotics and Antimicrobial Proteins, 11(4), 1293–1299. https://doi.org/10.1007/s12602-018-9481-0 Sharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Gill, J. P. S., & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1), 53. https://doi.org/10.1007/s13205-017-0682-0 Sharma, L., & Riva, A. (2020). Intestinal barrier function in health and disease—any role of sars‐cov‐2? Microorganisms, 8(11), 1–27. https://doi.org/10.3390/microorganisms8111744 Sharma, R. (2021, May 18). Kirby Bauer Disc Diffusion Method For Antibiotic Susceptibility Testing. https://microbenotes.com/kirby-bauer-disc-diffusion/ Sharma, S., & Kanwar, S. S. (2017). Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines. Journal of Food Science and Technology, 54(11), 3504–3511. https://doi.org/10.1007/s13197-017-2807-1 Shin, M., Ban, O. H., Jung, Y. H., Yang, J., & Kim, Y. (2021). Genomic characterization and probiotic potential of Lactobacillus casei IDCC 3451 isolated from infant faeces. Letters in Applied Microbiology, 72(5), 578–588. https://doi.org/10.1111/LAM.13449 Sica, M. G. (2013). Bacterias lácticas del estuario de Bahía Blanca : evaluación de sus propiedades probióticas para su potencial uso en el cultivo de trucha arcoíris (Oncorhynchus mykiss). Universidad Nacional del Sur Bahía Blanca. Sigma-Aldrich. (2021a). SW 620 Cell Line human. https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87051203 Sigma-Aldrich. (2021b). SW480 Cell Line human 87092801 . https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87092801 Singh, B., Fleury, C., Jalalvand, F., & Riesbeck, K. (2012). Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews, 36(6), 1122–1180. https://doi.org/10.1111/j.1574-6976.2012.00340.x Singh, K. S., Kumar, S., Mohanty, A. K., Grover, S., & Kaushik, J. K. (2018). Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. Scientific Reports 2018 8:1, 8(1), 1–10. https://doi.org/10.1038/s41598-018-32417-y Singh, T. P., Malik, R. K., & Kaur, G. (2016). Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire, 41(1), 1–10. https://doi.org/10.1186/s41110-016-0007-9 Singla, V., Mandal, S., Sharma, P., Anand, S., & Tomar, S. K. (2018). Antibiotic susceptibility profile of Pediococcus spp. from diverse sources. 3 Biotech, 8(12), 489. https://doi.org/10.1007/S13205-018-1514-6 Sireswar, S., Biswas, S., & Dey, G. (2020). Adhesion and anti-inflammatory potential of: Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food and Function, 11(3), 2555–2572. https://doi.org/10.1039/C9FO02249J Slater, C., De La Mare, J. A., & Edkins, A. L. (2018). In vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model. Oncology Letters, 15(6), 8516–8526. https://doi.org/10.3892/ol.2018.8431 Smith, A. C., & Hussey, M. A. (2019). Gram Stain Protocols. https://asm.org/Protocols/Gram-Stain-Protocols Song, X., Xiong, Z., Kong, L., Wang, G., & Ai, L. (2018). Relationship between putative eps genes and production of exopolysaccharide in lactobacillus casei LC2W. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01882 Song, Y. R., Lee, C. M., Lee, S. H., & Baik, S. H. (2021). Evaluation of probiotic properties of pediococcus acidilactici m76 producing functional exopolysaccharides and its lactic acid fermentation of black raspberry extract. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071364 Srimahaeak, T., Bianchi, F., Chlumsky, O., Larsen, N., & Jespersen, L. (2021). In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. Journal of Functional Foods, 79, 104395. https://doi.org/10.1016/j.jff.2021.104395 Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology / Edited by John E. Coligan ... [et al.], 111, A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111 Subramaniyan, V., & Gurumurthy, K. (2019). Diversity of probiotic adhesion genes in the gastrointestinal tract of goats. Journal of Cellular Biochemistry, 120(8), 12422–12428. https://doi.org/10.1002/jcb.28508 Suhonen, A. (2019). Antibiotic Susceptibility of Lactic Acid Bacteria [University of Helsinki]. http://www.helsinki.fi/kirjasto/fi/avuksi/yliopiston-julkaisut/e-thesis/ Suissa, R., Oved, R., Jankelowitz, G., Turjeman, S., Koren, O., & Kolodkin-Gal, I. (2022). Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. In Trends in Microbiology (Vol. 30, Issue 3, pp. 293–306). Elsevier Current Trends. https://doi.org/10.1016/j.tim.2021.07.007 Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, resistome and resistance mechanisms: A bacterial perspective. Frontiers in Microbiology, 9(SEP), 2066. https://doi.org/10.3389/FMICB.2018.02066/BIBTEX Surat, P. (2018, August 24). pH in the Human Body. News Medical Life Sciences. https://www.news-medical.net/health/pH-in-the-Human-Body.aspx Suwannaphan, S. (2021). Isolation, identification and potential probiotic characterization of lactic acid bacteria from thai traditional fermented food. AIMS Microbiology, 7(4), 431–446. https://doi.org/10.3934/MICROBIOL.2021026 Tankeshwar, A. (2013, October 7). Catalase test: Principle, Procedure, Results and Applications. Learn Microbiology Online. https://microbeonline.com/catalase-test-principle-uses-procedure-results/ Tarrah, A., da Silva Duarte, V., de Castilhos, J., Pakroo, S., Lemos Junior, W. J. F., Luchese, R. H., Fioravante Guerra, A., Rossi, R. C., Righetto Ziegler, D., Corich, V., & Giacomini, A. (2019). Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. Journal of Functional Foods, 54, 489–497. https://doi.org/10.1016/J.JFF.2019.02.004 Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, R. E., Ran, C., & Zhou, Z. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition, 7, 191. https://doi.org/10.3389/FNUT.2020.570344/BIBTEX Teixeira, C. G., Silva, R. R. da, Fusieger, A., Martins, E., Freitas, R. de, & Carvalho, A. F. de. (2021). O gênero Weissella na indústria de alimentos: Uma revisão. Research, Society and Development, 10(5), e8310514557. https://doi.org/10.33448/rsd-v10i5.14557 Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients, 11(7). https://doi.org/10.3390/NU11071591 Thao, T. T. P., Thoa, L. T. K., Ngoc, L. M. T., Lan, T. T. P., Phuong, T. V., Truong, H. T. H., Khoo, K. S., Manickam, S., Hoa, T. T., Tram, N. D. Q., Show, P. L., & Huy, N. D. (2021). Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evaluation for bacterial pathogens inhibition. Chemical Engineering and Processing - Process Intensification, 168(January), 108576. https://doi.org/10.1016/j.cep.2021.108576 Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510 Tidjani Alou, M., Lagier, J.-C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal, 1, 3–11. https://doi.org/10.1016/J.HUMIC.2016.09.001 Todhanakasem, T., Triwattana, K., Pom, J., Havanapan, P., Koombhongse, P., & Thitisak, P. (2021). Physiological studies of the Pediococcus pentosaceus biofilm. Letters in Applied Microbiology, 72(2), 178–186. https://doi.org/10.1111/LAM.13351 Tuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., & Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96(7), 4252–4257. https://doi.org/10.3168/jds.2013-6547 Turnbull, P. C. B. (1996). Bacillus. In Medical Microbiology (4th ed.). University of Texas Medical Branch at Galveston. http://www.ncbi.nlm.nih.gov/pubmed/21413260 Turoverova, L. V., Khotin, M. G., Yudintseva, N. M., Magnusson, K. E., Blinova, M. I., Pinaev, G. P., & Tentler, D. G. (2009). Analysis of extracellular matrix proteins produced by cultured cells. Cell and Tissue Biology, 3(5), 497–502. https://doi.org/10.1134/S1990519X09050137 Uniprot. (2022). UniProtKB - Q03EH8 (Q03EH8_PEDPA). Uniprot.Org. https://www.uniprot.org/uniprot/Q03EH8 Universidad EAFIT, Biointropic, & Silo. (2018). Estudio sobre Bioeconomía como fuente de nuevas industrias basadas en el capital natural de Colombia. Fase II. Vanegas, M. F., Londoño Zapata, A., Durango Zuleta, M., Gutiérrez Buriticá, M., Ochoa Agudelo, S., & Sepúlveda Valencia, J. (2017). Capacidad Antimicrobiana de Bacterias Ácido Lácticas autóctonas aisladas de queso doble crema y quesillo colombiano. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(1), 45. https://doi.org/10.18684/BSAA(15)45-55 Vasiee, A., Falah, F., Behbahani, B. A., & Tabatabaee-yazdi, F. (2020). Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering, 130(5), 471–479. https://doi.org/10.1016/j.jbiosc.2020.07.002 Vélez Zea, J., Gutiérrez Díez, A., & Montoya, O. (2015). Molecular identification and evaluation of the probiotic ability of lacticacid bacteria from sow colostrum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 141–149. Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/J.JFF.2012.10.012 Vinderola, G., Reinheimer, J., & Salminen, S. (2019). The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure? International Dairy Journal, 96, 58–65. https://doi.org/10.1016/j.idairyj.2019.04.010 Von Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., Tynkkynen, S., Salminen, S., De Vos, W. M., & Palva, A. (2010). Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and Environmental Microbiology, 76(7), 2049–2057. https://doi.org/10.1128/AEM.01958-09 Wang, J., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., Fan, M., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., & Fan, M. (2018). Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. Annals of Microbiology, 68(12), 803–813. https://doi.org/10.1007/s13213-018-1386-3 Wang, T., Sun, H., Chen, J., Luo, L., Gu, Y., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., & Lü, X. (2021). Anti-Adhesion Effects of Lactobacillus Strains on Caco-2 Cells Against Escherichia Coli and Their Application in Ameliorating the Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice. Probiotics and Antimicrobial Proteins, 13(6), 1632–1643. https://doi.org/10.1007/S12602-021-09774-8 Wendel, U. (2022). Assessing Viability and Stress Tolerance of Probiotics—A Review. Frontiers in Microbiology, 12, 4351. https://doi.org/10.3389/FMICB.2021.818468/BIBTEX Wu, J. W. F. W., Redondo-Solano, M., Uribe, L., Ching-Jones, R. W., Usaga, J., & Barboza, N. (2021). First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ, 9. https://doi.org/10.7717/peerj.12437 Xiong, L., Ni, X., Niu, L., Zhou, Y., Wang, Q., Khalique, A., Liu, Q., Zeng, Y., Shu, G., Pan, K., Jing, B., & Zeng, D. (2019). Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca). Probiotics and Antimicrobial Proteins, 11(2), 535–544. https://doi.org/10.1007/S12602-018-9402-2 Xu, D., Liao, C., Zhang, B., Tolbert, W. D., He, W., Dai, Z., Zhang, W., Yuan, W., Pazgier, M., Liu, J., Yu, J., Sansonetti, P. J., Bevins, C. L., Shao, Y., & Lu, W. (2018). Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity, 48(6), 1233-1244.e7. https://doi.org/10.1016/J.IMMUNI.2018.04.014 Xu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Dia, V. P., Qiao, Y., & Shi, B. (2020). Antibacterial potential of a novel: Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides. Food and Function, 11(5), 4697–4706. https://doi.org/10.1039/d0fo00905a Xue, H. B., Liu, C., Liu, Y., Wang, W. N., & Xu, B. (2021). Roles of surface layer proteins in the regulation of Pediococcus pentosaceus on growth performance, intestinal microbiota, and resistance to Aeromonas hydrophila in the freshwater prawn Macrobrachium rosenbergii. Aquaculture International, 29(3), 1373–1391. https://doi.org/10.1007/s10499-021-00704-7 Yamashita, M. M., Ferrarezi, J. V., Pereira, G. do V., Bandeira, G., Côrrea da Silva, B., Pereira, S. A., Martins, M. L., & Pedreira Mouriño, J. L. (2020). Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139, 103897. https://doi.org/10.1016/J.MICPATH.2019.103897 Yao, Y., Cai, X., Ye, Y., Wang, F., Chen, F., & Zheng, C. (2021). The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 12, 4114. https://doi.org/10.3389/FIMMU.2021.708472/BIBTEX Ye, K., Liu, J., Liu, M., Huang, Y., Wang, K., & Zhou, G. (2018). Effects of two Weissella viridescens strains on Listeria monocytogenes growth at different initial inoculum proportions. CYTA - Journal of Food, 16(1), 299–305. https://doi.org/10.1080/19476337.2017.1401667 Yin, H., Ye, P., Lei, Q., Cheng, Y., Yu, H., Du, J., Pan, H., & Cao, Z. (2020). In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis, 144(December 2019), 104163. https://doi.org/10.1016/j.micpath.2020.104163 Yu, H. S., Jang, H. J., Lee, N. K., & Paik, H. D. (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. Lwt, 112(March), 108229. https://doi.org/10.1016/j.lwt.2019.05.127 Zhang, Y., Xiang, X., Lu, Q., Zhang, L., Ma, F., & Wang, L. (2016). Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L. Journal of Dairy Science, 99(2), 1011–1018. https://doi.org/10.3168/jds.2015-10020 Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018a). In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat “Dried Ossban.” In Frontiers in Microbiology (Vol. 9). https://www.frontiersin.org/article/10.3389/fmicb.2018.02607 Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018b). In vitroassessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceusMZF16 isolated from artisanal tunisian meat "dried ossban. Frontiers in Microbiology, 9(NOV), 2607. https://doi.org/10.3389/fmicb.2018.02607 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
104 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Biotecnología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82661/4/1152214584.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82661/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/82661/5/1152214584.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
f310f358a1d0ed74a46757bd0f64a256 eb34b1cf90b7e1103fc9dfd26be24b4a 8b8bed1383faab3b1971f68979e63af7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089292861931520 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Márquez Fernández, María Elena6dffb26b95b62c41dad1e992612500d3600Montoya Campuzano, Olga Inés13b1087695f9ed0342ccae3e2ccd10be600Roldán Pérez, Samantha43786bffbe2d5e5b354e40a6fa75b7da600Probióticos: Prospección Funcional y MetabolitosGrupo de Investigación en Biotecnología Animal (Giba)Márquez Fernández, María Elena [0000-0001-5760-9907]2022-11-08T16:26:56Z2022-11-08T16:26:56Z2022-11https://repositorio.unal.edu.co/handle/unal/82661Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones., diagramasLas Bacterias Ácido Lácticas (BAL) son productoras de ácido láctico, reconocidas como probióticas seguras, que administradas en cantidades adecuadas confieren un beneficio para la salud del hospedero. Las BAL pueden aislarse de derivados lácteos artesanales, como el Queso Doble Crema (QDC). El objetivo de esta investigación fue evaluar la capacidad de adhesión de las cepas Pediococcus pentosaceus, Weissella viridescens y Lacticaseibacillus casei con propiedades probióticas en líneas celulares humanas tumorales de colon SW480 y SW620. A estas cepas BAL aisladas y caracterizadas previamente de un QDC, se le evaluaron algunas de sus propiedades probióticas como la resistencia a diferentes condiciones de pH y de sales biliares, sensibilidad a los antibióticos, actividad antibacteriana, capacidad de autoagregación, producción de exopolisacáridos y adhesión a líneas celulares humanas tumorales de colon SW480 y SW620. Todas las cepas BAL-QDC sobrevivieron en condiciones de pH (5.5, 6.5 y 8.0) y a sales biliares (0.3%, 0.6% y 1.0% p/v); además, inhibieron el crecimiento de E. coli ATCC 25922, S. Typhimurium ATCC 14028, S. aureus ATCC 25923 y L. monocytogenes, excepto W. viridescens que no inhibió a L. monocytogenes. Las BAL-QDC P. pentosaceus, W. viridescens y L. casei no mostraron resistencia a los antibióticos Gentamicina, Penicilina, Vancomicina, Ampicilina, Tetraciclina y Cloranfenicol, pero W. viridescens exhibió resistencia al cloranfenicol. Las BAL-QDC también presentaron capacidad de autoagregación y porcentajes de adhesión superiores al 54.97% a las células SW480 y SW620 respecto a L. rhamnosus GG. Las proteínas de la capa paracristalina de las BAL-QDC afectaron únicamente la adhesión de L. casei en las células SW620 y a L. rhamnosus GG con las células SW480. (Texto tomado de la fuente)Lactic Acid Bacteria (LAB) are producers of lactic acid, recognized as safe probiotics, which when administered in adequate amounts confer a health benefit on the host. BAL can be isolated from artisan dairy products, such as Double Cream Cheese (DCC). The aim of this research was to evaluate the adhesion capacity of the strains Pediococcus pentosaceus, Weissella viridescens and Lacticaseibacillus casei with probiotic properties in human colonic tumor cell lines SW480 and SW620. These LAB strains previously isolated and characterized from a DCC were evaluated for some of their probiotic properties such as resistance to different pH and bile salt conditions, sensitivity to antibiotics, antibacterial activity, autoaggregation capacity, production of exopolysaccharides and adhesion to human colonic tumor cell lines SW480 and SW620. All LAB-DCC strains survived under conditions of pH (5.5, 6.5 and 8.0) and bile salts (0.3%, 0.6% and 1.0% w/v); In addition, they inhibited the growth of E. coli ATCC 25922, S. Typhimurium ATCC 14028, S. aureus ATCC 25923, and L. monocytogenes, except for W. viridescens, which did not inhibit L. monocytogenes. LAB-DCC P. pentosaceus, W. viridescens and L. casei did not show resistance to the antibiotics Gentamicin, Penicillin, Vancomycin, Ampicillin, Tetracycline and Chloramphenicol, but W. viridescens showed resistance to chloramphenicol. LAB-DCC also showed autoaggregation capacity and adhesion percentages higher than 54.965% to SW480 and SW620 cells relative to L. rhamnosus GG. LAB-DCC S-layer proteins affected only the adhesion of L. casei to SW620 cells and L. rhamnosus GG to SW480 cells.MaestríaMagíster en Ciencias - BiotecnologíaProbióticosÁrea Curricular de Bioctecnología104 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología610 - Medicina y salud570 - Biología::572 - BioquímicaBacteriasBacteriaBacterias probióticasBacterias Ácido LácticasEpitelio intestinalCapa paracristalinaAdhesinasLactic Acid BacteriaIntestinal epitheliumS-layerAdhesinsEvaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colonEvaluation of adhesion capacity of bacterial strains with probiotic properties in human tumoral colonic cell linesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbraham, B. P., & Quigley, E. M. M. (2017). Probiotics in Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 46(4), 769–782. https://doi.org/10.1016/j.gtc.2017.08.003Abriouel, H., Lerma, L. L., Casado Muñoz, M. del C., Montoro, B. P., Kabisch, J., Pichner, R., Cho, G. S., Neve, H., Fusco, V., Franz, C. M. A. P., Gálvez, A., & Benomar, N. (2015). The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology, 6(OCT). https://doi.org/10.3389/fmicb.2015.01197Adesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2021). Diversity and technological characterization of Pediococcus pentosaceus strains isolated from Nigerian traditional fermented foods. LWT, 140(110697). https://doi.org/10.1016/j.lwt.2020.110697Adu, K. T., Wilson, R., Baker, A. L., Bowman, J., & Britz, M. L. (2020). Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J. Proteome Res, 19, 47. https://doi.org/10.1021/acs.jproteome.0c00107Akpınar Kankaya, D., & Tuncer, Y. (2020). Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. Journal of Food Processing and Preservation, 44(6), 1–14. https://doi.org/10.1111/jfpp.14468Allied Market Research. (2021). Probiotics Market Size & Share Analysis Report, 2021-2028. https://www.grandviewresearch.com/industry-analysis/probiotics-market/methodologyAlp, D., & Kuleaşan, H. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35(10), 1–9. https://doi.org/10.1007/s11274-019-2730-xAman, F., & Masood, S. (2020). How Nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36(COVID19-S4). https://doi.org/10.12669/PJMS.36.COVID19-S4.2776Ángela Castro, L., Act, B., & R Ovetto, C. DE. (2006). Probióticos: utilidad clínica (Vol. 37). Octubre-Diciembre.Angelis, M. De, & Gobbetti, M. (2016). Lactobacillus SPP.: General Characteristics☆. In Reference Module in Food Science (pp. 1–12). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.00851-9Armas, F., Camperio, C., & Marianelli, C. (2017). In Vitro Assessment of the probiotic potential of Lactococcus lactis LMG 7930 against ruminant mastitis-causing pathogens. PLOS ONE, 12(1), e0169543. https://doi.org/10.1371/journal.pone.0169543Arshad, F., Mehmood, R., Hussain, S., Khan, M. A., & Khan, M. S. (2018). Lactobacilli as Probiotics and their Isolation from Different Sources. Br J Res, 5(3), 43. https://doi.org/10.21767/2394-3718.100043Aryal Sagal. (2018, June 12). Capsule Staining- Principle, Reagents, Procedure and Result. Microbiologyinfo.Com. https://microbiologyinfo.com/capsule-staining-principle-reagents-procedure-and-result/Assamoi, A. A., Krabi, E. R., Ehon, A. F., N’guessan, G. A., Niamké, L. S., & Thonart, P. (2016). Isolation and screening of Weissella strains for their potential use as starter during attiéké production. BASE, 20(3), 355–362. https://doi.org/10.25518/1780-4507.13117Astó, E., Huedo, P., Altadill, T., Aguiló García, M., Sticco, M., Perez, M., & Espadaler-Mazo, J. (2022). Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741391ATCC. (2020). SW480 [SW-480] ATCC ® CCL-228TM. ATCC.Org. https://www.atcc.org/Products/All/CCL-228.aspx#characteristicsAyeni, F. A., Sánchez, B., Adeniyi, B. A., de los Reyes-Gavilán, C. G., Margolles, A., & Ruas-Madiedo, P. (2011). Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow’s intestine. International Journal of Food Microbiology, 147(2), 97–104. https://doi.org/10.1016/j.ijfoodmicro.2011.03.014Bakar, F., Karakay, Songül, Bostanlık, D., Gül, F., & Kılıç, C. S. (2016). Anticancer Effect of Ferulago Mughlea Peşmen (Apiaceae) on Cancer Cell Proliferation. Iranian Journal of Pharmaceutical Research : IJPR, 15(3), 501. https://doi.org/10.22037/ijpr.2016.1882Balakrishna, A. (2013). In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (poecilia reticulata). Brazilian Archives of Biology and Technology, 56(5), 793–800. https://doi.org/10.1590/S1516-89132013000500010Baliga, S., Muglikar, S., & Kale, R. (2013). Salivary pH: A diagnostic biomarker. Journal of Indian Society of Periodontology, 17(4), 461. https://doi.org/10.4103/0972-124X.118317Balthazar, C. F., Silva, H. L. A., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A. V., Azevedo, L., Camps, I., K.D Abud, Y., Sant’Anna, C., Franco, R. M., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Escher, G. B., Granato, D., Senaka Ranadheera, C., Nazarro, F., & Cruz, A. G. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246(August 2017), 464–472. https://doi.org/10.1016/j.foodchem.2017.12.002Baranov, V., & Hammarström, S. (2004). Carcinoembryonic antigen [CEA] and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochemistry and Cell Biology, 121(2), 83–89. https://doi.org/10.1007/s00418-003-0613-5Barzegar, H., Alizadeh Behbahani, B., & Falah, F. (2021). Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Science & Nutrition, 9(8). https://doi.org/10.1002/FSN3.2365Beldarrain-Iznaga, T., Villalobos-Carvajal, R., Sevillano-Armesto, E., & Leiva-Vega, J. (2021). Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Research International, 141(January), 110136. https://doi.org/10.1016/j.foodres.2021.110136Beltrán de Heredia, M. R. (2017). Microbiota autóctona. Farmacia Profesional, 31(2), 17–21. https://www.elsevier.es/es-revista-farmacia-profesional-3-pdf-X0213932417608739Bergey, D. H. (2009). Vol 3: The Firmicutes. In Bergey’s manual of systematic bacteriology. https://doi.org/10.1007/b92997Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079Betancur, C., Martínez, Y., Tellez‐isaias, G., Avellaneda, M. C., & Velázquez‐martí, B. (2020). In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals, 10(7), 1–11. https://doi.org/10.3390/ani10071204Bharat, T. A. M., von Kügelgen, A., & Alva, V. (2021). Molecular Logic of Prokaryotic Surface Layer Structures. Trends in Microbiology, 29(5), 405. https://doi.org/10.1016/J.TIM.2020.09.009Bhukya, K. K., & Bhukya, B. (2021). Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status. PLoS ONE, 16(11 November), 1–20. https://doi.org/10.1371/journal.pone.0259702Biazik, J. M., Jahn, K. A., Su, Y., Wu, Y. N., & Braet, F. (2010). Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World Journal of Gastroenterology, 16(22), 2743–2753. https://doi.org/10.3748/wjg.v16.i22.2743Björkroth, J., Dicks, L. M. T., Endo, A., & H.Holzapfel, W. (2014). The genus Leuconostoc. In Lactic Acid Bacteria (pp. 391–404). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118655252.ch23Blottière, H. M., de Vos, W. M., Ehrlich, S. D., & Doré, J. (2013). Human intestinal metagenomics: State of the art and future. Current Opinion in Microbiology, 16(3), 232–239. https://doi.org/10.1016/j.mib.2013.06.006Bolen, B. (2019). Types and Functions of Digestive Enzymes. Verywellhealth. https://www.verywellhealth.com/what-are-digestive-enzymes-1945036Bolívar Parra, L., Giraldo Hincapié, P. A., & Montoya Campuzano, O. I. (2020). Antimicrobial activity of a synthetic bacteriocin found in the genome of lactobacillus casei on the microbiota of antioquian soft cheese (Quesito antioqueÑo). Vitae, 27(1), 1–9. https://doi.org/10.17533/udea.vitae.v27n1a02Bron, P. A., Kleerebezem, M., Brummer, R.-J., Cani, P. D., Mercenier, A., MacDonald, T. T., Garcia-Ródenas, C. L., & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, 117(1), 93–107. https://doi.org/10.1017/S0007114516004037Brunser T, O. (2013). El desarrollo de la microbiota intestinal humana, el concepto de probiótico y su relación con la salud humana. Revista Chilena de Nutrición, 40(3), 283–289. https://doi.org/10.4067/S0717-75182013000300011Byakika, S., Mukisa, I. M., Byaruhanga, Y. B., & Muyanja, C. (2019). A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms. Food Reviews International, 35(5), 427–466. https://doi.org/10.1080/87559129.2019.1584815Cadirci, B., & Sumru, C. (2005). A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition, 4. https://doi.org/10.3923/pjn.2005.237.241Cámara de Industria y Comercio Colombo-Alemana, Cámara de Comercio de Medellín para Antioquia, Institución Universitaria Esumer, & Observatorio de Tendencias Futuras 360°. (2021). Contexto, tendencias y oportunidades del mercado de los derivados lácteos en Antioquia, 2021. In Derivados lácteos (Vol. 1). https://www.camaramedellin.com.co/Portals/0/Documentos/2021/ESTUDIO DE TENDENCIAS DERIVADOS LACTEOS 2021 abril 12.pdf?ver=2021-04-13-140402-407Camilleri, M. (2021). Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clinical and Translational Gastroenterology, 12(1), e00308. https://doi.org/10.14309/ctg.0000000000000308Cao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2Casalta, E., & Montel, M. (2008). Safety assessment of dairy microorganisms: The Lactococcus genus☆. International Journal of Food Microbiology, 126(3), 271–273. https://doi.org/10.1016/j.ijfoodmicro.2007.08.013Casarotti, S. N., Carneiro, B. M., Svetoslav, &, Todorov, D., Nero, L. A., Rahal, P., Lúcia, A., Penna, B., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67(4), 289–301. https://doi.org/10.1007/s13213-017-1258-2Castilho, N. P. A., Colombo, M., Oliveira, L. L. De, Todorov, S. D., & Nero, L. A. (2019). Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/S12866-019-1436-4/FIGURES/4Cázares-Vásquez, M. L., Rodríguez-Herrera, R., Aguilar-González, C. N., Sáenz-Galindo, A., Solanilla-Duque, J. F., Contreras-Esquivel, J. C., & Flores-Gallegos, A. C. (2021). Microbial exopolysaccharides in traditional mexican fermented beverages. Fermentation, 7(4). https://doi.org/10.3390/FERMENTATION7040249Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50, 103. https://doi.org/10.1038/s12276-018-0126-xChen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789Choeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertlé, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. Food Science and Technology, 40(3), 571–579. https://doi.org/10.1590/fst.13219Chondrou, P., Karapetsas, A., Kiousi, D. E., Tsela, D., Tiptiri-Kourpeti, A., Anestopoulos, I., Kotsianidis, I., Bezirtzoglou, E., Pappa, A., & Galanis, A. (2018). Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Beneficial Microbes, 9(6), 975–983. https://doi.org/10.3920/BM2017.0183CLSI. (2015). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Tenth Edition. CLSI document M07-A10. In Clinical and Laboratory Standars Institute.Darmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion properties of lactobacillus plantarum dad-13 and lactobacillus plantarum mut-7 on sprague dawley rat intestine. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112336Das, D., & Goyal, A. (2012). Lactic Acid Bacteria in Food Industry. In Microorganisms in Sustainable Agriculture and Biotechnology (pp. 757–772). Springer Netherlands. https://doi.org/10.1007/978-94-007-2214-9_33Davis, K. (2014). Impact of Carbohydrates on the Aggregation of Probiotic Bacteria. 1(1), 1–9. https://pdfs.semanticscholar.org/59f5/27493fe786cac425391cf21af1cc6b01a1a3.pdfde Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003Dell’anno, M., Giromini, C., Reggi, S., Cavalleri, M., Moscatelli, A., Onelli, E., Rebucci, R., Sundaram, T. S., Coranelli, S., Spalletta, A., Baldi, A., & Rossi, L. (2021). Evaluation of adhesive characteristics of l. Plantarum and l. reuteri isolated from weaned piglets. Microorganisms, 9(8), 1–12. https://doi.org/10.3390/microorganisms9081587Deng, Z., Dai, T., Zhang, W., Zhu, J., Luo, X. M., Fu, D., Liu, J., & Wang, H. (2020). Glyceraldehyde-3-phosphate dehydrogenase increases the adhesion of Lactobacillus reuteri to host mucin to enhance probiotic effects. International Journal of Molecular Sciences, 21(24), 1–16. https://doi.org/10.3390/ijms21249756Divyashree, S., Anjali, P. G., Somashekaraiah, R., & Sreenivasa, M. Y. (2021). Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, e00672. https://doi.org/10.1016/j.btre.2021.e00672do Carmo, F. L. R., Rabah, H., de Oliveira Carvalho, R. D., Gaucher, F., Cordeiro, B. F., da Silva, S. H., Loir, Y. Le, Azevedo, V., & Jan, G. (2018). Extractable Bacterial Surface Proteins in Probiotic–Host Interaction. Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/FMICB.2018.00645do Carmo, M. S., Santos, C. I. Dos, Araújo, M. C., Girón, J. A., Fernandes, E. S., & Monteiro-Neto, V. (2018). Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food & Function, 9(10), 5074–5095. https://doi.org/10.1039/c8fo00376aDouillard, F. P., Ribbera, A., Järvinen, H. M., Kant, R., Pietilä, T. E., Randazzo, C., Paulin, L., Laine, P. K., Caggia, C., von Ossowski, I., Reunanen, J., Satokari, R., Salminen, S., Palva, A., & de Vosa, W. M. (2013). Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and Environmental Microbiology, 79(6), 1923–1933. https://doi.org/10.1128/AEM.03467-12Doyle, R. J., & Ofek, I. (1994). Bacterial Adhesion to Cells and Tissues (1st ed.). Chapman & Hall, Inc.Dubey, V., Mishra, A. K., & Ghosh, A. R. (2020). Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp). Journal of Proteomics, 226(December 2019), 103894. https://doi.org/10.1016/j.jprot.2020.103894EFSA. (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6). https://doi.org/10.2903/j.efsa.2012.2740Erdoǧmuş, S. F., Erişmiş, U. C., & Uǧuz, C. (2021). Isolation and identification of lactic acid bacteria from fermented meat products and evaluation of their antimicrobial effect. Czech Journal of Food Sciences, 39(4), 289–296. https://doi.org/10.17221/222/2020-CJFSEscobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1), 311. https://doi.org/10.1186/s12866-014-0311-6Espinoza-Monje, M., Campos, J., Alvarez Villamil, E., Jerez, A., Dentice Maidana, S., Elean, M., Salva, S., Kitazawa, H., Villena, J., & García-Cancino, A. (2021). Characterization of weissella viridescens uco-smc3 as a potential probiotic for the skin: Its beneficial role in the pathogenesis of acne vulgaris. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071486FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. In Joint FAO/WHO Working Group Report.FAO/WHO. (2006). Probiotics in food Health and nutritional properties and guidelines for evaluation. In Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. http://www.fao.org/3/a-a0512e.pdfFarkye, N. Y. (2014). CHEESE | Microbiology of Cheesemaking and Maturation. Encyclopedia of Food Microbiology: Second Edition, 395–401. https://doi.org/10.1016/B978-0-12-384730-0.00059-8Fernándes, M. L., Perin, L. M., Todorov, S. D., Nero, L. A., De Alencar, E. R., & De Aguiar Ferreira, M. (2018). In vitro evaluation of the safety and probiotic and technological potential of pediococcus pentosaceus isolated from sheep milk. Semina:Ciencias Agrarias, 39(1), 113–132. https://doi.org/10.5433/1679-0359.2018v39n1p113Fessard, A., & Remize, F. (2017). Why Are Weissella spp. Not Used as Commercial Starter Cultures for Food Fermentation? Fermentation, 3(38), 17–18. https://doi.org/10.3390/fermentation3030038ïFhoula, I., Rehaiem, A., Najjari, A., Usai, D., Boudabous, A., Sechi, L. A., & Hadda-Imene, O. (2018). Functional Probiotic Assessment and in Vivo Cholesterol-Lowering Efficacy of Weissella sp. Associated with Arid Lands Living-Hosts. BioMed Research International, 2018. https://doi.org/10.1155/2018/1654151Fijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. In V. Rao & L. Rao (Eds.), Probiotics and Prebiotics in Human Nutrition and Health (pp. 191–221). InTech. https://doi.org/10.5772/63141Fina Martin, J., Palomino, M. M., Cutine, A. M., Modenutti, C. P., Fernández Do Porto, D. A., Allievi, M. C., Zanini, S. H., Mariño, K. V, Barquero, A. A., & Ruzal, S. M. (2019). Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Applied Microbiology and Biotechnology, 103(12), 4839–4857. https://doi.org/10.1007/s00253-019-09795-yFoley, M. H., O’Flaherty, S., Allen, G., Rivera, A. J., Stewart, A. K., Barrangou, R., & Theriot, C. M. (2021). Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America, 118(6). https://doi.org/10.1073/pnas.2017709118Francisco Guarner., A. G. K. (2017). Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. In World Gastroenterology Organisation.Franz, C. M. A. P., Endo, A., Abriouel, H., Van Reenen, C. A., Gálvez, A., & Dicks, L. M. T. (2014). The genus Pediococcus. Lactic Acid Bacteria: Biodiversity and Taxonomy, 9781444333(2009), 359–376. https://doi.org/10.1002/9781118655252.ch21García-hernández, Y., Pérez-sánchez, T., García-curbelo, Y., Sosa-cossio, D., & Nicoli, J. R. (2017). Growth ability , microbial activity and susceptibility to antimicrobials of two strains of Pediococcus pentosaceus , candidates to probiotic Capacidad de crecimiento , actividad antimicrobiana y susceptibilidad a antimicrobianos de dos cepas de Pediococcu. Cuban Journal of Agricultural Science, 51(4), 433–442.García Torres, L. (2015). Análisis proteómico de células de colon humano antes y después de la interacción con Lactobacillus casei Shirota [INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.]. https://repositorio.ipicyt.edu.mx/handle/11627/3906Gerbino, E., Carasi, P., Mobili, P., Serradell, M. A., & Gómez-Zavaglia, A. (2015). Role of S-layer proteins in bacteria. World Journal of Microbiology and Biotechnology, 31(12), 1877–1887. https://doi.org/10.1007/s11274-015-1952-9Gil-Sánchez, I., Bartolomé Suáldea, B., & Victoria Moreno-Arribas, M. (2019). Malolactic Fermentation. In Red Wine Technology (pp. 85–98). Elsevier. https://doi.org/10.1016/B978-0-12-814399-5.00006-2Gogineni, V. K., Morrow, L. E., Gregory, P. J., & Malesker, M. A. (2013). Probiotics: History and Evolution. Journal of Infectious Diseases and Preventive Medicine, 1(2), 1–7. https://doi.org/10.4172/2329-8731.1000107Grilli, D. J., Mansilla, M. E., Giménez, M. C., Sohaefer, N., Ruiz, M. S., Terebiznik, M. R., Sosa, M., & Arenas, G. N. (2019). Pseudobutyrivibrio xylanivorans adhesion to epithelial cells. Anaerobe, 56, 1–7. https://doi.org/10.1016/J.ANAEROBE.2019.01.001Guan, C., Chen, X., Jiang, X., Zhao, R., Yuan, Y., Chen, D., Zhang, C., Lu, M., Lu, Z., & Gu, R. (2020). In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances, 10(41), 24234–24240. https://doi.org/10.1039/d0ra03517cGuan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. https://doi.org/10.1007/s00253-019-10226-1Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., & Garisch, J. (2017). Guías Mundiales de la Organización Mundial de Gastroenterología Enfermedad celíaca. In Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2017.pdfGuidoli, M. G., Mendoza, J. A., Falcón, S. L., Boehringer, S. I., Sánchez, S., & Macías, M. E. F. N. (2018). Autochthonous probiotic mixture improves biometrical parameters of larvae of piaractus mesopotamicus (Caracidae, characiforme, teleostei). Ciencia Rural, 48(7). https://doi.org/10.1590/0103-8478cr20170764Hakeem Said, I. (2018). Interaction between Plant Phenolics and Bacteria-Structure, Identification, Bioactivity and Uptake. Jacobs University.Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in Microbiology, 9, 1791. https://doi.org/10.3389/fmicb.2018.01791Harvey, A., Yen, T.-Y., Aizman, I., Tate, C., & Case, C. (2013). Proteomic Analysis of the Extracellular Matrix Produced by Mesenchymal Stromal Cells: Implications for Cell Therapy Mechanism. PLoS ONE, 8(11), 79283. https://doi.org/10.1371/journal.pone.0079283Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 0(SEP), 2107. https://doi.org/10.3389/FMICB.2018.02107Horáčková, Š., Plocková, M., & Demnerová, K. (2018). Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnology Advances, 36(3), 682–690. https://doi.org/10.1016/j.biotechadv.2017.12.005Howe, B., Umrigar, A., & Tsien, F. (2014). Chromosome preparation from cultured cells. Journal of Visualized Experiments, 83(e50203). https://doi.org/10.3791/50203Husain, K., Zhang, A., Shivers, S., Davis-Yadley, A., Coppola, D., Yang, C. S., & Malafa, M. P. (2019). Chemoprevention of azoxymethane-induced colon carcinogenesis by delta-tocotrienol. Cancer Prevention Research, 12(6), 357–366. https://doi.org/10.1158/1940-6207.CAPR-18-0290/36512/AM/CHEMOPREVENTION-OF-AZOXYMETHANE-INDUCED-COLONHynönen, U., & Palva, A. (2013). Lactobacillus surface layer proteins: structure, function and applications. Applied Microbiology and Biotechnology 2013 97:12, 97(12), 5225–5243. https://doi.org/10.1007/S00253-013-4962-2Isaacson, B., Hadad, T., Bachrach, G., & Mandelboim, O. (2018). Quantification of Bacterial Attachment to Tissue Sections. Bio-Protocol, 8(5). https://doi.org/10.21769/BIOPROTOC.2741Jaafar, R. S., Al-Knany, F. N., Mahdi, B. A., & Al-Taee, A. M. R. (2019). Study the probiotic properties of pediococcus pentosaceus isolated from fish ponds in basra city, south of Iraq. Journal of Pure and Applied Microbiology, 13(4), 2343–2351. https://doi.org/10.22207/JPAM.13.4.50Jang, Y. J., Gwon, H. M., Jeong, W. S., Yeo, S. H., & Kim, S. Y. (2021). Safety evaluation of weissella cibaria jw15 by phenotypic and genotypic property analysis. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122450Jatmiko, Y. D., Howarth, G. S., & Barton, M. D. (2017). Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk. AIP Conference Proceedings, 1908(1), 50008. https://doi.org/10.1063/1.5012732Jessie Lau, L. Y., & Chye, F. Y. (2018). Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Control. https://doi.org/10.1016/j.foodcont.2018.04.001Jia, K., Tong, X., Wang, R., & Song, X. (2018). The clinical effects of probiotics for inflammatory bowel disease: A meta-analysis. Medicine, 97(51), e13792. https://doi.org/10.1097/MD.0000000000013792Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. 20(1), 1–14. https://doi.org/10.1186/S12934-021-01537-YJung, S. H., Hong, D. K., Bang, S. J., Heo, K., Sim, J. J., & Lee, J. L. (2021). The functional properties of lactobacillus casei hy2782 are affected by the fermentation time. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062481Kang, M. S., Na, H. S., & Oh, J. S. (2005). Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiology Letters, 253(2), 323–329. https://doi.org/10.1016/j.femsle.2005.10.002Kang, M. S., Piao, M., Shin, B. A., Lee, H. C., & Oh, J. S. (2006). Adhesion of Weissella cibaria to the epithelial cells and factors affecting its adhesion. Journal of Bacteriology and Virology, 36(3), 151–157. https://doi.org/10.4167/JBV.2006.36.3.151Karki, G. (2017). Genus Streptococcus: habitat, morphology, culture and biochemical characteristics - Online Biology Notes. Onlinebiologynotes. https://www.onlinebiologynotes.com/genus-streptococcus-habitat-morphology-culture-biochemical-characteristics/Katsikogianni, M., Missirlis, Y. F., Harris, L., & Douglas, J. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials, 8, 37–57. https://doi.org/10.22203/eCM.v008a05Kaur, G., & Dufour, J. M. (2012). Cell lines. Spermatogenesis, 2(1), 1–5. https://doi.org/10.4161/spmg.19885Kavitake, D., Devi, P. B., & Shetty, P. H. (2020). Overview of exopolysaccharides produced by Weissella genus – A review. International Journal of Biological Macromolecules, 164, 2964–2973. https://doi.org/10.1016/j.ijbiomac.2020.08.185Kayode Titus, A. (2018). Prolonged heat stress of Lactobacillus casei GCRL163 and the impact on the cell physiology and probiotic functionality using proteomics. Universidad de Tasmania.Keyhani, G., Hosseini, H. M., & Salimi, A. (2022). Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iranian Journal of Microbiology, 14(1), 90. https://doi.org/10.18502/IJM.V14I1.8809Khalil, E. S., Manap, M. Y., Mustafa, S., Amid, M., Alhelli, A. M., & Aljoubori, A. (2018). Probiotic characteristics of exopolysaccharides-producing Lactobacillus isolated from some traditional Malaysian fermented foods. Journal of Foods, 16(1), 287–298. https://doi.org/10.1080/19476337.2017.1401007Kim, E., Yang, S. M., Kim, D., & Kim, H. Y. (2022). Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Frontiers in Microbiology, 12, 4135. https://doi.org/10.3389/fmicb.2021.794315Klotz, C., Goh, Y. J., O’Flaherty, S., & Barrangou, R. (2020). S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-01908-2Knobloch, D., Ostermann, K., & Rödel, G. (2012). Production, Secretion, and Cell Surface Display of Recombinant Sporosarcina ureae S-Layer Fusion Proteins in Bacillus megaterium. Applied and Environmental Microbiology, 78(2), 560. https://doi.org/10.1128/AEM.06127-11Knutsen, T., Padilla-Nash, H. M., Wangsa, D., Barenboim-Stapleton, L., Camps, J., McNeil, N., Difilippantonio, M. J., & Ried, T. (2010). Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes Chromosomes and Cancer, 49(3), 204–223. https://doi.org/10.1002/gcc.20730Koirala, S., & Anal, A. K. (2021). Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods, 3, 100013. https://doi.org/10.1016/J.FUFO.2021.100013Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation, 5(4). https://doi.org/10.3390/fermentation5040100Kumar, R., Bansal, P., Singh, J., Dhanda, S., & Bhardwaj, J. K. (2020). Aggregation, adhesion and efficacy studies of probiotic candidate Pediococcus acidilactici NCDC 252: a strain of dairy origin. World Journal of Microbiology and Biotechnology, 36(1), 1–15. https://doi.org/10.1007/s11274-019-2785-8La Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11–21. https://doi.org/10.1007/s12602-017-9322-6Ladha, G., & Jeevaratnam, K. (2018). Probiotic Potential of Pediococcus pentosaceus LJR1, a Bacteriocinogenic Strain Isolated from Rumen Liquor of Goat (Capra aegagrus hircus). Food Biotechnology, 32(1), 60–77. https://doi.org/10.1080/08905436.2017.1414700Lakra, A. K., Domdi, L., Hanjon, G., Tilwani, Y. M., & Arul, V. (2020). Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. Lwt, 125(October 2019), 109261. https://doi.org/10.1016/j.lwt.2020.109261Langdon, S. P. (2003). Cancer Cell Culture. In Cancer Cell Culture. Humana Press. https://doi.org/10.1385/1592594069Lee, H. K., Choi, S. H., Lee, C. R., Lee, S. H., Park, M. R., Kim, Y., Lee, M. K., & Kim, G. B. (2015). Screening and characterization of lactic acid bacteria strains with anti-inflammatory activities through in vitro and caenorhabditis elegans model testing. Korean Journal for Food Science of Animal Resources, 35(1), 91–100. https://doi.org/10.5851/kosfa.2015.35.1.91Lee, Y. (2005). Characterization of Weissella kimchii PL9023 as a potential probiotic for women. FEMS Microbiology Letters, 250(1), 157–162. https://doi.org/10.1016/J.FEMSLE.2005.07.009Li, N., Huang, Y., Liu, Z., You, C., & Guo, B. (2015). Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering. Letters in Applied Microbiology, 61(6), 555–561. https://doi.org/10.1111/LAM.12492Li, Y., Zhang, T., Guo, C., Geng, M., Gai, S., Qi, W., Li, Z., Song, Y., Luo, X., Zhang, T., & Wang, N. (2020). Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathogens and Disease, 78(2). https://doi.org/10.1093/FEMSPD/FTAA016Liu, C., Han, F., Cong, L., Sun, T., Menghe, B., & Liu, W. (2022). Evaluation of tolerance to artificial gastroenteric juice and fermentation characteristics of Lactobacillus strains isolated from human. Food Science & Nutrition, 10(1), 227–238. https://doi.org/10.1002/FSN3.2662Liu, M., Ding, J., Zhang, H., Shen, J., Hao, Y., Zhang, X., Qi, W., Luo, X., Zhang, T., & Wang, N. (2020). Lactobacillus casei LH23 modulates the immune response and ameliorates DSS-induced colitis via suppressing JNK/p-38 signal pathways and enhancing histone H3K9 acetylation. Food and Function, 11(6), 5473–5485. https://doi.org/10.1039/d0fo00546kLiu, Q., Yu, Z., Tian, F., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories, 19(1), 1–11. https://doi.org/10.1186/s12934-020-1289-4Llamas-Arriba, M. G., Hernández-Alcántara, A. M., Mohedano, M. L., Chiva, R., Celador-Lera, L., Velázquez, E., Prieto, A., Dueñas, M. T., Tamame, M., & López, P. (2021). Lactic acid bacteria isolated from fermented doughs in Spain produce dextrans and riboflavin. Foods, 10(9), 1–20. https://doi.org/10.3390/foods10092004Londoño-Zapata, A. F., Durango-Zuleta, M. M., Sepúlveda-Valencia, J. U., & Moreno Herrera, C. X. (2017). Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT - Food Science and Technology, 82, 39–48. https://doi.org/10.1016/J.LWT.2017.03.058Lonvaud-Funel, A. (2014). Leuconostocaceae Family. In C. A. Batt & M. Lou Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition) (Second Edi, pp. 455–465). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384730-0.00185-3Lorenzo, J. M., Munekata, P. E., Dominguez, R., Pateiro, M., Saraiva, J. A., & Franco, D. (2018). Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms, 53–107. https://doi.org/10.1016/B978-0-12-811031-7.00003-0Luan, C., Jiang, N., Zhou, X., Zhang, C., Zhao, Y., Li, Z., & Li, C. (2022). Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microbial Pathogenesis, 164, 105446. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105446Luis, P., Arroyo, C., Augusto, C., Hurtado, B., & Pardo Pérez, E. (2018). CHARACTERIZATION OF MICROORGANISMS WITH PROBIOTIC POTENTIAL ISOLATED FROM BRAHMAN CALF MANURE IN SUCRE, COLOMBIA. Rev Inv Vet Perú, 29(2), 438–448. https://doi.org/10.15381/rivep.v29i2.14482Lv, L. X., Li, Y. D., Hu, X. J., Shi, H. Y., & Li, L. J. (2014). Whole genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains. Gut Pathogens, 6(1), 36. https://doi.org/10.1186/s13099-014-0036-yMa, J., Yu, W., Hou, J., Han, X., Shao, H., & Liu, Y. (2020). Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties, 23(1), 677–692. https://doi.org/10.1080/10942912.2020.1751656Maamer-Azzabi, A., Ndozangue-Touriguine, O., & Bréard, J. (2013). Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737. Cell Death & Disease, 4(9), e801. https://doi.org/10.1038/CDDIS.2013.328Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Roux, Y. Le, Hassouna, M., Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Soligot-hognon, C., Mahmoudi, I., Moussa, O. Ben, Khaldi, T. E., & Kebouchi, M. (2022). Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk To cite this version : HAL Id : hal-03611850 Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk.Mantzourani, I., Chondrou, P., Bontsidis, C., Karolidou, K., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Galanis, A., & Plessas, S. (2019). Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: evaluation of adhesion and antiproliferative properties in in vitro experimental systems. Annals of Microbiology, 69(7), 751–763. https://doi.org/10.1007/s13213-019-01467-6Marchwińska, K., & Gwiazdowska, D. (2022). Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. 204, 61. https://doi.org/10.1007/s00203-021-02700-0Marques, J. de L., Funck, G. D., Dannenberg, G. da S., Ames, C. W., Vitola, H. R. S., Borchardt, J. L., Cruxen, C. E. dos S., Leite, F. P. L., Fiorentini, Â. M., & da Silva, W. P. (2022). Evaluation of probiotic potential of Pediococcus pentosaceus isolates and application in Minas Frescal cheese. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16166McAuliffe, O. (2017). Genetics of Lactic Acid Bacteria. In Cheese (pp. 227–247). Elsevier. https://doi.org/10.1016/B978-0-12-417012-4.00009-0Milanovic, V., Osimani, A., Garofalo, C., Belleggia, L., Maoloni, A., Cardinali, F., Mozzon, M., Foligni, R., Aquilanti, L., & Clementi, F. (2020). Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. Plos One, 15(7 July), 1–21. https://doi.org/10.1371/journal.pone.0236190Mohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis, 126, 212–217. https://doi.org/10.1016/j.micpath.2018.11.014Mokhtar, N. M., Wong, K., Affendi Raja Ali, R., Jian, T. W., Mokhtar, N. M., Raja Ali, R. A., Ken, W. K., Wong, K., & Affendi Raja Ali, R. (2018). Manipulation of Gut Microbiota in Vitro Model of Colorectal Cancer: Strong Adherence Ability of Lactobacillus Rhamnosus. Gut, 67(Suppl 1), A23--A23. https://doi.org/10.1136/gutjnl-2018-IDDFabstracts.130Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-019-09978-7Morovic, W., & Budinoff, C. R. (2021). Epigenetics: A New Frontier in Probiotic Research. Trends in Microbiology, 29(2), 117–126. https://doi.org/10.1016/J.TIM.2020.04.008Muñoz-Provencio, D., Pérez-Martínez, G., & Monedero, V. (2010). Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. Journal of Applied Microbiology, 108(3), 1050–1059. https://doi.org/10.1111/j.1365-2672.2009.04508.xNghe, D., & Nguyen, T. (2014). Characterization of Antimicrobial Activities of Pediococcus pentosaceus Vtcc-B-601 ARTICLE INFO ABSTRACT. Journal of Applied Pharmaceutical Science, 4(05), 61–064. https://doi.org/10.7324/JAPS.2014.40511Nonaka, T., & Wong, D. T. W. (2017). Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva (pp. 125–151).Novoa, C. F., & Lopéz, N. (2008). Evaluación de la vida útil sensorial del queso doble crema con dos niveles de grasa. Rev. Med. Vet. Zoot., 55, 91–99.Nwoko, E. S. Q. A., & Okeke, I. N. (2021). Bacteria autoaggregation: How and why bacteria stick together. Biochemical Society Transactions, 49(3), 1147–1157. https://doi.org/10.1042/BST20200718O’bryan, C. A., Koo, O. K., Sostrin, M. L., Ricke, S. C., Crandall, P. G., & Johnson, M. G. (2018). Chapter 15 - Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. https://doi.org/10.1016/B978-0-12-811835-1.00015-4Oh, Y. J., & Jung, D. S. (2015). Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented milletalcoholic beverage in Korea. Lwt, 63(1), 437–444. https://doi.org/10.1016/j.lwt.2015.03.005Ohkusa, T., Yoshida, T., Sato, N., Watanabe, S., Tajiri, H., & Okayasu, I. (2009). Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. Journal of Medical Microbiology, 58(Pt 5), 535–545. https://doi.org/10.1099/JMM.0.005801-0Okonkwo, C. C. (2017). Process development and metabolic engineering to enhance 2 , 3- butanediol production by Paenibacillus polymyxa DSM 365. Ohio State University.Ortiz Balderas, M. (2006). Identificación bioquímica de Bacterias Ácido Lácticas aisladas a partir de productos lácteos en el estado de Hidalgo [Universidad Autónoma del Estado de Hidalgo]. https://repository.uaeh.edu.mx/bitstream/bitstream/handle/123456789/10741/Identificacion bioquimica.pdf?sequence=1&isAllowed=yOsorio, D. P., Novoa, C. F., & Gutiérrez, L. F. (2012). Determinación de la viabilidad de la nariz electrónica en la predicción de la vida útil del queso doble crema. Alimentos Hoy, 21(26), 26–42. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/120/114Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Https://Doi.Org/10.3109/07853890.2016.1161232, 48(4), 246–255. https://doi.org/10.3109/07853890.2016.1161232Ouwehand, A. C., & Salminen, S. (2003). In vitro Adhesion Assays for Probiotics and their in vivo Relevance: A Review. Microbial Ecology in Health and Disease, 15(4), 175–184. https://doi.org/10.1080/08910600310019886Ozen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial Microbes, 6(2), 159–165. https://doi.org/10.3920/BM2014.0103Park, S. H., Kim, Y. A., Chung, M. J., Kang, B. Y., & Ha, N. J. (2007). Inhibition of Proliferation by Anti-microbial Peptide Isolated from Pediococcus pentosaceus and Lactobacillus spp. in Colon Cancer Cell Line (HT-29, SW 480 and Caco-2).Parma Augusto Castilho, N. DE. (2018). BACTERIOCINOGENIC POTENTIAL OF LACTIC ACID BACTERIA ISOLATES FROM ARTISANAL FERMENTED MEAT PRODUCTS. Universidade Federal de Viçosa.Patrone, V., Al-Surrayai, T., Romaniello, F., Fontana, A., Milani, G., Sagheddu, V., Puglisi, E., Callegari, M. L., Al-Mansour, H., Kishk, M. W., & Morelli, L. (2021). Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics and Antimicrobial Proteins, 13(3), 809–823. https://doi.org/10.1007/S12602-020-09715-X/TABLES/4Pavkov-Keller, T., Howorka, S., & Keller, W. (2011). The structure of bacterial S-layer proteins. Progress in Molecular Biology and Translational Science, 103, 73–130. https://doi.org/10.1016/B978-0-12-415906-8.00004-2Pellegrino, M. S., Frola, I. D., Natanael, B., Gobelli, D., Nader-Macias, M. E. F., & Bogni, C. I. (2019). In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis. Probiotics and Antimicrobial Proteins, 11(1), 74–84. https://doi.org/10.1007/s12602-017-9383-6Pérez-Ramos, A., Mohedano, M. L., Puertas, A., Lamontanara, A., Orru, L., Spano, G., Capozzi, V., Teresa Dueñas, M., & López, P. (2016). Draft genome sequence of Pediococcus parvulus 2.6, a probiotic β-glucan producer strain. Genome Announcements, 4(6). https://doi.org/10.1128/GENOMEA.01381-16Pino, A., Bartolo, E., Caggia, C., Cianci, A., & Randazzo, C. L. (2019). Detection of vaginal lactobacilli as probiotic candidates. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-40304-3Pisano, M. B., Rosa, A., Putzu, D., Cesare Marincola, F., Mossa, V., Viale, S., Fadda, M. E., & Cosentino, S. (2020). Influence of Autochthonous Putative Probiotic Cultures on Microbiota, Lipid Components and Metabolome of Caciotta Cheese. Frontiers in Microbiology, 11, 2620. https://doi.org/10.3389/FMICB.2020.583745/BIBTEXPlaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10(suppl_1), S49–S66. https://doi.org/10.1093/advances/nmy063Rahman, M., Kim, W.-S., Kumura, H., & Shimazaki, K. (2008). Autoaggregation and surface hydrophobicity of bifidobacteria. World Journal of Microbiology and Biotechnology, 24, 1593–1598. https://doi.org/10.1007/s11274-007-9650-xRamírez Ramírez, C., Rosas Ulloa, P., Velázquez González, M. Y., Ulloa, J. A., & Arce Romero, F. (2011). Bacterias lácticas: Importancia en alimentos y sus efectos en la salud. Revista Fuente, 2(7), 1–16. http://fuente.uan.edu.mx/publicaciones/03-07/1.pdfRavi, J., & Fioravanti, A. (2021). S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Frontiers in Microbiology, 12, 685. https://doi.org/10.3389/FMICB.2021.663468/BIBTEXReale, A., Di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. Lwt, 60(2), 721–728. https://doi.org/10.1016/j.lwt.2014.10.022Rehaiem, A., Belgacem, Z. Ben, Edalatian, M. R., Martínez, B., Rodríguez, A., Manai, M., & Guerra, N. P. (2014). Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control, 37, 343–350. https://doi.org/10.1016/j.foodcont.2013.09.044Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. https://doi.org/10.3168/JDS.2019-17092Ringot-Destrez, B., Kalach, N., Mihalache, A., Gosset, P., Michalski, J. C., Léonard, R., & Robbe-Masselot, C. (2017). How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochemical Society Transactions, 45(2), 389–399. https://doi.org/10.1042/BST20160167Rohith, H. S., & Halami, P. M. (2021). In vitro validation studies for adhesion factor and adhesion efficiency of probiotic Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 on HT-29 cell lines. Archives of Microbiology, 203(6), 2989–2998. https://doi.org/10.1007/S00203-021-02257-YRubio, A. P. D., Martínez, J. H., Casillas, D. C. M., Leskow, F. C., Piuri, M., & Pérez, O. E. (2017). Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in Microbiology, 8(SEP), 1–12. https://doi.org/10.3389/fmicb.2017.01783Ruiz, A. G., González De Llano, D., Fernández, A. E., Rolanía, T. R., Sualdea, B. B., & Moreno Arribas, M. V. (2014). Evaluación de las propiedades probióticas de bacterias lácticas de origen enológico. Alimentación, Nutrición y Salud, 21(2), 28–34.Ruiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396. https://doi.org/10.3389/fmicb.2013.00396Safika, S., Wardinal, W., Ismail, Y. S., Nisa, K., & Sari, W. N. (2019). Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans (Pongo abelii). Veterinary World, 12(7), 1060–1065. https://doi.org/10.14202/vetworld.2019.1060-1065Sánchez, B., Salazar Garzo, N., & Margolles, A. (2018). La microbiota intestinal.Sánchez, J. F. (2019). Caracterización molecular de bacterias ácido lácticas aisladas de frutos procedentes de la Región Loreto. 124. https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/10767/Sanchez_dj.pdf?sequence=1&isAllowed=ySanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. https://doi.org/10.4161/gmic.1.3.12127Segers, M. E., & Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microbial Cell Factories, 13 Suppl 1, S7. https://doi.org/10.1186/1475-2859-13-S1-S7Serna-Cock, L., Pabón-Rodríguez, O. V., & Giraldo-Gómez, G. I. (2019). Adhesion Capacity of Weissella cibaria to Bovine Mammary Tissue and the Effect of Bio-Sealant Topical Application on Physicochemical Properties of Milk. Probiotics and Antimicrobial Proteins, 11(4), 1293–1299. https://doi.org/10.1007/s12602-018-9481-0Sharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Gill, J. P. S., & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1), 53. https://doi.org/10.1007/s13205-017-0682-0Sharma, L., & Riva, A. (2020). Intestinal barrier function in health and disease—any role of sars‐cov‐2? Microorganisms, 8(11), 1–27. https://doi.org/10.3390/microorganisms8111744Sharma, R. (2021, May 18). Kirby Bauer Disc Diffusion Method For Antibiotic Susceptibility Testing. https://microbenotes.com/kirby-bauer-disc-diffusion/Sharma, S., & Kanwar, S. S. (2017). Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines. Journal of Food Science and Technology, 54(11), 3504–3511. https://doi.org/10.1007/s13197-017-2807-1Shin, M., Ban, O. H., Jung, Y. H., Yang, J., & Kim, Y. (2021). Genomic characterization and probiotic potential of Lactobacillus casei IDCC 3451 isolated from infant faeces. Letters in Applied Microbiology, 72(5), 578–588. https://doi.org/10.1111/LAM.13449Sica, M. G. (2013). Bacterias lácticas del estuario de Bahía Blanca : evaluación de sus propiedades probióticas para su potencial uso en el cultivo de trucha arcoíris (Oncorhynchus mykiss). Universidad Nacional del Sur Bahía Blanca.Sigma-Aldrich. (2021a). SW 620 Cell Line human. https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87051203Sigma-Aldrich. (2021b). SW480 Cell Line human 87092801 . https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87092801Singh, B., Fleury, C., Jalalvand, F., & Riesbeck, K. (2012). Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews, 36(6), 1122–1180. https://doi.org/10.1111/j.1574-6976.2012.00340.xSingh, K. S., Kumar, S., Mohanty, A. K., Grover, S., & Kaushik, J. K. (2018). Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. Scientific Reports 2018 8:1, 8(1), 1–10. https://doi.org/10.1038/s41598-018-32417-ySingh, T. P., Malik, R. K., & Kaur, G. (2016). Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire, 41(1), 1–10. https://doi.org/10.1186/s41110-016-0007-9Singla, V., Mandal, S., Sharma, P., Anand, S., & Tomar, S. K. (2018). Antibiotic susceptibility profile of Pediococcus spp. from diverse sources. 3 Biotech, 8(12), 489. https://doi.org/10.1007/S13205-018-1514-6Sireswar, S., Biswas, S., & Dey, G. (2020). Adhesion and anti-inflammatory potential of: Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food and Function, 11(3), 2555–2572. https://doi.org/10.1039/C9FO02249JSlater, C., De La Mare, J. A., & Edkins, A. L. (2018). In vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model. Oncology Letters, 15(6), 8516–8526. https://doi.org/10.3892/ol.2018.8431Smith, A. C., & Hussey, M. A. (2019). Gram Stain Protocols. https://asm.org/Protocols/Gram-Stain-ProtocolsSong, X., Xiong, Z., Kong, L., Wang, G., & Ai, L. (2018). Relationship between putative eps genes and production of exopolysaccharide in lactobacillus casei LC2W. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01882Song, Y. R., Lee, C. M., Lee, S. H., & Baik, S. H. (2021). Evaluation of probiotic properties of pediococcus acidilactici m76 producing functional exopolysaccharides and its lactic acid fermentation of black raspberry extract. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071364Srimahaeak, T., Bianchi, F., Chlumsky, O., Larsen, N., & Jespersen, L. (2021). In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. Journal of Functional Foods, 79, 104395. https://doi.org/10.1016/j.jff.2021.104395Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology / Edited by John E. Coligan ... [et al.], 111, A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111Subramaniyan, V., & Gurumurthy, K. (2019). Diversity of probiotic adhesion genes in the gastrointestinal tract of goats. Journal of Cellular Biochemistry, 120(8), 12422–12428. https://doi.org/10.1002/jcb.28508Suhonen, A. (2019). Antibiotic Susceptibility of Lactic Acid Bacteria [University of Helsinki]. http://www.helsinki.fi/kirjasto/fi/avuksi/yliopiston-julkaisut/e-thesis/Suissa, R., Oved, R., Jankelowitz, G., Turjeman, S., Koren, O., & Kolodkin-Gal, I. (2022). Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. In Trends in Microbiology (Vol. 30, Issue 3, pp. 293–306). Elsevier Current Trends. https://doi.org/10.1016/j.tim.2021.07.007Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, resistome and resistance mechanisms: A bacterial perspective. Frontiers in Microbiology, 9(SEP), 2066. https://doi.org/10.3389/FMICB.2018.02066/BIBTEXSurat, P. (2018, August 24). pH in the Human Body. News Medical Life Sciences. https://www.news-medical.net/health/pH-in-the-Human-Body.aspxSuwannaphan, S. (2021). Isolation, identification and potential probiotic characterization of lactic acid bacteria from thai traditional fermented food. AIMS Microbiology, 7(4), 431–446. https://doi.org/10.3934/MICROBIOL.2021026Tankeshwar, A. (2013, October 7). Catalase test: Principle, Procedure, Results and Applications. Learn Microbiology Online. https://microbeonline.com/catalase-test-principle-uses-procedure-results/Tarrah, A., da Silva Duarte, V., de Castilhos, J., Pakroo, S., Lemos Junior, W. J. F., Luchese, R. H., Fioravante Guerra, A., Rossi, R. C., Righetto Ziegler, D., Corich, V., & Giacomini, A. (2019). Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. Journal of Functional Foods, 54, 489–497. https://doi.org/10.1016/J.JFF.2019.02.004Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, R. E., Ran, C., & Zhou, Z. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition, 7, 191. https://doi.org/10.3389/FNUT.2020.570344/BIBTEXTeixeira, C. G., Silva, R. R. da, Fusieger, A., Martins, E., Freitas, R. de, & Carvalho, A. F. de. (2021). O gênero Weissella na indústria de alimentos: Uma revisão. Research, Society and Development, 10(5), e8310514557. https://doi.org/10.33448/rsd-v10i5.14557Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients, 11(7). https://doi.org/10.3390/NU11071591Thao, T. T. P., Thoa, L. T. K., Ngoc, L. M. T., Lan, T. T. P., Phuong, T. V., Truong, H. T. H., Khoo, K. S., Manickam, S., Hoa, T. T., Tram, N. D. Q., Show, P. L., & Huy, N. D. (2021). Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evaluation for bacterial pathogens inhibition. Chemical Engineering and Processing - Process Intensification, 168(January), 108576. https://doi.org/10.1016/j.cep.2021.108576Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510Tidjani Alou, M., Lagier, J.-C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal, 1, 3–11. https://doi.org/10.1016/J.HUMIC.2016.09.001Todhanakasem, T., Triwattana, K., Pom, J., Havanapan, P., Koombhongse, P., & Thitisak, P. (2021). Physiological studies of the Pediococcus pentosaceus biofilm. Letters in Applied Microbiology, 72(2), 178–186. https://doi.org/10.1111/LAM.13351Tuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., & Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96(7), 4252–4257. https://doi.org/10.3168/jds.2013-6547Turnbull, P. C. B. (1996). Bacillus. In Medical Microbiology (4th ed.). University of Texas Medical Branch at Galveston. http://www.ncbi.nlm.nih.gov/pubmed/21413260Turoverova, L. V., Khotin, M. G., Yudintseva, N. M., Magnusson, K. E., Blinova, M. I., Pinaev, G. P., & Tentler, D. G. (2009). Analysis of extracellular matrix proteins produced by cultured cells. Cell and Tissue Biology, 3(5), 497–502. https://doi.org/10.1134/S1990519X09050137Uniprot. (2022). UniProtKB - Q03EH8 (Q03EH8_PEDPA). Uniprot.Org. https://www.uniprot.org/uniprot/Q03EH8Universidad EAFIT, Biointropic, & Silo. (2018). Estudio sobre Bioeconomía como fuente de nuevas industrias basadas en el capital natural de Colombia. Fase II.Vanegas, M. F., Londoño Zapata, A., Durango Zuleta, M., Gutiérrez Buriticá, M., Ochoa Agudelo, S., & Sepúlveda Valencia, J. (2017). Capacidad Antimicrobiana de Bacterias Ácido Lácticas autóctonas aisladas de queso doble crema y quesillo colombiano. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(1), 45. https://doi.org/10.18684/BSAA(15)45-55Vasiee, A., Falah, F., Behbahani, B. A., & Tabatabaee-yazdi, F. (2020). Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering, 130(5), 471–479. https://doi.org/10.1016/j.jbiosc.2020.07.002Vélez Zea, J., Gutiérrez Díez, A., & Montoya, O. (2015). Molecular identification and evaluation of the probiotic ability of lacticacid bacteria from sow colostrum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 141–149.Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/J.JFF.2012.10.012Vinderola, G., Reinheimer, J., & Salminen, S. (2019). The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure? International Dairy Journal, 96, 58–65. https://doi.org/10.1016/j.idairyj.2019.04.010Von Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., Tynkkynen, S., Salminen, S., De Vos, W. M., & Palva, A. (2010). Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and Environmental Microbiology, 76(7), 2049–2057. https://doi.org/10.1128/AEM.01958-09Wang, J., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., Fan, M., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., & Fan, M. (2018). Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. Annals of Microbiology, 68(12), 803–813. https://doi.org/10.1007/s13213-018-1386-3Wang, T., Sun, H., Chen, J., Luo, L., Gu, Y., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., & Lü, X. (2021). Anti-Adhesion Effects of Lactobacillus Strains on Caco-2 Cells Against Escherichia Coli and Their Application in Ameliorating the Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice. Probiotics and Antimicrobial Proteins, 13(6), 1632–1643. https://doi.org/10.1007/S12602-021-09774-8Wendel, U. (2022). Assessing Viability and Stress Tolerance of Probiotics—A Review. Frontiers in Microbiology, 12, 4351. https://doi.org/10.3389/FMICB.2021.818468/BIBTEXWu, J. W. F. W., Redondo-Solano, M., Uribe, L., Ching-Jones, R. W., Usaga, J., & Barboza, N. (2021). First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ, 9. https://doi.org/10.7717/peerj.12437Xiong, L., Ni, X., Niu, L., Zhou, Y., Wang, Q., Khalique, A., Liu, Q., Zeng, Y., Shu, G., Pan, K., Jing, B., & Zeng, D. (2019). Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca). Probiotics and Antimicrobial Proteins, 11(2), 535–544. https://doi.org/10.1007/S12602-018-9402-2Xu, D., Liao, C., Zhang, B., Tolbert, W. D., He, W., Dai, Z., Zhang, W., Yuan, W., Pazgier, M., Liu, J., Yu, J., Sansonetti, P. J., Bevins, C. L., Shao, Y., & Lu, W. (2018). Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity, 48(6), 1233-1244.e7. https://doi.org/10.1016/J.IMMUNI.2018.04.014Xu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Dia, V. P., Qiao, Y., & Shi, B. (2020). Antibacterial potential of a novel: Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides. Food and Function, 11(5), 4697–4706. https://doi.org/10.1039/d0fo00905aXue, H. B., Liu, C., Liu, Y., Wang, W. N., & Xu, B. (2021). Roles of surface layer proteins in the regulation of Pediococcus pentosaceus on growth performance, intestinal microbiota, and resistance to Aeromonas hydrophila in the freshwater prawn Macrobrachium rosenbergii. Aquaculture International, 29(3), 1373–1391. https://doi.org/10.1007/s10499-021-00704-7Yamashita, M. M., Ferrarezi, J. V., Pereira, G. do V., Bandeira, G., Côrrea da Silva, B., Pereira, S. A., Martins, M. L., & Pedreira Mouriño, J. L. (2020). Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139, 103897. https://doi.org/10.1016/J.MICPATH.2019.103897Yao, Y., Cai, X., Ye, Y., Wang, F., Chen, F., & Zheng, C. (2021). The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 12, 4114. https://doi.org/10.3389/FIMMU.2021.708472/BIBTEXYe, K., Liu, J., Liu, M., Huang, Y., Wang, K., & Zhou, G. (2018). Effects of two Weissella viridescens strains on Listeria monocytogenes growth at different initial inoculum proportions. CYTA - Journal of Food, 16(1), 299–305. https://doi.org/10.1080/19476337.2017.1401667Yin, H., Ye, P., Lei, Q., Cheng, Y., Yu, H., Du, J., Pan, H., & Cao, Z. (2020). In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis, 144(December 2019), 104163. https://doi.org/10.1016/j.micpath.2020.104163Yu, H. S., Jang, H. J., Lee, N. K., & Paik, H. D. (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. Lwt, 112(March), 108229. https://doi.org/10.1016/j.lwt.2019.05.127Zhang, Y., Xiang, X., Lu, Q., Zhang, L., Ma, F., & Wang, L. (2016). Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L. Journal of Dairy Science, 99(2), 1011–1018. https://doi.org/10.3168/jds.2015-10020Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018a). In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat “Dried Ossban.” In Frontiers in Microbiology (Vol. 9). https://www.frontiersin.org/article/10.3389/fmicb.2018.02607Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018b). In vitroassessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceusMZF16 isolated from artisanal tunisian meat "dried ossban. Frontiers in Microbiology, 9(NOV), 2607. https://doi.org/10.3389/fmicb.2018.02607EstudiantesInvestigadoresMaestrosORIGINAL1152214584.2022.pdf1152214584.2022.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf1562236https://repositorio.unal.edu.co/bitstream/unal/82661/4/1152214584.2022.pdff310f358a1d0ed74a46757bd0f64a256MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82661/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1152214584.2022.pdf.jpg1152214584.2022.pdf.jpgGenerated Thumbnailimage/jpeg4652https://repositorio.unal.edu.co/bitstream/unal/82661/5/1152214584.2022.pdf.jpg8b8bed1383faab3b1971f68979e63af7MD55unal/82661oai:repositorio.unal.edu.co:unal/826612024-08-12 23:11:23.973Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |